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Abstract: While the definition of a fractional integral may be codified by Riemann and Liouville, an agreed-upon fractional derivative
has eluded discovery for many years. This is likely a result of integral definitions including numerous constants of integration in their
results. An elimination of constants of integration opens the door to an operator that reconciles all known fractional derivatives and
shows surprising results in areas unobserved before, including the appearance of the Riemann Zeta function and fractional Laplace and
Fourier transforms. A new class of functions, known as Zero Functions and closely related to the Dirac delta function, are necessary for
one to perform elementary operations of functions without using constants. The operator also allows for a generalization of the Volterra
integral equation, and provides a method of solving for Riemann’s complimentary function introduced during his research on fractional
derivatives.
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1 Introduction

The concept of derivatives of non-integer order, commonly known as fractional derivatives, first appeared in a letter
between L’Hopital and Leibniz in which the question of a half-order derivative was posed [1]. In recent years, the
research has found footholds in many areas of study, including applications in polymers, quantum mechanics, group
theory, wave theory, spectroscopy, continuum mechanics, field theory, biophysics, statistics, and Lie theory ([2,3,4,5,6]).
Many formulations of fractional derivatives have appearedover the centuries, such as the Riemann-Liouville, Caputo,
Hadamard, Erdelyi-Kober, Grunwald-Letnikov, Marchaud, and Riesz, but one would expect an “ultimate” definition to
emerge out of the many ([7,8,9,10,11]).

This “ultimate” has seemingly eluded discovery, and one is forced to choose a so-called “best derivative for the job”,
depending on how a particular definition relates to the research at hand.

That is not to say, however, that the perfect definition does not exist. It seems likely that one could expect the following
to be true:

1. dα

dxα xn =
Γ (n+1)

Γ (n+1−α)x
n−α for n≥ 0 andα ≤ n+1,

2. dα

dxα eλ x = λ αeλ x, which, assuming the derivative is linear, implies

3. dα

dxα sin(λx) = |λ |α sin(λx+ π
2 α), and

4. dα

dxα cos(λx) = |λ |α cos(λx+ π
2 α).

This is a result of noticing the patterns of traditional derivatives, and interpolating their properties. Thus far, no proposed
definition satisfies all four of the above in all cases, and indeed there is much debate as to whether the above are truly the
“correct” interpolations of their respective patterns.
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The discrepancies inherent in fractional derivative definitions are likely due to the fact that nearly all fractional
derivatives are instead based on generalizing repeatedintegration. This brings up many questions such as, “What should
the upper-and-lower limits of integration be?”, or “Shouldthere be terms added to the end to cancel out abnormalities?”

Even so, a commonly used definition for the fractional derivative is the Riemann-Liouville definition, which is a
generalization of Cauchy’s formula for repeated integration:

1
Γ (α)

∫ x

c
f (τ)(x− τ)α−1dτ, (1)

with c as an arbitrary integration limit. This, however, is by its nature afractional integral. To make the fractional integral
into a derivative, a full derivative of the fractional integral is taken. This definition introduces surprising results, such as
the fractional derivative of a constant not being constant.Caputo eliminated this “abnormality” by adding a small term
onto the end which would subtract whatever a constant evaluated in the Riemann-Liouville definition, leaving zero.

Another very popular definition, the Grunwald-Letnikov fractional derivative arises from a binomial generalization of
repeated limit-based derivatives,

dα

dxα f (x) = lim
h→0

∞

∑
m=0

(−1)m+α

hα

(
α
m

)
f (x+mh). (2)

This derivative is also special in that it can provide results for complex values ofα. Acting in this manner upon the
exponential function allows for a wide range of use within harmonic analysis, wavelet theory, and other branches of
mathematics that deal with Fourier series [12,13].

While they do not satisfy all of the aforementioned conjectured results, the Riemann-Liouville and Grunwald-Letnikov
derivatives indeed satisfy the four properties in thefollowingdefinition, which may be taken as the definition of a fractional
derivative, as defined by Ortigueira and Machado [14]:

Definition 1Letα ∈ [0,1]. An operator Dα is a fractional differential operator if it satisfies the following four properties:

1.Linearity: Dα(a f +bg) = aDα( f )+bDα(g) for all a,b∈ C and f,g∈ Dom(Dα), where Dom(Dα)
is the domain of the operator Dα

2.D0[ f ] = f for all functions f
3.D1[ f ] = f ′ for all f ∈ Dom(D1)

4.The Index Law: Dβ Dα [ f ] = Dβ+α [ f ] for all f ∈ Dom(Dβ ◦Dα)∩Dom(Dβ+α).

Satisfying the above definition is good, but not quite good enough to “win-out” against all other forms of fractional
derivatives. And just so, newer definitions are arising thatbend these rules so that other rules may be met instead [15].
This rule-bending allowed for the first non-linear conformable fractional derivative to be proposed just two years ago [16].

The manuscript which follows eliminates constant functions, and in doing so changes the nature of the spaces which
the fractional derivative behaves, forcing its domain intogeneralized function spaces. This in turn allows the definition to
give results in terms ofdistributionalderivatives and integrals, and even changes the notion of integrals themselves.

In comparing the results to past distributional fractionalderivatives, these results may be a reconciliation of what
was proposed in [17], namely that the Riemann-Liouville derivative operatingin a distributional sense does not produce
an integer-valued distributional derivative. The resultsobtained in [17], when paired with the notion of Zero Functions
proposed here, give precisely the integer-valued distributional derivatives.

