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Abstract: This paper is concerned with the localization problem of a source belonging to a domain monitored by a network of
detectors. A mathematical model is proposed within an inverse problem framework which is based on the maximum information
entropy principle. Specifically the connection between themeasurements released by the detectors and the sources is obtained by
assuming that each detector has a visibility domain which ismodeled by introducing a visibility function. A computational sensitivity
analysis is performed on the number of detectors and on the visibility functions. The results are of great interest in theapplied sciences.
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1 Introduction

The definition of inversion formalisms for the inverse
source problem has gained much attention and various
approaches have been proposed, see, among others, [1,2,
3,4]. The main interest is the possibility to obtain
information about the position of a source from a set of
measurements. In particular the tools of the inverse
problem theory have been employed [5,6,7] especially in
the case of an ill-posed inverse problem where the
existence or the uniqueness of the solution cannot be
established. The attention has been mainly focused on the
ill-posed inverse problems where the solution, if any, does
not depend continuously on the initial data. In this context
regularization methods have been proposed which
consists in replacing an ill-posed problem with a family
of neighboring well-posed problems [8,9,10].
The present paper deals with the source localization
problem. Specifically the inverse problem framework
proposed in [11] is employed for the derivation of a
one-dimensional model. Accordingly it is assumed that in
a one-dimensional domain a monitoring network is
arranged. The network consists ofm detectors which are
able to releasem measurements. The existence of a linear
operator (data kernel) is conjectured; the kernel models
the connection between the measurements and then> m
sources (under-determined system, ill-posed problem).

The kernel is assumed to depend on the visibility domain
of the detectors and on a state function. The visibility
domain is modeled by introducing a visibility function
which is assumed to be a linear combination of straight
lines. The source is thus retraced by employing the
maximum Shannon entropy principle [12,13,14] which
ensures the well-posedness of the inverse problem (and in
particular the uniqueness of the problem). The Shannon
entropy is employed because it is considered the best
measure of uncertainty, and the probability distribution
which maximizes it represents the best current state of
knowledge. The reader is referred to the review papers
[15,16,17,18] and the references cited therein. However
in the pertinent literature further entropy functions have
been defined, see the review paper [19].
It is worth stressing that inverse problems are usually
proposed within the framework of ordinary differential
equations [20,21], partial differential equations [22],
kinetic theory [23,24,25,26], fluid mechanics [27]. The
reader is also addressed to the books [28,29] and the
review paper [30] for recent contributions.
This paper is divided into 3 more sections which follow
this introduction. Specifically Section 2 reviews the
recently proposed source problem framework [11], which
couples the inverse problem theory [29] with the
information theory [28]. Section 3 is devoted to the
derivation of a specific one-dimensional model by
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defining a visibility function for each detectors; a
computational analysis is performed on the number of
detectors and on the visibility functions. In particular the
section is divided into two subsequently subsections: the
first subsection deals with the case of two detectors while
the second subsection is devoted to three detectors case.
Finally Section 4 concludes the paper with a critical
analysis and references to future research directions.

2 The underlying inverse problem
framework

This section is devoted to the fundamentals of the
mathematical theory that has been recently proposed in
[11]. Specifically the problem under consideration is the
localization (reconstruction) ofn ∈ N sources within a
domain Ω ⊂ R

k, for k ∈ {1,2,3}. The domain is
monitored by a networkN of m< n detectors which are
able to release the measurements which consist of a
macroscopic description (particle density) of the sample
air. It is assumed that depending on the air sampled, the
detectors are able to have a zone of visibility which is
here modeled by assuming the existence of a visibility
function ϕ j(x), with x ∈ Ω and for j ∈ {1,2, . . . ,m}.
Bearing all above in mind, thejth-detector releases a
measureµ j , for j ∈ {1,2, . . . ,m}, which is related to the
sourcesi , i ∈ {1,2, . . . ,n}. The mathematical framework
is derived by conjecturing the linking between the
measurements and the sources by means of the existence
of an operator (kernel)K [Γ (x)](s) : S → M , whereS

is the source space andM the measurements space;Γ
denotes one of the kernel arguments which takes into
account the visibility functions of the detectors and other
state variables. The kernel is assumed to be a sufficiently
regular function of its arguments. Bearing all above in
mind, the underlying mathematical framework consists in
the resolution of the following inverse problem:

