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Abstract: This paper deals with a further generalization of the continuous thermostatted kinetic theory for active particles. Specifically
the interest focuses on the linking between the macroscopicdata and the statistical evolution of the system. The connection between
measurements and sources is established by defining an inverse problem based on the distribution vector function solution of the
thermostatted kinetic framework. The inverse problem belongs to the class of ill-posed Volterra equations of the first kind considering
that the number of sources can be greater of the number of measurements. The uniqueness of the solution is obtained by coupling the
thermostatted kinetic theory with the information theory and more precisely with the maximum entropy principle of Jayne. Applications,
which are discussed into the last section of the paper, referto biological systems, vehicular traffic, crowds dynamics,and finance.
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1 Introduction

The modeling of complex systems [1] has increased the
need of defining inverse problems for determining the
causes of the system evolution. Accordingly the interest
in inverse problems has undergone a tremendous growth
within the last two decades with special attention to the
nonlinear problems. Different classes of inverse problems
have been investigated, e.g. tomography [2], inverse
scattering [3], inverse heat conduction problems [4],
geophysical inverse problems [5]. In this context the
inverse theory can be considered a well established
approach [6,7]. However the mathematical formulation of
inverse problems can lead to models that typically are
ill-posed (the solution does not exist, the solution is not
unique, the solution is unstable to perturbations).

The present paper deals with the possibility to link the
macroscopic data with the mesoscopic (kinetic)
description of a complex system which is modeled within
the framework of the thermostatted kinetic theory for
active particles. The thermostatted kinetic theory has been
recently proposed in [8,9] as a general paradigm for the
derivation of specific model for nonequilibrium complex
systems. According to the theory, the overall system is
divided into different subsystems, called functional

subsystems, characterized by particles that are able to
express the same function (active particles). The
microscopic state of the particles consists of a scalar
variable, called activity, which models the strategy of the
particles. The activity can be a discrete or a continuous
real variable. The time evolution of a functional
subsystem depends on the interactions among the
particles. The interactions yield modification in the
magnitude of the active variable (conservative events) and
proliferation, destruction, mutation events
(nonconservative interactions). The overall descriptionof
a functional subsystem is based on the definition of a
distribution function (statistical description). The
existence of a nonequilibrium stationary is ensured by the
introduction of a dissipative term, called thermostat
because its analogy with the gaussian thermostat
proposed in nonequilibrium statistical mechanics [10,11,
12]. Different complex systems have been modeled
within this framework, see [9,13,14]. In particular the
continuous framework has been also investigated for the
derivation of macroscopic equations [15].
As already mentioned, the main aim of this paper is to
link a source problem with the macroscopic data.
Specifically an inverse problem is proposed where the
kernel depends on the distribution function vector
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solution of the continuous thermostatted kinetic
framework. The inverse problem belongs to the class of
Volterra integral equations of the first kind [16] which can
be an ill-posed problem if the number of sources is
greater than the number of measurements. In order to
ensure the uniqueness of the solution the methods of the
information theory are employed and specifically the
Jayne principle [17]. The principle of Jayne is a new type
of subjective statistic inference based on the Shannon
entropy [18,19] which is a measure of the uncertainty
associated to a discrete variable. According to the Jayne
principle, the probability distribution that maximizes the
Shannon entropy is the best candidate to represent the
current state of knowledge. The principle of maximum
Shannon entropy makes entropy a concept independent
from thermodynamics and statistical mechanics where the
Clausius entropy [20] and the Boltzmann/Gibbs entropy
[21] fulfill an important role, respectively. The interested
reader is addressed to the recent review papers [22,23,24,
25] and therein references for further details. It is worth
stressing that the concept of entropy has been employed
in different research fields, see, among others, papers [26,
27,28].
The contents of the paper are outlined as follows. After
this introduction, Section 2 deals with a review of the
thermostatted kinetic theory for active particles in the
case of a continuous active particles. In particular the case
of conservative and nonconservative interactions is taken
into account. Section 3 is concerned with the linking
between a set of measurements and a set of sources by
defining an inverse problem which belongs to the class of
Volterra integral equations of the first kind. Section 4 is
devoted to the resolution of the inverse problem in the
under-determined case, namely when the number of
measurements is less than the number of sources, by
employing the maximum Shannon entropy principle.
Finally Section 5 focuses on applications and future
research directions.