This definition allows derivation and integration of complex powers, and does so with a single definition between
both derivation and integration, making the operator to thenegative power the inverse. The definition also allows for the
construction of fractional integral transforms, the solution of fractional differential equations with an arbitrarynumber
of initial/boundary conditions. What follows is the introduction of the distributional differintegral, and an overview of its
many properties.

2 Elimination of Nonzero Constants from Allowed Functions of Differintegration

Remark. This paper uses the terms “antiderivative” and “integral” interchangeably.
Derivatives and antiderivatives arenot inverses of one another. Considering the functionf (z) = 1 and the integral and

differential operatorsJ andD respectively,

DnJn[1] = 1 butJnDn[1] =
n−1

∑
k=0

ckx
k. (3)
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This is whyn boundary/initial conditions are necessary for a differential equation of ordern. But this is also why
different integral definitions of fractional derivatives (or even different bounds of integration on thesamedefinition) yield
drastically different results.

As recently shown by [18], the secret to fractional differentiation lies in eliminating nonzero constants from
“allowed” functions of differentiation/integration. This is a result of the differential operator losing its bijectivity on a
domain containing these functions. Thus, it cannot be invertible. Instead, it is apt to allow thedistributionsof the form

f (z) =Cz0 =C
[
H(z)+H(−z)

]
(4)

(whereH(z) is the Heaviside step function) which are equal to constant functionsalmost everywhere, but remain
undefined atz= 0.

One must also use the following identity given by the power rule for derivatives (but not the limit definition):

d
dz

z= z0 = H(z)+H(−z). (5)

To avoid confusion with past definitions of antiderivatives, however, the new system applied uses the terminology
“inverse derivative,” along with the operatord−1

dz−1 for the inverse derivative of a function of independent variablez.
Since nonzero constant functions are no longer allowed, it may be enforced that

d−1

dz−1 0= 0 and
d−1

dz−1z0 = z. (6)

Note that one may relate an inverse derivative to an integralby

∫
f (z)dz=

d−1

dz−1 f (z)+C. (7)

Definition 2Let X(Ω) be a linear generalized function space containing the monomials. Define X−c(Ω) to be the
generalized function space containing precisely the imageof the linear mapping, T: X(Ω) → X−c(Ω) and all
derivatives (in the sense of X(Ω)) of the image of T on X(Ω).

The mapping T is defined as follows

T
[

f (z)
]
=

{
f (z) if f is not a constant function
f (z) ·z0 if f is a constant function

(8)

for all f ∈ X(Ω), and where z0 is assumed to have the properties explained above in this section.
The space X−c(Ω) is called a generalized function space with trivial constant.

From this point onwards, only derivatives and inverse derivatives inX−c(Ω) spaces are considered.

2.1 Definition of the zero function

Constant functions have been eliminated and replaced with functions equal to constants almost everywhere. To utilize
these, it is reiterated that

d
dz

z= z0 = H(−z)+H(z). (9)

This results in very novel cases, such that

d
dz

z0 = 0 ·z−1 ≃ δ (z)− δ (−z), (10)

whereδ (z) is the Dirac delta function. This notation is used to give an intuitive understanding of the shape of this
derivative as an “odd” function. The distributional derivative of z0 = H(−z)+H(z) is indeedδ (z)− δ (−z) however the
approximately-equalis used to indicate the use of theinverse distributional derivative, which is slightly different than a
distributional integral.

Herein is proposed the zero function:
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Definition 3The zero function/0(z) is defined as

/0(z) =
d
dz

z0 ≃ δ (z)− δ (−z). (11)

Utilizing inverse derivatives one obtains

d−1

dz−1 /0(z) = z0. (12)

One may continue to take derivatives of the zero function:

/0(n−1)(z) =
dn

dzn z0 = H(n)(z)+ (−1)nH(n)(−z)≃ δ (n−1)(z)− δ (n−1)(−z). (13)

It results that one must reconcile the idea of the zero function to an operator that isnotan integral, but rather an inverse
derivative.

3 Interpolating the Differintegral of the Heaviside Step Function

In the sense of distributions, it is well known thatH ′(x) = δ (x), and also that
∫ x
−∞ H(t)dt = xH(x).

Generalizing these with differential and integral operators one obtains

Dn[H(x)] = δ (n−1)(x), andJn[H(x)] =
xn

n!
H(x). (14)

Interpolating these results one may argue that

Jα [H(x)] =
xα

Γ (1+α)
H(x). (15)

Observe now the integral to a negative integer power

J−n[H(x)] =
x−n

Γ (1−n)
H(x). (16)

To see how this function behaves as a distribution, one must act it upon a test function,φ .

∫

R

(x− y)−n

Γ (1−n)
H(x− y)φ(y)dy=

1
Γ (1−n)

∫

R

φ(y)H(x− y)(x− y)−ndy=
−n

Γ (1−n)

∫

R

φ ′(y)H(x− y)(x− y)1−ndy

=
−n(1−n)
Γ (1−n)

∫

R

φ ′′(y)H(x− y)(x− y)2−ndy= ...≃
Γ (1−n)
Γ (1−n)

∫

R

φ (n+1)(y)H(x− y)dy= φ (n)(x)

(17)

where the equality after the ellipsis is considered in the sense of residues.
At each equality above, integration by parts is used, but because test functions are only nonzero on a compact set,

they vanish at infinity. Indeed, this realization that the derivative of the Heaviside step function may be fractionalized to
positive and negative powers allows one to construct the distributional differintegral.