µ = K [Γ (x)](s). (1)

whereµ = (µ1,µ2, . . . ,µm) ∈ R
m,1 is them-dimensional

measurement vector, ands= (s1,s2, . . . ,sn)∈R
n,1 is then-

dimensional source vector. In particular this paper focuses
on the linear relation between sources and measurements,
namely:

µ = K [Γ (x)]s, (2)

where K [Γ (x)] = [K ji [Γ (x)]] ∈ R
m,n. Accordingly the

inverse problem reads:















n

∑
i=1

si = 1,

µ j =
n

∑
i=1

K ji [Γ (x)]si , j ∈ {1,2, . . . ,m}.
(3)

As known for the well-posedness of inverse problem (3) it
is sufficient that the solutions ∈ S is unique for any

measurement vectorµ ∈ M . Since the problem under
consideration is an under-determined system (m< n), the
uniqueness is established by searching the solution
s∈ R

n,1 that maximizes the standard information entropy
of ShannonH : Rn,1 → [0, ln(n)] where:

H[s] =−
n

∑
i=1

si lnsi . (4)

Let λ = (λ0,λ1,λ2, . . . ,λm), the related lagrangian
function reads:

L [K [Γ ]](s,λ ) = −
n

∑
i=1

si lnsi − (λ0−1)

(

n

∑
i=1

si −1

)

+
m

∑
j=1

λ j

(

µ j −
n

∑
i=1

K ji [Γ ]si

)

. (5)

The vector solutionsH = (sH
1 ,s

H
2 , . . . ,s

H
n ) ∈ S of the

inverse problem (3) is thus as follows:

sH = argmax
s∈Sµ

H[s]. (6)

As shown in [11], the maximum entropy solution of (3)
reads:

sH
i [Γ ] =

exp

(

−
m

∑
j=1

λ jK ji [Γ ]

)

n

∑
i=1

exp

(

−
m

∑
j=1

λ jK ji [Γ ]

) , i ∈ {1,2, . . . ,n},

(7)
where the Lagrange multiplierλ j , for j ∈ {1,2, . . . ,m}, is
solution of the following problem:

∂
∂λ j

ln

(

n

∑
i=1

exp

(

−
m

∑
j=1

λ jK ji [Γ ]

))

=−µ j . (8)

According to (7) the maximum value of the Shannon
entropy depends on the measurements as follows:

Hmax= λ0+
m

∑
j=1

λ j µ j . (9)

Remark 1. If each Lagrangian multiplierλi = 0, for
i ∈ {1,2, . . . ,m}, then the exponential model (7) collapses
to a uniform distribution wheresi = 1/n and the Shannon
entropyH attains its maximum value, namely ln(n).

3 A one-dimensional model

This section deals with the derivation of a specific model
within the framework proposed in the previous section.
Specifically it is assumed thatΩ = [a,b], with a< b. The
domain[a,b] is monitored bymdetectors and the sources
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consists ofn > m points which cover a subdomainΣ of
[a,b]. The visibility function of each detector, which is set
casewise, is assumed to be a linear combination of linear
functions (straight lines). In particular a numerical
sensitivity analysis on the number of detectors and on the
source position is performed. Specifically the set of
numerical simulations, is performed for two different
networks of detectors, and more preciselyN1 = {C1

1,C
1
2}

and N2 = {C2
1,C

2
2,C

2
3}. The computational analysis is

depicted by representing the distribution function ofs
which attains, according to the maximum entropy
principle, its maximum value in the vicinity of the source
(source localized).

3.1 The case of two detectors

The domainΩ is monitored by a networkN1 composed by
the two detectorsC1

1 =(a,0) andC1
2 =(b,0). The visibility

functionsϕ1(x) andϕ2(x) of the detectors are chosen as
follows:

ϕ1(x) =

{

a1x+b1 a≤ x≤ α1
c1 otherwise

and

ϕ2(x) =

{

a2x+b2 α2 ≤ x≤ b
c2 otherwise

with (ai ;bi ;ci ;αi), for i ∈ {1,2}, set casewise. A
sensitivity analysis on the sources position and on the
visibility function is now performed. Specifically, the case
of a set of sources which are allocated in the center of the
domain is considered. The cases of a set of sources which
are allocated near the detectorC1

1 and near the the
detector C1

2 are also taken into account. The set of
numerical simulations is performed for two different
choices of the visibility function of detectors, namely
ϒ1 = {C1

