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Abstract: This paper is concerned with the localization problem of are® belonging to a domain monitored by a network of
detectors. A mathematical model is proposed within an Begroblem framework which is based on the maximum inforonati
entropy principle. Specifically the connection between riieasurements released by the detectors and the sourcewiisedbby
assuming that each detector has a visibility domain whichageled by introducing a visibility function. A computati sensitivity
analysis is performed on the number of detectors and on #ilality functions. The results are of great interest in épplied sciences.
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1 Introduction The kernel is assumed to depend on the visibility domain
of the detectors and on a state function. The visibility
domain is modeled by introducing a visibility function

which is assumed to be a linear combination of straight
fines. The source is thus retraced by employing the

The definition of inversion formalisms for the inverse
source problem has gained much attention and variou

approaches have been proposed, see, among othgs, [ : L :
3,4]. The main interest is the possibility to obtain maximum Shannon entropy principldZ 13,14 which

information about the position of a source from a set of S oo e the well-posedness of the inverse problem (and in
PO . eparticular the uniqueness of the problem). The Shannon
measurements. In particular the tools of the invers

roblem theory have been employeii] 7] especially in entropy is employed because it is considered the best
P y ha mployeds, P y measure of uncertainty, and the probability distribution
the case of an ill-posed inverse problem where the

which maximizes it represents the best current state of

existence or the uniqueness of the splutlon cannot b(?mowledge. The reader is referred to the review papers
established. The attention has been mainly focused on th 5,16,17,18] and the references cited therein. However

:'|1|<-)$35eectia:::ivigi?iEL%TSIer\]Ntmeer?ntizglSdoe:'?;c’Irr}tEiincyér?tgit'n the pertinent literature further entropy functions have
P y ) been defined, see the review padd]]

regularization methods have been proposed Wh'c‘h is worth stressing that inverse problems are usually

consists in replacing an ill-posed problem with a family proposed within the framework of ordinary differential

of neighboring well-posed problems, b, 1Q). equations 20,21], partial differential equations 2p],

The present paper deals 'with the source Iocalizatiorl<inetic theory P3,24,25,26], fluid mechanics 27]. The
problem. Specifically the inverse problem framework reader is also addressed to the booR8,29 and the

propo;ed in 11 is employed fpr th'e'derivation of 4 review paper30Q] for recent contributions.
one-dimensional model. Accordingly it is assumed that INThis paper is divided into 3 more sections which follow

a_one-dimensional domain a monitoring network is this introduction. Specifically Section 2 reviews the

2blo g release measLrements. The existence of & inea!SCenly Proposed source problem framewcr]{hich
' couples the inverse problem theor9 with the

operator (d:?\ta kernel) is conjectured; the kernel mOdelsfnformation theory 2g]. Section 3 is devoted to the
the connection between the measurements and then derivation of a specific one-dimensional model by
sources (under-determined system, ill-posed problem).
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defining a visibility function for each detectors; a measurement vectqu € .#. Since the problem under
computational analysis is performed on the number ofconsideration is an under-determined systemx(n), the
detectors and on the visibility functions. In particulaeth uniqueness is established by searching the solution
section is divided into two subsequently subsections: thes € R™! that maximizes the standard information entropy
first subsection deals with the case of two detectors whileof ShannorH : R™ — [0,In(n)] where:

the second subsection is devoted to three detectors case.

Finally Section 4 concludes the paper with a critical

analysis and references to future research directions. Hlsl = - ,Zis‘ Ins. )

_ ) Let A = (Ap,A1,A2,...,Am), the related lagrangian
2 The underlying inverse problem function reads:
framework

-i”[K[’_]](S,)\)Z—Zislns_()\o_l)<213_1>
This section is devoted to the fundamentals of the = £

mathematical theory that has been recently proposed in m n

[11]. Specifically the problem under consideration is the + Z Aj (u,— — ZlKji[/_]3> . (5)
localization (reconstruction) ofi € N sources within a =1 i=

domain Q ¢ RX, for k € {1,2,3}. The domain is
monitored by a networks” of m < n detectors which are
able to release the measurements which consist of a
macroscopic description (particle density) of the sample _

air. It is assumed that depending on the air sampled, the e a_E,SLZLa’H Sl ©
detectors are able to have a zone of visibility which is

here modeled by assuming the existence of a visibilityAs shown in [L1], the maximum entropy solution of3{
function ¢;(x), with x € Q and for j € {1,2,...,m}. reads:

Bearing all above in mind, thgth-detector releases a

The vector solutions = (s!,s),...,d!) € .7 of the
inverse problem3) is thus as foIIows

measureu;, for j € {1,2,...,m}, which is related to the m

sources, i {1, 2,:{.,n}. The}mathematical framework exp(— > AJKii[r])

is derived by conjecturing the linking between the d'[r]= — , 1e{1,2,...,n},
measurements and the sources by means of the existence 0 Al

of an operator (kernelK[I" (x)](s) : ¥ — .#, where. Iziexp Z ill

is the source space and’ the measurements spade;

denotes one of the kernel arguments which takes int
account the visibility functions of the detectors and other
state variables. The kernel is assumed to be a sufficiently

regular function of its arguments. Bearing all above in n
mind, the underlying mathematical framework consists in e In (Zexp< z AiK;i[r )) = — L (8)

the resolution of the following inverse problem: j
pu=KIr (x)](s). (1)  According to ) the maximum value of the Shannon
entropy depends on the measurements as follows:

7
Quhere the Lagrange multiplievj, for j € {1,2,...,m}, is
"'solution of the following problem:

whereu = (U1, o, . .., Um) € R™ is the m-dimensional
measurement vector, ase- (s;, S, . ..,s) € R™is then-

dimensional source vector. In particular this paper fosuse Hmax = Ao+ Z Ajk- ©)

on the linear relation between sources and measurements, )=

namely: . -
p=K[r(x)]s, ) Remark 1. If each Lagrangian multiplien; = 0, for

i € {1,2,...,m}, then the exponential model)(collapses
where K[I"(x)] = [Kji[I (x)]] € R™". Accordingly the  to a uniform distribution wherg = 1/n and the Shannon
inverse problem reads: entropyH attains its maximum value, namely(in).

213 =1 : :

= @) 3 Aone-dimensional model
Hi= i;K“ s, j€{,2,....m} This section deals with the derivation of a specific model
within the framework proposed in the previous section.
As known for the well-posedness of inverse probl@nt(  Specifically it is assumed th& = [a,b], with a < b. The

is sufficient that the solutios € . is unique for any  domain[a,b] is monitored bym detectors and the sourse
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consists ofn > m points which cover a subdomain of .
[a,b]. The visibility function of each detector, whichis ol
casewise, is assumed to be a linear combination of i
functions (straight lines). In particular a numeri o
sensitivity analysis on the number of detectors and ol
source position is performed. Specifically the set o
numerical simulations, is performed for two differ
networks of detectors, and more precisely = {C},C3} A
and .43 = {C2,C3,C3}. The computational analysis is

depicted by representing the distribution function sof

which attains, according to the maximum entropy Fig. 1: The network 41 (Y;) with detector<ct = (0,0) andC} =
principle, its maximum value in the vicinity of the source (10.0), visibility functions (a;bi;ci;01) = (-1/8;1;0;8),
(source localized). (az;b2; c2; a2) = (1/8;—1/4;0;2), respectively.

3.1 The case of two detectors :

0.9 -
08 ~

The domain? is monitored by a network#; composed b 1
the two detector€} = (a,0) andC} = (b,0). The visibility 1

05 ~

functions¢1(x) and ¢,(x) of the detectors are chosen |
follows: ot |
- alX+ bl a S X S al 0’10- 1 2 3 Js ‘5 é 7 s B 10
91(x) = { 1 otherwise -
and Fig. 2: The network 41 (Y¥3) with detector<CZ = (0,0) andCZ =
d2(x) = ax+hy ax<x<b (10,0), visibility functions (ag;by;c1;a1) = (—1/8;1;013;7),
A otherwise (ag;by;co; a0) = (1/8;—1/4,0,13;3), respectively.

with (a;bi;ci;ai), for i € {1,2}, set casewise. A
sensitivity analysis on the sources position and on the
visibility function is now performed. Specifically, the eas

of a set of sources which are allocated in the center of the  °f
domain is considered. The cases of a set of sources which
are allocated near the detect® and near the the
detectorC} are also taken into account. The set of
numerical simulations is performed for two different
choices of the visibility function of detectors, namely st
Yi = {CH($1),C3(¢3)} and s = {C2(¢?),C3(¢3)}. The |
Figuresl and2 show how the network is arranged in the
domainQ = [0,10] and how the coefficients of the two

visibility functions are chosen, namely; and Y5. 2 1
According to Figurel, in the network .#1(Y7) it is 4
assumed that the visibility of a detector decreases as the il ‘ !

distance between the source and the detectors increases. © * 2 s ¢ s & 1 s 9 1

In this case there exist subdomains of the dom@in Fig. 3: The network_41(Y;) and the source subdomai —

which are V'S'b_le to bof[h. the two detectors, and [4,5;5,5] (rectangle). The source reconstruction is obtained by

subdomains which are visible to one detector only.ihe maximum entropy curve.

According to Figure2, in the network #1(Yz) it is

assumed that the visibility of a detector decreases as the

distance between the source and the detectors increases

but there is always a visibility after a certain distance. In

this latter case every subdomain of the doma&nis  network .#1(Y{) presents an interval of incertitude

visible to both the two detectors. (constant curve) dues to the choice of the visibility
As first case of source localization, we consider a seffunction. Indeed as shown in Figuek the interval of

of sources placed in the center of the dom&nand  incertitude is reduced in the network;(Y).

specifically in the subdomaiit; = [4,5;5,5]. As the As second case we consider the source localization

Figure 3 shows, the reconstruction of the source in theproblem for an asymmetric case; specifically the source

10

Original source
Reconstructed source

®
T
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Fig. 4: The network.#1(Y;) and the source subdomaity = Fig. 6: The network.4#1(Y;) and the source subdomaiy =
[4,5;5,5] (rectangle). The source reconstruction is obtained by|[6,5;7,5] (rectangle). The source reconstruction is obtained by
the maximum entropy curve. the maximum entropy curve.