4 Definition of the Distributional Differintegral

To utilize any notion of a “distributional” differintegral, one must understand what spaces allow a distributional derivative
to be taken. Thus, a function space must contain a dense subset of functions analogous to test functions to make any
progress in defining a distributional differintegral. Herein are defined the spaces to consider:

Definition 4Let X(Ω) be a normed space of functions defined onΩ which includes a definition for a derivative (and as
such an inverse derivative). Then define X(Ω) to be a distributional function space if there exists a dense(with respect to
‖ · ‖X(Ω)) subset Xt(Ω)⊆ X(Ω) such that for all f∈ Xt(Ω),

1. dn

dzn f (z) = f (n)(z) exists for all n∈ N and z∈ Ω .
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2.There exists a compact subset K⊆ Ω , such that f(n)(z) = 0 for all z∈ Ω\K and for all n∈N.

Define each element f∈ Xt(Ω) to be a test function of the space X(Ω).

One may recognize the above as a generalization of the test functions in many spaces of real-valued functions.
Just as derivatives and integrals have often been defined, anoperator is used to represent the distributional

differintegral. This operator is an elongated section sign, §, with the variable of differintegration subscripted, and the
power of differintegration superscripted. The motivationfor this is that the symbol is close to that of both

∫
andδ .

The definition of the distributional differintegral is thuspresented.

Definition 5Let f ∈ Xt(Ω) ⊆ X−c(Ω) a distributional function space with trivial constant, andlet z0 ∈ ∂Ω (note z0 may
be infinite).

For α ∈ C, theαth distributional differintegral of f(z), with respect to the variable z, is

§
α

z f (z) =
1

Γ (α)

(
d−1

dζ−1 f (ζ )(z− ζ )α−1
∣∣∣
ζ=z

)

=
1

Γ (α)

∫ z

z0

f (ζ )(z− ζ )α−1dζ

=
1

Γ (α)

∮

γ
f (ζ )(z− ζ )α−1H(z− ζ )dζ

(18)

whereγ is a simple closed curve inΩ containing the points z0 and z, with H(z− ζ ) becoming the real-valued Heaviside
step function whenγ is parameterized by a real variable.1

Remark. When working with functions of a single real variable, the simple closed curveγ may be thought of as the
real part of a circle on the complex Riemann sphere. This includes the most common case where the curve becomes the
real line[−∞,∞].

When the integrals in the definition above do not converge, one may evaluate the integral for values ofα which
converge and performanalytic continuation(with respect togz(α) = §α

z f (z) as a function ofα) to give valid results for
all α ∈ C. Since 1

Γ (α) is entire, this function would be well-defined.
Any of the three definitions above are equivalent. It is sometimes helpful to understand the first (inverse derivative)

definition, noting that this definition does not compute integrals but inverse derivatives. Upon first inspection, however,
one may see the extreme similarity between this definition and that of the Riemann-Liouville fractional integral:

cJ
α
x [ f (x)] =

1
Γ (α)

∫ x

c
f (τ)(x− τ)α−1dτ. (19)

Remark. The definitions areequivalentfor real-valued test functions,α > 0, and a lower integration bound of−∞.
An inverse derivative definition (instead of only an integral definition) sets no limits on convergence. This allows

extension values ofα to all complex numbers as explained above, instead of just the positive real numbers.
It is important to insist that the zero function can be used, as it defines an inverse derivative without a nonzero constant

of integration. Unless a derivative explicitly denotes thevalue of the constant of integration (by means of annth derivative
of the Zero Function), thereis no constant of integration.

It is important to note here thatα ∈ Z+ computes theαth inverse derivative, andα ∈ Z− computes theαth derivative,
while α = 0 is the identity operation.

4.1 The distributional differintegral for non-test functions and distributions

Since the above definition holds only for test functions, onemust extend the distributional differintegral to other functions,
as well as distributions. Since it is required that the test functions are dense in the function space, one may define the
differintegral for non-test functions as follows:

1 That is, ifγ(t) : [t0, t1]→ Ω with γ(t0) = γ(t1) = z0 andγ(t ′) = z for t ′ ∈ [t0, t1], thenH(z−ζ ) = H
(
z− γ(t)

)
= 1 if t ∈ [t0, t ′) and

H(z−ζ ) = H
(
z− γ(t)

)
= 0 if t ∈ (t ′, t1].
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Definition 6Let f ∈ X−c(Ω), a distributional function space with trivial constant. Since Xt(Ω) is dense in X−c(Ω) there
exists{φn}

∞
n=1 such thatφn ∈ Xt(Ω) for all n andφn → f in ‖ ·‖X−c(Ω). For α ∈C, theαth distributional differintegral of

f (z), with respect to the variable z, is

§
α

z f (z) = lim
n→∞

§
α

z φn(z). (20)

In regards to distributions, as with distribution theory, the distributional differintegral is defined as follows.

Definition 7Let T ∈ Xt(Ω)∗, the space of continuous linear functionals on Xt(Ω). For α ∈ C, the αth distributional
differintegral of T , with respect to the variable z, is

§
α

z T
[
(◦)

]
= e−iπα ·T

[
§

α

z (◦)

]
(21)

where(◦) is a placeholder for test functions.

Notice that ifTf is a regular distribution, withf a locally integrable function, andT
[
(◦)

]
=

∫
Ω
[

f (z) ·(◦)
]
dz, then§α

z Tf =
T§

α
z f

.

5 The Distributional Differintegral is a Fractional Deriva tive

Arising from Ortigueira and Machado’s definition of a fractional differential operator, it should be shown that the
distributional differintegral satisfies all four properties. The following are proofs only for test functions of a single real
variable, but as they are dense and the definition for other functions is dependent on that of test functions, these are the
only proofs given. Proofs for functions in general spaces may be researched in the future.

Proof.