1(ϕ1
1),C

2
2(ϕ1

2)} andϒ2 = {C2
1(ϕ2

1),C
2
2(ϕ2

2)}. The
Figures1 and2 show how the network is arranged in the
domainΩ = [0,10] and how the coefficients of the two
visibility functions are chosen, namelyϒ1 and ϒ2.
According to Figure1, in the network N1(ϒ1) it is
assumed that the visibility of a detector decreases as the
distance between the source and the detectors increases.
In this case there exist subdomains of the domainΩ
which are visible to both the two detectors, and
subdomains which are visible to one detector only.
According to Figure2, in the network N1(ϒ2) it is
assumed that the visibility of a detector decreases as the
distance between the source and the detectors increases
but there is always a visibility after a certain distance. In
this latter case every subdomain of the domainΩ is
visible to both the two detectors.

As first case of source localization, we consider a set
of sources placed in the center of the domainΩ and
specifically in the subdomainΣc = [4,5;5,5]. As the
Figure 3 shows, the reconstruction of the source in the
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Fig. 1: The networkN1(ϒ1) with detectorsC1
1 = (0,0) andC1

2 =
(10,0), visibility functions (a1;b1;c1;α1) = (−1/8;1;0;8),
(a2;b2;c2;α2) = (1/8;−1/4;0;2), respectively.
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Fig. 2: The networkN1(ϒ2) with detectorsC2
2 = (0,0) andC2

2 =
(10,0), visibility functions (a1;b1;c1;α1) = (−1/8;1;0,13;7),
(a2;b2;c2;α2) = (1/8;−1/4;0,13;3), respectively.
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Fig. 3: The networkN1(ϒ1) and the source subdomainΣc =
[4,5;5,5] (rectangle). The source reconstruction is obtained by
the maximum entropy curve.

network N1(ϒ1) presents an interval of incertitude
(constant curve) dues to the choice of the visibility
function. Indeed as shown in Figure4 the interval of
incertitude is reduced in the networkN1(ϒ2).

As second case we consider the source localization
problem for an asymmetric case; specifically the source
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Fig. 4: The networkN1(ϒ2) and the source subdomainΣc =
[4,5;5,5] (rectangle). The source reconstruction is obtained by
the maximum entropy curve.
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Fig. 5: The networkN1(ϒ1) and the source subdomainΣc =
[6,5;7,5] (rectangle). The source reconstruction is obtained by
the maximum entropy curve.

covers the subdomainΣc = [6,5;7,5]. As the Figures5
and 6 show, the source is well constructed in the two
networks N1(ϒ1) and N1(ϒ2). The maximum entropy
curve well detects the source. The dependence on the
choice of the visibility functions is an important criterium
to be considered. Indeed the error in the localization of
the source subdomainΣc = [6,5;7,5] within the network
N1(ϒ1) is less than the error within the network within
the networkN1(ϒ2). Accordingly the number of networks
does not appear an important criterium in this case; on the
contrary the choice of the visibility function appears an
important step. It is worth stressing that the symmetrical
case, namelyΣc = [2,5;3,5], presents the same good
reconstruction of the source (symmetric case).
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Fig. 6: The networkN1(ϒ2) and the source subdomainΣc =
[6,5;7,5] (rectangle). The source reconstruction is obtained by
the maximum entropy curve.

3.2 The case of three detectors

The domainΩ is assumed to be monitored by a network
N2 composed by the following three detectors:

C2
1 = (a,0), C2

2 = (
a+b

2
,0), C2

3 = (b,0).

The visibility functionsϕ1(x), ϕ2(x) and ϕ3(x) of the
detectors are chosen as follows:

ϕ1(x) =

{

a1x+b1 a≤ x≤ α1
c1 otherwise

ϕ2(x) =

{

a1
2x+b1

2 a≤ x≤ a+b
2

a2
2x+b2

2
a+b

2 ≤ x≤ b

and

ϕ3(x) =

{

a3x+b3 α3 ≤ x≤ b
c3 otherwise

with (ai ;bi ;ci ;αi) and (a j
2;b j

2), for i ∈ {1,3} and
j ∈ {1,2} set casewise.
Differently from the previous subsection, a sensitivity
analysis on the sources position only is performed.
Specifically, the case of a set of sources which are
allocated in the center of the domain is considered. The
cases of a set of sources which are allocated near the
detectorC2

