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Abstract: This paper presents an analytical method to set out theraltefany polynomial functiorf (x,y,z) on a tetrahedral region
T by using its four vertexes. The method uses a coordinatsforanation which involves the four vertexes of the tetrabadwhose
Jacobian is simple. The last integral is not difficult to safjiven that recurrence formula is very simple, furthermvegénave developed
an algorithm which can evaluate the integral when integgatiinction is generated by several multiplications of polyials without
necessity of develop the products. This method can be udedteelement method because the most functions involvétisrmethod
are polynomial ones. The method here presented is faste@haass-Legendre quadraturenarder if the amount of monomials present
on f(x,y,2) is least tham®.
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1 Introduction There are several articles about numerical integration
using Gauss quadrature over some plane surfaces,
The integration on a tetrahedron is very useful in the finiterectangle and square regiori,[triangle regions §] and
element method (FEM)2]. To solve this kind of polygonal ones ] and for integrals on a standard
integrals, there are many numerical methods totetrahedron a study found id@] shows a method to solve
approximate triple integrals 3], [4]. However, the the integrals using a Gauss Legendre-Gauss Jacobi
analytical methods of integration of certain functions canquadrature rules. Although Gauss Legendre quadrature
give better results than those obtained with the numericaivhen uses a Legendre polynom wforder gives exact
methods, since the analytical ones give more accurateesult for any polynomial integrate function of degree less
results. Although the analytical formulas can be larger, itthan 4 [11], for higher order the results become an
is worth to get the more accurate values when the finiteapproximation. However the method that are presented in
element method involves time, since some of thesethis paper gives the exact value for an arbitrary tetraledra
integrals must be calculated just once. Usually, manyregion and for any polynomial integrating function and
problems that use the FEM posess a complex geometrgnly needs the coordinate vertexes. This paper includes
which needs an unstructured grids in which case thean algorithm that helps to use the method more easily.
tetrahedron cell is perfect because it lets a fully This is necessary due to the polynomial function comes
unstructured spatial discretization by the use of afrom the products of other more simple polynomial terms,
high-order nodal basiS[. While it is true that analytical therefore the amount of terms can be so huge, which
formulas can be really long, the variable changescould make that our method be impractical to use.
proposed here has a really short Jacobian transformation
as you can see in equatiohlj wherer ji - ry x riB? is
just a constant times one variable to second degree. So, 2 Region gener ation method
can be easily used with polynomial functions which are
commons in the FEM{] and makes this method useful First we present the method to determine the point inside
for this kind of problems. of the triangle. Let us consider a triangle with vertexes
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which are denoted by, j andk with rj, rj andry being where0< 3 <1,0<a <1,0<y<a,XYVY Zare the
the coordinates of each one respectively. The angleCartesian unit vectors along y andz axes respectively
between the edge$ andik is denoted byg;, between the and rt represents each point inside of the tetrahedron
edgeskj andki is 8¢, and the angle between the edgps volume. Now we are going to write the change of variable
and jk by 6; as is shown in the Figuré. The vector

rij = rj—ri it is the vector leading from the poirit X=Tjx+ Brjx+ aBrix+ yBrix = X(B,a,y),

toward pointj, the same way for the vectorg, r jx. Y= "Tiy+ Brjiy+ aBray + yBriy = y(B,a, y),

Z="rjz+ Brike+ aPrz+yBri;=z(B,a,y), (10)

where the subscripts y andz, represent the components
of each vector along the y andz axes, respectively.

Fig. 1: Points inside of the triangle

Then any point on edggk can be generated by
rj + Brijk where 0< B < 1, if we draw a straight line
from this point to the egdgi such thatjAB triangle be
similar to trianglejik, then one point on the edg can
be generated by + Brjk + ABr where 0< A < 1.
Therefore, the points inside of the triangular region can ; ;
be generated by the formula 3 Setting up the integral

Fig. 2: Tetrahedron region generation.

=rj+Brj+argforo<B<1,0<a<p. (1) ;I;Tliv.slgcobian of the transformatial0f can be written as
Any point within the tetrahedron can be represented
by dividing the tetrahedral region in thin triangles ABC as ~_9(%¥%,2) _ dr or Lo

is shown in Figure. Then, to generate every poinisc d(B,a.y) 9B da  dy
inside of the triangl&BC we can start writing the equation = (rjk+arg -+ yriy) - Brig x Bri
(1) as

=B2rjk-rg < rii. (11)

r =ra+ar forO<a<1,0<y<a (2 . .