1.Linearity:§
α

z

[
λ f (z)+ µg(z)

]
= λ§

α

z f (z)+ µ§
α

z g(z).

§
α

z

[
λ f (z)+ µg(z)

]
=

1
Γ (α)

(
d−1

dζ−1

(
λ f (ζ )+ µg(ζ )

)
(z− ζ )α−1

∣∣∣
ζ=z

)

=
1

Γ (α)

(
d−1

dζ−1 λ f (ζ )(z− ζ )α−1+ µg(ζ )(z− ζ )α−1
∣∣∣
ζ=z

)

=
1

Γ (α)

[(
d−1

dζ−1 λ f (ζ )(z− ζ )α−1
∣∣∣
ζ=z

)
+

(
d−1

dζ−1 µg(ζ )(z− ζ )α−1
∣∣∣
ζ=z

)]

=
1

Γ (α)

[
λ
(

d−1

dζ−1 f (ζ )(z− ζ )α−1
∣∣∣
ζ=z

)
+ µ

(
d−1

dζ−1 g(ζ )(z− ζ )α−1
∣∣∣
ζ=z

)]

= λ
1

Γ (α)

(
d−1

dζ−1 f (ζ )(z− ζ )α−1
∣∣∣
ζ=z

)
+ µ

1
Γ (α)

(
d−1

dζ−1 g(ζ )(z− ζ )α−1
∣∣∣
ζ=z

)

= λ§
α

z f (z)+ µ§
α

z g(z).

(22)

2.For all test functionsf (z), §
0

z f (z) = f (z).

§
0

z f (z) =
∫

R

f (ζ )
(z− ζ )−1

Γ (0)
H(z− ζ )dζ =

∫

R

f (ζ )δ (z− ζ )dζ = f (z). (23)

(See section 3 above for further explanation.)

3.For all test functionsf (z), §
−1

z f (z) = f ′(z).

§
−1

z f (z) =
∫

R

f (ζ )
(z− ζ )−2

Γ (−1)
H(z− ζ )dζ =

∫

R

f (ζ )δ ′(z− ζ )dζ = f ′(z). (24)

(See section 3 above for further explanation.)
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4.The index Law: for all test functionsf (z),§
α

z

[
§

β

z f (z)

]
=§

α+β

z f (z).

To solve this, one must use the beta function,

∫ 1

0
uα−1(1−u)β−1du=

Γ (α)Γ (β )
Γ (α +β )

, (25)

as well as the Dirichlet formula, given by [19], but in the form necessary for the proof,

∫ z

−∞
(z− ζ )α−1dζ

∫ ζ

−∞
f (φ)(ζ −φ)β−1dφ =

∫ z

−∞
f (φ)

[∫ z

φ
(z− ζ )α−1(ζ −φ)β−1dζ

]
dφ . (26)

Therefore one obtains

§
α

z

[
§

β

z f (z)

]
=

1
Γ (α)Γ (β )

∫ z

−∞
f (φ)

[∫ z

φ
(z− ζ )α−1(ζ −φ)β−1dζ

]
dφ . (27)

The inner integral,k(z,φ) =
∫ z

φ (z− ζ )α−1(ζ −φ)β−1dζ , may be interpreted as the kernel of the external convolution

integral. With the substitutionu= ζ−φ
z−φ , which leads toζ = φ +u(z−φ) anddζ = (z−φ)du, one obtains

k(z,φ) =
∫ z

φ
(z− ζ )α−1(ζ −φ)β−1dζ

= (z−φ)α+β−1
∫ 1

0
uα−1(1−u)β−1du

=
Γ (α)Γ (β )
Γ (α +β )

(z−φ)α+β−1.

(28)

Thus one may complete the proof,

§
α

z

[
§

β

z f (z)

]
=

1
Γ (α +β )

∫ z

−∞
f (φ)(z−φ)α+β−1dφ =§

α+β

z f (z). (29)

�

6 Specific Relationship to the Riemann-Liouville Definition

In Riemann’s initial, posthumous publication of fractional calculus, his definition was as follows:

d−α

dx−α f (x) =
1

Γ (α)

∫ x

c
f (t)(x− t)α−1dx+ψc(x), (30)

whereψc(x) was an arbitrary “complimentary” function meant to eliminate the ambiguity in the lower integration limit
[20].

Let it first be recognized that the distributional differintegral does exactly eliminates the ambiguity of the lower
integration limit. Secondly, however, the distributionaldifferintegral actually proposes a method to solve for Riemann’s
ψc(x) complimentary function.

An interpretation of this phenomena may be seen using inverse derivatives. Since

∫ x

x0

f (t)dt =
d−1

dx−1 f (x)−
d−1

dx−1 f (x)
∣∣∣
x=x0

=§
1

x f (x)−

(
§

1

x f (x)

)∣∣∣∣
x=x0

. (31)

Repetition of this process, and Cauchy’s formula for repeated integration states

1
(n−1)!