2 The thermostatted kinetic framework

This section is devoted to the fundamentals of the
continuous thermostatted kinetic theory for active
particles which constitutes the framework that will be
coupled with the information theory.
Let S be an adaptive complex composed of a large
number of interacting particles. The system divided into
n ∈ N subsystemsSi each of them composed of
interacting particles which are able to express the same
strategy/function (active particles). The system is
assumed homogeneous with respect to the space and
velocity variables, then the microscopic state of the
particles consists of a continuous scalar variable
u ∈ Du ⊂ R+ (called activity) that models the strategy of
the particles. The time evolution of thei-th functional
subsystem, fori ∈ {1,2, ...,n}, is depicted by employing a
distribution function fi = fi(t,u) : [0,+∞)× Du → R+.

The time evolution of the system occurs because of
interactions among the particles with different magnitude
of the activity variable. In this context the interaction rate
between the particle of thei-th functional subsystem with
activity u∗ and the particle of the j-th functional
subsystem with activity u∗ is denoted by
ηi j(u∗,u∗) : D2

u → R+. The probability density of the
particles of the i-th functional subsystem with
microscopic stateu∗ that interacting with the particles of
the j-th functional subsystem with microscopic stateu∗

fall into the microscopic stateu is denoted by
Ai j = Ai j(u∗,u∗,u) : D3

u → R+. In particular, the
probability density function is such that:

∫

Du

Ai j(u∗,u
∗
,u)du = 1, ∀u∗,u

∗ ∈ Du. (1)

The system is assumed out of equilibrium, namely under
the action of an external force field
F(u) = (F1(u),F2(u), ...,Fn(u)) : Du → R

n
+ acting on each

functional subsystem.
The macroscopic variables are defined as momenta of the
distribution functions. Specifically, under suitable
integrability assumptions onfi, the p-th order moment of
thei-th functional subsystem is defined as follows:

Ep[ fi](t) =
∫

Du

up fi(t,u)du. (2)

In particular the local density, the linear
activity-momentum, and the activity-energy are obtained
for p = 0, p = 1, and p = 2, respectively. Let
f = f(t) = ( f1(t), f2(t), ..., fn(t)) ∈ R

n be the distribution
function vector, global moments are defined according to
the following relation:

Ep[f](t) =
n

∑
i=1

Ep[ fi](t) = Ep[ f̃ ](t), (3)

where

f̃ (t,u) =
n

∑
i=1

fi(t,u).

Bearing all above in mind, the continuous thermostatted
kinetic theory for active particles framework reads:

∂t fi(t,u)+TFi[f](t,u) = Ji[f](t,u)+Mi[f](t,u), (4)

where:
• The operatorJi[f] = Ji[f](t,u) models the events that
modify only the magnitude of the activity variable
(conservative operator). In particular

Ji[f](t,u) = Gi[f](t,u)−Li[f](t,u),

where the gain particle operatorGi[f] = Gi[f](t,u) and the
loss particle operatorLi[f] = Li[f](t,u), respectively, reads:

Gi[f] =
n

∑
j=1

∫

D2
u

ηi j(u∗,u
∗)Ai j(u∗,u

∗
,u)

× fi(t,u∗) f j(t,u
∗)du∗ du∗, (5)

Li[f] = fi(t,u)
n

∑
j=1

∫

Du

ηi j(u∗,u
∗) f j(t,u)du. (6)
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• The nonconservative operatorMi[f] = Mi[f](t,u) models
the active particles that are able to change the subsystem
(jumping subsystem process) and it reads:

Mi[f] =
n

∑
h=1

n

∑
k=1

∫

Du×Du

ηhk ϕ i
hk fh(t,u∗) fk(t,u

∗)du∗ du∗,

(7)
whereϕ i

hk is the jumping rate into thei-th subsystem, due
to interactions between particles with activityu∗ of the
h-th subsystem and particles with activityu∗ of the k-th
subsystem.
• The operatorTFi [f] = TFi [f](t,u) is the dumping term
that makes the dynamic dissipative thus avoiding the
unbounded increase of thep-th order moment. The term
TFi , called the thermostat operator [10,11,12], allows the
system to reach a nonequilibrium stationary state in the
long-time limit, and it reads:

TFi [f] = ∂u

((
Fi(u)− u

∫

Du

Fi(u)u f̃ (t,u)du

)
fi(t,u)

)
.