tasC = Fa+ T aB + YTeC - sysa () By the change of variable theorem, the integral of any
where continuos functionf (x,y,z) on the tetrahedron regioh
can be written as:

ra=rj+pri ©) 11 a
fe—1;+BrytBra —r; +Bry., @) Mty Ddxdydz=rjc (i xra) Jg Jo Jo H(B,a,v)Bzdvchgg,)
I’B:I’j—i—BI‘jk-i-ﬁl’ki:rj-i-Brji- (5)
where H(B,a,y) = f(x(B,a,y),y(B,a,y),z(B,a,y)).
Therefore Note that if f(x,y,z) = 1 then, the volume of the
fag = (fg—ra) = B, (6) tetrahedron is
rec = (rc—rs) = Bri. (7)
@)  Vr=ri(raxri) o fo Jo B2dydadB = Fri- (ra xri),

13
Hence, for the whole tetrahedron we have: (13)

L which is the formula to find the volume for a tetrahedron
XRtyy+zZ=rr =rj+prix+apric+yBri, (9  given in [L2]. If we setdQe = Mk (ra x ri)B2dydadp
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then we can deduce a really simple formula to find
analytically the integral of a monomial function on a
tetrahedron:

/o1 /olfoa BPalydQe =

where & = rjc- (rg x riy). Thus,V is tetrahedron’s

6V

+n+2)(p+3)’
(14)

volume measure. The method proposed here is better than

one with tetrahedral natural coordinate§,€»,&3,&4)
because the former has only three coordinates and th
monomial integral is:

ik
(i+j+k+14+3)"

/Q £l &) &K EldQe = 6V (15)

wherei, j, k and| are non negative integer§e is the
tetrahedron domain. So, the formuled) is more simple

than (L5). It is important to increase the computational
performance.

4 Algorithm

The proposed algorithm can solve the following integral:
1,1
Iy

whereaj; represents the coefficient of terinbelong toj

a N M

I—l Zajiﬁﬁjiﬁjia%jidge, (16)
J=1i=

factor of which exponents of the corresponding variables

B, y and a areeyjj, ;i andesj respectivelym; is the
amount of terms in factorj. In order to evaluate this

integral, it is considered an algorithm which uses the
following recursive funtion:

NneForlInt(n)

for(i = 1;my,)
= @nj

€1n = €1ni
€2n = Eoni
€3n = Ezni

—%@—n@d return sum;

mult=1.0;
for(k=1;N)mult*=v;
for(I=1;3)s = 0;
for(k=1;N)s +=ei;
sum+=
mult*InMon(sy, sz, S3);

return sum,

n+1<N
yes
NneForint(n+1)

InMon(sy, s, S3)=

R -
(51 +3)*(s3+1)*(s3+5,+2.0)

Here N is the amount of factors. This recursive function
was necessary to keep variable the amount of factors
because for each one of this factors, we need to add a
nested loop FOR.

Then the main program just need to call this function:

To read global variables
aji, eiji, &ji €sji, mj, N, V

integral=NneForInt(0)

print integral

stop, end

The algorithm for Gauss-Legendre applied to our integral
has following form:

bR
535

where n is the grade of Legendre polynomial,
1 n

cn=/ Tl
—Lj=1j#

Legendre polynomial af order.

(B,a,y)B?dydadp =

r.n+1 r,n+1 rin+1 (rin+1)? r,n+1
4

4

(rkn+1)) CknCJnCm 7)

X—Tjn
lin—ljn

dx andrj, represents-root of the

5 Resaults

In this part we present a comparison between
Gauss-Legendre quadrature and our method, in order to
compare with an exact value we solve integral for this
simple case,

[ [ erarayaaas -

Then we are going to show several results for choosing
different values ofm, results are shown in table8. We
choosen = 5 for Gauss-Legendre quadrature, then the
result will be exact for polynomial under 9 grade.

Then the results shown in tablethat our method is
faster, it can be explain due to our method only has to
operate one term while Gauss method has to evaluate the
integral function 8 = 125 times (to see equatiohy).

(18)

1
2(m+3)
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Table 1: Gauss-Leg_endr_e quadrature vs Our Analytical Method ;nctions which can be not polynomial type, this depends
(Average of computing time taken=ACT) on the form of excitement functions or field.

m | Exact Value GL quadrature New method
% Error | ACT(us) | % Error | ACT(us)
5 = 0 85 0 3
5 .3 5 55 5 3 Acknowledgement
13 = 0.3 98 0 3 . . . ,
15 ¥ 58 o2 5 3 This work was supported by Universidad Santo Tomas,
= .

Bucarmanga
The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments

Then in order to increase number of operations of ourthatimproved this paper.
method, we are going to calculated this integral:
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6 Conclusions
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