∫ x

x0

f (t)(x− t)n−1dt =
d−n

dx−n f (x)−
n−1

∑
k=0

ckx
n−k−1 =§

n

x f (x)−
n−1

∑
k=0

ckx
n−k−1, (32)
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whereck is given recursively by the formula

ck =
d−k

dx−k f (x)
∣∣∣
x=x0

−
k−1

∑
j=0

c jx
k− j−1
0 =

(
§

k

x f (x)

)∣∣∣∣
x=x0

−
k−1

∑
j=0

c jx
k− j−1
0 , (33)

so that each step reflects the prior evaluated atx0.
Taking the distributional differintegral of both sides to reveal f (x) one recovers the Riemann-Liouville definition

lim
m→0+

1
Γ (m)

∫ x

x0

f (t)(x− t)m−1dt = f (x)−
n−1

∑
k=0

ck /0(k)(x), (34)

or rather

f (x) = lim
m→0+

1
Γ (m)

∫ x

x0

f (t)(x− t)m−1dt+
n−1

∑
k=0

ck /0(k)(x). (35)

Sincen was arbitrarily large, and since /0(n)(x) = 0 almost everywherefor n ∈ N∪ {0}, one may take the limit as
n→ ∞, recovering the formulas

lim
m→0+

1
Γ (m)

∫ x

x0

f (t)(x− t)m−1dt = f (x)−
∞

∑
k=0

ck /0(k)(x), (36)

and

f (x) = lim
m→0+

1
Γ (m)

∫ x

x0

f (t)(x− t)m−1dt+
∞

∑
k=0

ck /0(k)(x). (37)

This formula gives the necessary “constants of integration” for repeated integration of integer order, and similarly
keeps the Zero Functions equal to zeroalmost everywherefor derivatives of integer order.

The issues arise when taking derivatives of non-integer order; that is, fractional derivatives. Observe now that

f (α)(x) =
1

Γ (−α)

∫ x

x0

f (t)(x− t)−α−1dt+
∞

∑
k=0

ck /0(k+α)(x), (38)

or

1
Γ (−α)

∫ x

x0

f (t)(x− t)−α−1dt = f (α)(x)−
∞

∑
k=0

ck /0(k+α)(x). (39)

It is shown later that fractional (non-integer) derivatives of zero functions arenot equal to zeroalmost everywhere
but rather havenonzerovalues everywhere. Because of this, integral definitions offractional derivativesalmost always
contain polynomials of infinite degree. This also accounts for why many of these integrals do not converge.

Herein is proposed a solution to Riemann’sψc(x) complimentary function. That is

ψc(x) =
∞

∑
k=0

ck /0(k+α)(x). (40)

Sadly, this complimentary function was eliminated from theRiemann-Liouville definition due to Laurent’s work in
1884.

7 Specific Distributional Differintegrals

Herein are provided distributional differintegrals of common functions of a single real variable. Notice that the operator
takes a real-valued function and creates a complex-valued function (though still of a single real variable). Computation
for these cases of functions of a single real variable mimicsthat of the Riemann-Liouville derivative. Therefore they have
been omitted for brevity.

Before beginning, it is important to note that the distributional differintegral is linear as shown above. Thus, one
must only apply it to portions of functions separated by addition/subtraction. Translations of the independent variable
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are allowed in all distributional differintegrals. That is, if T̂z0 is an independent variable translation operator such that
T̂z0 f (z) = f (z− z0), then

§
α

z T̂z0[ f (z)] = T̂z0

[
§

α

z f (z)
]
. (41)

This is a result true for any convolution with a distribution, as seen in [21] exercise 6.14.

In the following results,Ω is chosen such that§α
z f (z)

∣∣
inf Ω =0, as this applies when solving most differential equations

and allows for better convergence of test functions.

7.1 Monomials

The distributional differintegral of a generic monomial function is

§
α

z zn =
Γ (1+n)

Γ (1+n+α)
zn+α , (42)

wheren∈C\Z− (or in the special case of Zero Functions,n∈ Z− and the function is scaled by 1
Γ (1+n) , forcing the scalars

to cancel when the distributional differintegral is applied).
Now observe the existence of the Zero Function. Of course expanded from our earlier definition, the Zero Function

may now be defined as

/0(z) =§
−1

z z0 =
1

Γ (0)
z−1. (43)

Likewise, theαth derivative of the Zero Function may be defined as

/0(α)(z) =§
−α

z /0(z) =§
−α

z

1
Γ (0)

z−1 =
1

Γ (0)
·

Γ (0)
Γ (−α)

z−1−α =
1

Γ (−α)
z−1−α . (44)

This is fascinating as it implies that non-integer derivatives of zero functions are not zero, but notice just as well that
every integer derivative of zero functions is indeed zero.

It is well known that the inverse Laplace Transform behaves as

L
−1[sn, t] =

1
2π i

lim
T→∞

∫ γ+iT

γ−iT
snestds=

1
Γ (−n)

t−1−n. (45)

Considering the zero function defined as /0(α)(z) = 1
Γ (−α)z

−1−α , the result should look quite familiar. Indeed this implies

L [ /0(α)(t),s] = sα . (46)

Notice as well, that one could redefine the definition of the distributional differintegral utilizing the Zero Function.
Observe,

/0(α) =
1

Γ (−α)
z−1−α or /0(−α) =

1
Γ (α)

zα−1, (47)

implying

§
α

z f (z) =
1

Γ (α)

(
d−1

dζ−1 f (ζ )(z− ζ )α−1
∣∣∣
ζ=z

)
=

(
d−1

dζ−1 f (ζ ) /0(−α)(z− ζ )
∣∣∣
ζ=z

)
, (48)

or

§
−α

z f (z) =

(
d−1

dζ−1 f (ζ ) /0(α)(z− ζ )
∣∣∣
ζ=z

)
. (49)

This certainly should not be a surprise as the Zero Function is literallydefinedas a result of the distributional differintegral
of z0.
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7.2 Dirac delta function

The distributional differintegral of the Dirac delta function is

§
α

z δ (z) = H(z)
zα−1

Γ (α)
= H(z) /0(−α)(z). (50)

This, of course, extends nicely to the distributional differintegral of the Heaviside step function,

§
α

z H(z) = H(z)
zα

Γ (α +1)
= H(z) /0(−α−1)(z), (51)

The answers come as no surprise, since it is well known that the antiderivatives of the Heaviside step function are
the antiderivatives of the monomials multiplied by the Heaviside step function. The first derivative of the Heaviside step
function is the Dirac delta function, so it would follow thatthe Zero Function multiplied by the Heaviside step functionis
also the Dirac delta function.