(8)
It is worth to mention that the thermostatted kinetic

framework (4) can be considered as a general paradigm
for the derivation of a mathematical model for a complex
system out of equilibrium. In particular the framework (4)
is called a continuous thermostatted kinetic theory
framework for distinguishing it from the case where the
activity variable can attain discrete values.

3 On the inverse problem

This section is devoted to the coupling of the continuous
thermostatted kinetic theory framework (4) with an
inverse problem. Specifically the paper focuses on the
reconstruction of a time-dependent source through the
knowledge of a priori data vector (measurements). The
linking between the source and the measurements is
conjectured by introducing an operator called kernel of
the inverse problem. Accordingly letS be the space of
the sources, M the measurements space (observed data),
andK : M → S the data kernel operator. Letµ ∈ M ,
the source problem considered in the present paper
consists in constructing a solutions ∈ S of the following
problem:

µ(t) =
∫ t

0
K [f,s](t,u)du, (9)

where µ(t) = (µ1(t),µ2(t), . . . ,µm(t)) : [0,+∞) → R
m,1

is the m-dimensional data vector,m ∈ N
∗, and f is

solution of the framework (4).
The inverse problem (9) is well-posed in the Hadamard
sense if for anyµ ∈ M exists and is unique the solution
s ∈ S of (9), and if the solution depends continuously on
the measurements (the inverse mappingµ 7→ s is
continuous). The inverse problem is said ill-posed if one
of the Hadamard conditions is violated. In particular the
non-uniqueness is sometimes of advantage because it

allows to choose among several strategies for obtaining a
desired effect.
The present paper focuses on the well-posedness of the
following linear problem:

K [f,s](t,u) = K[f](t,u)s(u),

where

s(u) = (s1(u),s2(u), . . . ,sn(u)) : Du →R
n,1

is the unknownn-dimensional sources vector,n ∈N
∗, and

K[f](t,u) = [Ki j[f](t,u)] : [0,+∞)×Du → R
m,n

is the data kernel matrix (Green’s function), which
depends on the distribution functions vector solution of
the continuous thermostatted framework (4). Accordingly
the inverse problem reads:

µ(t) =
∫ t

0
K[f](t,u)s(u)du, (10)

which is a Volterra equation of the first kind. In particular
is not restrictive to assume that:

n

∑
i=1

∫

Du

si(u)du =

∫

Du

s̃(u)du = 1, (11)

where

s̃(u) =
n

∑
i=1

si(u).

Bearing all above in mind the inverse problem reads:





n

∑
i=1

∫

Du

si(u)du = 1

µ j(t) =
∫ t

0

n

∑
i=1

K ji[f](t,u)si(u)du, j ∈ {1,2, . . . ,m}

(12)
The main interest of this paper is the source

reconstruction of the inverse problem (12) in the case
m < n (under-determined problem). In the latter case the
non-uniqueness is not ensured. The uniqueness can be
established by introducing an objective function and
requiring that the solution maximize/minimize this
function.

4 The coupling with the information theory

According to the information theory, the objective
function that is chosen in the present paper is the
following continuous Shannon entropy:

H[s] =−
n

∑
i=1

∫

Du

si(u) lnsi(u)du. (13)

The principle of maximum entropy of Jayne is a method
that can be used to estimate input probabilities more
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generally. The result is a probability distribution that is
consistent with the known constraints expressed in terms
of averages, or expected values, of one or more quantities,
but is otherwise as unbiased as possible. Bearing all
above in mind, the method consists in finding among the
solutions of the inverse problem (9) that, sH , which
maximizes the function(13).
Let µ ∈ M , s = (s1,s2, . . . ,sn) ∈ S , s̃(u) = ∑n

i=1 si(u)
andHµ the following subset:

Hµ =





s ∈ S :





n

∑
i=1

∫

Du

si(u)du = 1

µ j(t) =
∫ t

0

n

∑
i=1

K ji[f](t,u)si(u)du

j ∈ {1,2, . . . ,m}





.