1, near the the detectorC2
3 are taken into

account. Moreover the case of two source subdomains is
also considered. The Figure7 shows how the networkN2
is arranged in the domainΩ = [0,10] and how the
coefficients of the three visibility functions are chosen.
According to Figure7, in the networkN2 it is assumed
that the visibility of a detector decreases as the distance
between the source and the detectors increases. The
detector placed in the center of the domain allows to
increase the visibility zone.
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Fig. 7: The network N2 with detectorsC2
1 = (0,0), C2

2 =

(5,0) and C2
3 = (10,0), visibility functions (a1;b1;c1;α1) =

(−1/8;1;0;8), (a2;b2;c2;α2) = (1/8;−1/4;0;2), (a1
2;b1

2) =

(1/5;0), and(a2
2;b2

2) = (−1/5,2).
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Fig. 8: The network N2 and the source subdomainΣc =
[4,5;5,5] (rectangle). The source reconstruction is obtained by
the maximum entropy curve.

In the first case, we consider a set of sources placed in the
center of the domainΩ and specifically in the subdomain
Σc = [4,5;5,5]. Differently from the same set source
domain analyzed in the previous subsection (see Figures
3 and4), the source in the networkN2 is well localized
and reconstructed. Indeed as shown in Figure8, there is
not an interval of incertitude (constant curve) thanks to
the presence of the detector in the center of the domain.
The Figures9 and10 are devoted to the reconstruction of
two set source domains, the first domain near to the
detectorC2

1 and the second domain near the detectorC2
3,

respectively. As in the previous subsection, the source
here is again well reconstructed.
Finally, the Figure11 shows the reconstruction of two
source subdomains, namelyΣ1

c = [1;2] andΣ2
c = [8;9]. In

this case the entropy curve presents two maximum points
localized near the sources. The numerical simulations
show again how it is not important the number of
detectors but their disposition and consequently their
visibility function.
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Fig. 9: The network N2 and the source subdomainΣc =
[6,5;7,5] (rectangle). The source reconstruction is obtained by
the maximum entropy curve.
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Fig. 10: The network N2 and the source subdomainΣc =
[2,5;3,5] (rectangle). The source reconstruction is obtained by
the maximum entropy curve.

4 Critical analysis and research perspectives

The mathematical model proposed in this paper has been
derived according to a new inverse problem framework.
In particular the model is based on the definition of the
visibility function of a detector. As known a detector
performs the measurements of the particles that have been
traveling separately before gathering inside the detector
(air sampled). A sampling function describing where and
when the samples are taken can be thus defined (detector
function). The visibility function considered in the
present paper can be related to the sampling function
considering that the air sampled is made of particles that
have an history (retroplume).
The performed simulations have shown that the number
of detectors is not an important issue with respect to the
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Fig. 11: The networkN2 and the source subdomainsΣ 1
c =

[1;2] and Σ 2
c = [8;9] (rectangles). The source reconstruction is

obtained by the maximum entropy curve.

visibility function. Indeed some of the sources considered
in the previous section have been well localized in the
case of two detectors thus showing that the choice of the
visibility function (and then of the detector) is an
important task. Accordingly the position of the detectors
is the first issue to be discussed. Consequently a research
perspective is the development of a strategy for the
optimization process of the detectors position.
In the context of the visibility function selection an
interesting choice can be pursued considering the
function associated to a detector in the paper [31]. The
function, called adjoint, is derived according to the
transport properties of the particles. This is a work in
progress and the results will be presented due course.
It is worth stressing that the solution of the model
proposed in the present paper is based on the maximum
Shannon entropy principle. The solution can be improved
by replacing the Shannon entropy with the relative
entropy [16]. However the concept of relative entropy
requires an informationa priori on the source position.
This is another research perspective that can quantitative
improve the source localization.
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Sasportas is assistant
professor and development
engineer at ECAM-EPMI,
Cergy (France).
He received the PhD degree
in Applied Mathematics
at Ecole Nationale Suprieure
des Mines, Paris, France.
He is expert in computer
and telecommunications

engineering where he has contributed to the design and
implementation of GSM gateways and mobile VoIP
applications. His research interests include the
mathematical modeling and simulation of wavelet
generators optimized for impulse communications Ultra
Large Band, and the development of new approaches for
the resolution of inverse problems.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	The underlying inverse problem framework
	A one-dimensional model
	Critical analysis and research perspectives