One may also rewrite the distributional differintegral as aconvolution with a fractional Dirac delta function. Notice
that

§
−α

z f (z) =
∫

R

f (ζ ) /0(α)(z− ζ )H(z− ζ )dζ =

∫

R

f (ζ )δ (α)(z− ζ )dζ , (52)

where theαth fractional derivative of the Dirac Delta Function is denoted asδ (α)(z) =§
−α

z δ (z).
Remark. This is where the title of the manuscript arises. The operator is simply a fractionalization of the distributional

derivatives and inverse derivatives of the Dirac delta function. Along with the sifting property and integration by parts, it
results thata fractional differintegral may be based on the convolutionof the fractionalized distributional derivative of
the Dirac delta function.

7.3 Exponential function

The distributional differintegral of a generic exponential function is

§
α

z eλ z= λ−αeλ z. (53)

This, coupled with the linearity of this operator, implies the distributional differintegral of the sin, cos, sinh, andcosh
functions.

§
α

z sin(λz) = |λ |−α sin
(

λz−α
π
2

)
. (54)

§
α

z cos(λz) = |λ |−α cos
(

λz−α
π
2

)
. (55)

§
α

z sinh(λz) =

(
λ−αeλ z− (−λ )−αe−λ z

2

)
. (56)

§
α

z cosh(λz) =

(
λ−αeλ z+(−λ )−αe−λ z

2

)
. (57)

Remark. The Gamma function’s definition follows from a specific case of the exponential function’s distributional
differintegral.

Observe the following:

§
α

z ez =
1

Γ (α)

∫ z

−∞
eζ (z− ζ )α−1H(z− ζ )dζ = ez. (58)

Thus,

[
§

α

z ez
]∣∣∣

z=0
=
[ 1

Γ (α)

∫ z

−∞
eζ (z− ζ )α−1H(z− ζ )dζ

]∣∣∣
z=0

= [ez]
∣∣
z=0. (59)
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This implies,

1
Γ (α)

∫ 0

−∞
eζ (0− ζ )α−1H(0− ζ )dζ = e0 = 1. (60)

One may rearrange this as

Γ (α) =

∫ 0

−∞
eζ (0− ζ )α−1H(0− ζ )dζ =

∫ ∞

0
ζ α−1eζ dζ , (61)

which may be recognized as the most-common integral definition of the Gamma function.

7.4 Natural logarithm

The distributional differintegral of the natural logarithm function is

§
α

z ln(λz) = zα ln(z)+ ln(λ )− γ −ψ(1+α)

Γ (1+α)
, (62)

whereγ ≈ 0.57721..., the Euler-Mascheroni constant, andψ(1+α) = Γ ′(1+α)
Γ (1+α) , the digamma function.

Note here, that ln(λz) = ln(z)+ ln(λ ) = ln(z)+ ln(λ )z0, and indeed the linearity exists,

§
α

z

[
ln(z)+ ln(λ )

]
= zα ln(z)− γ −ψ(1+α)

Γ (1+α)
+ ln(λ ) ·

1
Γ (1+α)

zα =§
α

z ln(λz). (63)

The strongest advantage of the distributional differintegral is found therein. When attempting to create a distributional
differintegral, there was prior doubt as to how functions such asz−n would be treated. On one hand, they were monomials,
but on the other, they were the derivatives of logarithms. There was fear that a perfect definition would never be created
because of this discrepancy.

What may be seen, however, is that the “monomial” distributional differintegral ofz−n is found in the form
Γ (1−n)

Γ (1−n−α)z
−n−α , where at integer-valued derivatives, the result is one of the derivatives of the Zero Function. Likewise,

the distributional differintegral of the logarithmic version of z−n is found in the formzα ln(z)+ln(λ )−γ−ψ(1+α)
Γ (1+α) , where at

integer-valued derivatives, the result keeps the functional form z−n and is not killed by an infinite denominator (as a
result of the digamma function). Interestingly, the non-integer derivatives of this class of functions include the natural
logarithm again.

7.5 The Polylogarithm, and thus the Riemann Zeta function, are specific cases of the distributional
differintegral

Observe the following distributional differintegral:

§
α

z

1
e−z−1

= Liα(e
z), (64)

whereLiα(ez) is the polylogarithm function of baseα.
Testing the distributional differintegral on this function is not coincident. Note the similarity of the Riemann Zeta

function’s integral definition,

ζ (s) =
1

Γ (s)

∫ ∞

0

xs−1

ex−1
dx, (65)

and the integral definition of the distributional differintegral. A quick rearrangement of the Zeta function shows,

ζ (s) =
−1

Γ (s)

∫ 0

∞

1
ex−1

(x−0)s−1H(x−0)dx=
1

Γ (s)

∫ 0

−∞

1
e−x−1

(0− x)s−1H(0− x)dx

=
1

Γ (s)

(∫ t

−∞

1
e−x−1

(t − x)s−1H(t − x)dx

)∣∣∣∣
t=0

=

(
§

s

t

1
e−t −1

)∣∣∣∣
t=0

.

(66)
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Indeed it may be seen from above that
(
§

α

z

1
e−z−1

)∣∣∣∣
z=0

= Liα(e
z)
∣∣
z=0 = Liα(1) = ζ (α). (67)

This also supports the fact that the polylogarithm may be defined as the repeated integral of itself. Here the
distributional differintegral powerα as the base of the polylogarithm implies even further that the definition holds true.