0 S — 3.2 The case of three detectors

Original source
Reconstructed source

The domainQ is assumed to be monitored by a network
A5 composed by the following three detectors:

ct=@0. G=(2Lo. =0

The visibility functions ¢1(x), ¢2(x) and ¢3(x) of the
detectors are chosen as follows:

aix+by a<x<a
g - {40 aexem

C1 otherwise
. 1 1 < < ﬂ)
7 b= B 45 2
. asx+b;  F2 <x<b
Fig. 5: The network.#1(Y1) and the source subdomalXy =
[6,5;7,5] (rectangle). The source reconstruction is obtained byand
the maximum entropy curve. Ba(x) = ax+bg  az<x<b
C3 otherwise

with (aj;bi;ci;af) and (a);bl), for i € {1,3} and

j € {1,2} set casewise.

Differently from the previous subsection, a sensitivity
covers the subdomaif; = [6,5;7,5]. As the Figures analysis on the sources position only is performed.
and 6 show, the source is well constructed in the two Specifically, the case of a set of sources which are
networks .#1(Yi) and .#1(Y2). The maximum entropy allocated in the center of the domain is considered. The
curve well detects the source. The dependence on theases of a set of sources which are allocated near the
choice of the visibility functions is an important critemiu ~ detector C?, near the the detecto€s are taken into
to be considered. Indeed the error in the localization ofaccount. Moreover the case of two source subdomains is
the source subdomaik. = [6,5;7,5] within the network  also considered. The Figufeshows how the network/s
M(Y1) is less than the error within the network within is arranged in the domai®2 = [0,10 and how the
the network #1(Y2). Accordingly the number of networks coefficients of the three visibility functions are chosen.
does not appear an important criterium in this case; on théccording to Figure7, in the network 45 it is assumed
contrary the choice of the visibility function appears an that the visibility of a detector decreases as the distance
important step. It is worth stressing that the symmetricalbetween the source and the detectors increases. The
case, namely>. = [2,5;3,5], presents the same good detector placed in the center of the domain allows to
reconstruction of the source (symmetric case). increase the visibility zone.
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Fig. 7: The network.#5 with detectorsC? = (0,0), C3 =
(5,0) and C2 = (10,0), visibility functions (as;by;cq;a1) =
(—1/8;1;0;8, (ag;bp;co;ap) = (1/8;-1/4;0;2), (a};bl) =
(1/5;0), and(a3;b3) = (-1/5,2). s 1 2 3 4 s & 7 8 s

Fig. 9: The network .45 and the source subdomaiB; =
[6,5;7,5] (rectangle). The source reconstruction is obtained by
original source ‘ ‘ ‘ ‘ ‘ ‘ the maximum entropy curve.

Reconstructed source

10

Original source
Reconstructed source

I L i
0 1 2 3 4 5 6 7 8 9 10

Fig. 8: The network .45 and the source subdomaiB; =
[4,5;5,5] (rectangle). The source reconstruction is obtained by
the maximum entropy curve.

Fig. 10: The network.#5 and the source subdomaibh; =
[2,5;3,5] (rectangle). The source reconstruction is obtained by

. . .., the maximum entropy curve.
In the first case, we consider a set of sources placed in the by

center of the domai® and specifically in the subdomain

2. = [4,5;5,5]. Differently from the same set source

domain analyzed in the previous subsection (see Figures

3 and4), the source in the networks is well localized 4 Critical analysis and research perspectives

and reconstructed. Indeed as shown in Figdjréhere is

not an interval of incertitude (constant curve) thanks toThe mathematical model proposed in this paper has been
the presence of the detector in the center of the domain. derived according to a new inverse problem framework.
The Figure® and10 are devoted to the reconstruction of In particular the model is based on the definition of the
two set source domains, the first domain near to thevisibility function of a detector. As known a detector
detectorC? and the second domain near the dete€ir  performs the measurements of the particles that have been
respectively. As in the previous subsection, the sourcdraveling separately before gathering inside the detector
here is again well reconstructed. (air sampled). A sampling function describing where and
Finally, the Figurell shows the reconstruction of two when the samples are taken can be thus defined (detector
source subdomains, namel = [1;2 and>? = [8;9. In  function). The visibility function considered in the
this case the entropy curve presents two maximum pointpresent paper can be related to the sampling function
localized near the sources. The numerical simulationsonsidering that the air sampled is made of particles that
show again how it is not important the number of have an history (retroplume).

detectors but their disposition and consequently theirThe performed simulations have shown that the number
visibility function. of detectors is not an important issue with respect to the
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