(14)
According to the maximum principle of Jayne, the vector
solution sH(u) = (sH

1 (u),s
H
2 (u), . . . ,s

H
n (u)) of the

mathematical framework (9) thus reads:

sH = argmax
s∈Hµ

H[s]. (15)

Bearing all above in mind, the existence and uniqueness
of the solutions of the inverse problem (9) depends on
the optimization problem (15). Accordingly the lagrangian
functionL [K ] = L [K ](s,λ0,λ1, . . . ,λm) reads:

L [K ] = −
n

∑
i=1

∫
si(u) lnsi(u)du

−(λ0−1)

(
n

∑
i=1

∫
si(u)du−1

)

+
m

∑
j=1

λ j

(
µ ′

j −
n

∑
i=1

K ji(t,u)si(u)du

)
, (16)

where (λ0 − 1) and λ j, for j ∈ {1,2, . . . ,m}, are the
related Lagrangian multipliers. Differentiating the
lagrangian functionL [K ] with respect to the variablesi
and setting the result equals to zero yields:

sH
i (t,u) = exp

[
−λ0−

m

∑
j=1

λ jK ji(t,u)

]
, i ∈ {1,2, . . . ,n},

(17)
and according to the constraints one has:

sH
i (t,u) =

exp

[
−

m

∑
j=1

λ jK ji(t,u)

]

∫

Du

exp

[
−

m

∑
j=1

λ jK ji(t,u)

]
du

, (18)

wherei ∈ {1,2, . . . ,n}, andλ = (λ1,λ2, . . . ,λn) is solution
of the following problem:

−▽λ lnZ(λ , t) = µ , (19)

where Z(λ , t), called partition function, reads:

Z(λ , t) =
∫

Du

exp

[
−

m

∑
j=1

λ jK ji(t,u)

]
du. (20)

According to the above solution, the maximum value of
the entropy function reads:

Hmax= λ0+
m

∑
j=1

λ jµ j. (21)

5 Applications and research perspectives

The present paper has been devoted to the definition of an
inverse problem for the continuous thermostatted kinetic
theory for active particles framework. Specifically the
inverse problem consists in a source problem namely the
construction of a signal that triggers the measurements.
The inverse problem is analyzed in the under-determined
problem case, namely when the number of unknown
sources is less than the number of measurements.
Accordingly the uniqueness of the solution is not ensured
and the criterium for establishing the uniqueness of the
solution is based on the information theory and more
precisely on the continuous Shannon entropy and the
maximum entropy principle of Jayne. In particular the
solution is based on a probabilistic approach considering
that the unknown source is assumed to be a continuous
random variable vector. It is worth stressing that different
algorithms can be employed for computing numerically
the solution proposed in this paper, see, among others,
[29,30,31]. Moreover, as already mentioned, the
continuous inverse problem (12) is based on a Volterra
integral equation of the first kind [32]. The reader
interested to some algorithms of resolution is referred to
the book [16], papers [33,34] and the references cited
therein.
It is worth stressing that the meaning of the measurements
and of the sources depends on the complex system under
consideration. Indeed considering that the thermostatted
kinetic theory has been employed for the modeling of
complex biological systems [13,14,35], vehicular traffic
[36], crowds dynamics [9], financial markets [37], the
interpretation of the source is that of a signal that triggers
the empirical data. Further applications of the
thermostatted kinetic theory coupled with the information
theory can be in the field of computerized tomography
[38], meteorology [39,40,41], imaging [42], finance [43,
44,45].
Future research directions can be also established from
the theoretical point of view. Firstly the theory that has
been presented in this paper can be considered as a
regularization method for linear ill-posed problems.
However in the nonlinear case the inverse problem can be
cast into the abstract framework of nonlinear operator
equations [46]. A research perspective is the possibility to
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employ a different entropy; indeed the Shannon entropy
presents some limitations related to the case where the
events are not independents. In this context a different
concept of entropy can be involved. In particular if ana
priori distribution function of the sources is available then
the relative entropy concept can be applied [47,48,49,
50]. Specifically if the prior distribution is denoted by
{qi(u)}, then the information (also known as the discrete
Kullback-Leibler divergence) reads:

KL[s,q] =
n

∑
i=1

∫
si(u) ln

(
si(u)
qi(u)

)
du. (22)

This investigation constitutes the basis of future works.
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