7.6 Product of monomial and exponential

The distributional differintegral of a monomial-exponential product is

§
α

z zneλ z= α
Γ (1+n)
Γ (1+α)

(λz)n+α · 1F1(1+n;1+α;λz)−
αΓ (−α)

Γ (1−n−α)
λ−n−α · 1F1(1−α;1−n−α;λz), (68)

where1F1(1+n;1+α;λz) and1F1(1−α;1−n−α;λz) are Kummer confluent hypergeometric functions.
While the distributional differintegral becomes complicated very quickly for products of functions (no doubt this arises

from a generalization of product rules and integration by parts), the product of the exponential and monomial is a very
commonly-used product, notably in the fractional Laplace transform.

8 Distributional Differintegral Transforms

8.1 Fractional Laplace transform

It is possible to generalize the Laplace transform to fractional values using the distributional differintegral. Thisis done
as follows, utilizing the operatorL (α)[ f (t),s] as theαth power of the Laplace transform.

For 0≤ α ≤ 1,

L
(α)[ f (t),s] = e−iπα

(
ets§

α

t f (t)e−st
)∣∣∣∣

t=(1−α)s
. (69)

One may quickly see that

L
(0)[ f (t),s] = f (s), (70)

and with slightly more effort

L
(1)[ f (t),s] = L [ f (t),s] = F(s), (71)

whereF(s) is the Laplace transform off (t).
Proof.

L
(0)[ f (t),s] = e−iπ ·0

(
ets§

0

t f (t)e−st
)∣∣∣∣

t=s

= es2§
0

s f (s)e−s2
= es2−s2

f (s)

= f (s),

(72)

and

L
(1)[ f (t),s] = e−iπ ·1

(
ets§

1

t f (t)e−st
)∣∣∣∣

t=0
=−

(
ets

∫

R

f (τ)e−sτ (t − τ)0H(t − τ)dτ
)∣∣∣∣

t=0

=−e0
∫

R

f (τ)e−sτ H(−τ)dτ =

∫

R

f (τ)e−sτ H(τ)dτ =

∫ ∞

0
f (τ)e−sτ dτ

= L [ f (t),s] = F(s).

(73)

Notice that one may use this definition without including theevaluation oft = (1−α)s. However, when using this
evaluation, one arrives at a function of a single independent variable (instead oftwo independent variables) for fractional
values ofα. There is little intuition as to what the interpretation of aresult in this manner would imply physically.
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8.2 Differintegral Fourier transform

As the fractional Fourier transform already exists, a different name must be used for the transform resulting from the
distributional differintegral applied to the Fourier transform. Since the Fourier transform is a specific case of the bilateral
Laplace transform, it is possible to construct a Fourier transform from a special sum of the Laplace transform above. This
is done as follows, utilizing the operatorF (α)[ f (t),ω ] as theαth power of the Fourier transform.

For 0≤ α ≤ 1,

F
(α)[ f (t),ω ] =

1
4

(
2
π

) α
2
(

eiωt§
α

t f (t)e−iωt
)∣∣∣∣

t=(1−α)ω
+

1
4

(
2
π

) α
2
(

e−iωt§
α

t f (−t)eiωt
)∣∣∣∣

t=(1−α)ω

+
1
4

(
2
π

) α
2
(

eiωt§
α

t f (t)e−iωt
)∣∣∣∣

t=(α−1)ω
+

1
4

(
2
π

) α
2
(

e−iωt§
α

t f (−t)eiωt
)∣∣∣∣

t=(α−1)ω
.

(74)

Because of the relationship of the Laplace transform to the Fourier transform, the results forα = 0 andα = 1 are
equivalent in their parts to the above fractional Laplace transform atα = 0 andα = 1.

F
(0)[ f (t),ω ] = f (ω), (75)

and

F
(1)[ f (t),ω ] = f̂ (ω), (76)

where f̂ (ω) is the Fourier Transform off (t).

9 Fractional Distributional Differintegral Equations

It is helpful to recognize the result that

L

[
§

α

t f (t),s
]
= s−αF(s) = s−α

L [ f (t),s], (77)

or in the form of derivatives, with notationf (α)(t) = §−α
t f (t),

L

[
§

−α

t f (t),s
]
= L [ f (α)(t),s] = sαF(s) = sα

L [ f (t),s]. (78)

In the past, initial conditions would be introduced in thes-space as derivatives of the function evaluated at 0. In the
case of fractional differential equations, these initial conditions are introduced by means of Zero Functions. Indeedthe
inclusion of zero functions reconciles a very important question regarding fractional differential equations. One knows
that for annth order differential equation, one needsn boundary conditions to solve it. How many initial conditions are
necessary for ann= 1

2 order differential equation? Using a Laplace transform (with the “sum of derivatives” subtracted
from the derivative) one ends up with notation such as

1/2

∑
k=1

sn−k f (k−1)(0), (79)

which is quite ambiguous. Indeed, summation notation is built with integer values in mind. Past fractional differential
equations have been forced to use⌈α⌉ boundary conditions. This works quite well, but sometimes requires more boundary
conditions than necessary.

9.1 Generalization of the nonlinear Volterra integral equation

Because the Volterra integral equation allows one to rewrite a differential equation as an integral equation, one may add
initial conditions (and later boundary conditions) to a fractional differential equation.
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Suppose a fractional differential equation is of the form

y(α)(x) = f
(
x,y(x)

)
. (80)

Then past research [22] insists its equivalent Volterra integral equation is

y(x) =
⌈α⌉−1

∑
k=0

y(k)(0)
xk

k!
+

1
Γ (α)

∫ x

0
f
(
τ,y(τ)

)
(x− τ)α−1dτ. (81)

Interestingly, Zero Functions and the distributional differintegral allow even further generalization of this formula.
That is, for the sequence ofn arbitrary initial conditions,y(αk)(0) (note these may be fractional derivatives off ), and
k= 1,2, ...,n.

y(x) =
n

∑
k=1

y(αk)(0)
xαk

Γ (1+αk)
+§

α

x f
(
x,y(x)

)
. (82)

Taking the distributional differintegral (to the−αth power) of both sides, one arrives at a new version of the fractional
differential equation

y(α)(x) =
n

∑
k=1

y(αk)(0)
xαk−α

Γ (1+αk−α)
+ f

(
x,y(x)

)
, (83)

or with Zero Functions,

y(α)(x) =
n

∑
k=1

y(αk)(0) /0(α−αk−1)(x)+ f
(
x,y(x)

)
. (84)

Just so, if all of the values of(α −αk)∈N, as one sees in the current theory of differential equations, then this equation
is equivalentalmost everywhereto the original.

It is even possible to extend this theory to arbitrary boundary conditions and not initial conditions, though it makes
for a more difficult equation to solve. Instead of the initialconditions in the Volterra integral equations, one may leave
the constant as an arbitraryck, but then there must be enough constants left at the end to satisfy all initial conditions.
This leaves the following result, for the sequence ofn arbitraryboundaryconditions,y(αk)(xk) (note these may also be
fractional derivatives off ), andk= 1,2, ...,n:

y(x) =
n

∑
k=1

ckx
α−k+§

α

x f
(
x,y(x)

)
, (85)

or in differential equation form with Zero Functions,

y(α)(x) =
n

∑
k=1

ck /0(k−1)(x)+ f
(
x,y(x)

)
. (86)

In this case, the differential equation is solved without computing the values of the constants first, then the values of
each constant is solved by means of a system of equations.

9.2 Contraction mapping theorem in Banach space

Since the space of functionsX−c(Ω) is assumed to have a subspace dense in norm‖ ·‖X−c(Ω), the space of must be at the
very least a normed linear space. If the space happens to be complete (as it is in most cases), then it is a Banach space.

Thus supposeX−c(Ω) is complete. Then for a bounded linear operatorT, if Tn is a contraction (‖Tn‖ < 1)for some
power n, there exists a fixed pointf ∈ X−c(Ω) such thatT( f ) = f [21]. This theorem becomes useful in solving
differential and integral equations as finding the fixed point is equivalent to solving the equation.

In X−c(Ω), with an operator defined asF(x) = Tx+b for someb∈ X−c(Ω), if ‖T‖< 1 then the fixed point solution
to the equation is

x=
∞

∑
j=0

T jb. (87)
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Observe that for allj ∈ C (and thus allj ∈ N)

(
§

α

z

) j

=§
jα

z (88)

as seen from the existence of the index law. This implies thatfor any equation of the form

u(z) = F
(
u(z)

)
=§

α

z u(z)+ f (z) (89)

where f ∈ X−c(Ω) and§α
z a contraction, one may solve the equation to arbitrary approximation with

u(z) =
∞

∑
j=0

§
jα

z f (z). (90)

When§
α
z f (z) = g(α,z) this allows for even easier computation with

u(z) =
∞

∑
j=0

g( jα,z). (91)

10 Conclusion

In conclusion, a consistent definition for the distributional differintegral is established. This definition allows extension of
differentiation and inverse differentiation to all complex powers. The definition only behaves, however, if one eliminates
the so-called constant of integration by means of using zerofunctions. These zero functions have interesting properties
and indeed seem to hold the secret to the distributional differintegral.

It is most common to compute the distributional differintegral by performing a definite integral with an introduced
Heaviside step function, but can also be formed using the inverse derivatives briefly introduced. These equivalent
definitions satisfy the four properties necessary for a fractional derivative given by [14].

Compared with past distributional fractional derivatives, these results may be a reconciliation of what was proposed
in [17], which stated that the Riemann-Liouville derivative operating in a distributional sense does not produce an integer-
valued distributional derivative. Including the notion ofzero functions in the results from [17] gives precisely the integer-
valued distributional derivatives.

The specific distributional differintegrals of functions agree with the most commonly used fractional derivatives of
many functions, with the distributional differintegral ofmonomials appearing as Riemann-Liouville’s definition, and the
distributional differintegral of an exponential functionappearing as that of the Grunwald-Letnikov definition. The cases of
the natural logarithm, polylogarithm, and others appear slightly different from many previous definitions. A special case
of the polylogarithm shows the emergence of the Riemann Zetafunction, while a special case of the exponential function
shows the emergence of the gamma function.

There is also a fractional Laplace transform that may be introduced using the fractional integral portion of the
distributional differintegral. This may be generalized toa differintegral Fourier transform.

A small number of fractional differential equations may be solved with the Laplace transform of the distributional
differintegral. Inclusion of the zero functions in these equations rectifies a slight issue in determining how many initial
conditions are necessary to solve fractional differentialequations. Other fractional differential equations may besolved
using a generalized Volterra integral equation. One may also simplify the fixed point solution to a contraction mapping
theorem in the Banach space of analytic functions using the distributional differintegral.

While the properties of the distributional differintegralin regards to differential equations were only briefly examined,
the future is very bright for all of the areas covered in this paper. It is quite likely that the surface has only begun to be
scratched on the power and potential of the distributional differintegral.
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