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Abstract: This paper concerns with a new lifetime model named the tadegeneralized linear exponential distribution (IGLED).
Statistical properties like moments, quantile and modesrroduced. The classification of the behavior of IGLEDdghan reliability
analysis like mean residual life (MRL) time, the mean watirme (MWT), the hazard rate (HR) function and the reversaziaid
rate (RHR) function are discussed. Bonferroni cufBg), Lorentz curve, the scaled total time on test (TTT) transfoeurve and the
measures of income inequality are also studied. The heaighivproperty is proved for IGLED under the shape param&tdrhe
explanation of the other two shape parameter in the sensmobaic is shown. Furthermore, maximum likelihood estiorais used
to estimate the parameters of the new model. Four applitaioe used to show whether the IGLED is better than otherkmelivn
distribution in modeling lifetime data.
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1 Introduction distribution (IWD) and inverse Rayleigh distribution
. , (IRD). There are many articles dealt with inverted
In reliability theory, the HR and the RHR are important jistributions and its generalizations, see for examplg, [
widely measures. Also, it is well-known that the residual (8], [9] and [LO]. The main theme of this paper is to
life time,  and the reversed residual life time (time ptain the IGLED and study its statistical properties and

since failure) O play an important role in reliability e properties in terms of reliability analysis and an
theory. The HR function and the RHR function are based,,come inequality.

on Q; and & respectively, where for a system of age t,
& = (T —t)|(T >1t) is the remaining life time after t and

Q= (t—T)|(T <t) is the time elapsed after failure till

time t, given that the unit has already failed by time t.
Another ageing measures widely used in reliability
analysis are MRL time and MWT. Recently, the variance
residual life (VRL) and the variance reversed residual life

(VRRL) have an interest in reliability analysis [seH,[ The rest of this article is organized as follows. The
[2] and [3]]. The behavior of all these measures of the probability density function(pdf), cumulative distritior
IGLED are discussed. function (cdf), hazard rate function, and survival funotio

of IGLED are introduced in Sectiol In Section3, some

The generalized linear exponential distribution important statistical properties are proposed.Propedie
(GLED) is first proposed by4]. [5] introduced a new the IGLED in terms of reliability analysis are given in
generalization of GLED named exponentiated GLED. Section4. The behavior of théB.), the B, the Lorentz
Recently, ] provided some notes on GLED id][ In this curve, the Gini coefficient and the scaled TTT transform
article, we proposed a new inverted distribution namedcurve are discussed in Sectidnin Section6, the MLE
IGLED. IGLED is considered as a generalization of the and the AClIs are discussed. Analysis of four real data sets
inverted exponential distribution (IED), inverse Weibull are presented in Sectidn
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2 Inverted Generalized Linear Exponential
Distribution

For a random variable Y, the pdf of GLED is given by

(y.eb.&) = £8P 0yt 2 Pt (e by)
c>0,b>0&>0y>0, Q)

The pdf of IGLED with parameter vect@® = (c,b,§) is
given by settingX = & in (1) as

Ay g (S+byEc b g C b
f(x,0)=¢e X 22 (>_(+ﬁ) (ﬁ+ﬁ)’
c>0,b>0 &>0 x>0. (2)
The cdf of the IGLED are given by;
(S b ¢
Fx0)=e *zd" x>0 3)

The survival and hazard rate functions are given by:

Ste)=1-ettz2) 4)
and

¢ _b &
hto) = &° (t+i)_(i+<§g>: (&+8) 10,
respectively. ©
Remark 1.

From Equation %), some special distributions can be
obtained:

1.Forb=0, andé = 1, Equation 2) reduces to

f(x;c) = (X—Cz) e, x>0,¢>0,

which is the pdf of the IED].

2.Forc=0andé = 1, Equation 2) reduces to

b
f(x.b) = X_k; e 22

which is the pdf of the IRD11].

x>0,b>0,

3.Forb =0, Equation 2) reduces to

: _ra (98 G C
f(xcé)=¢&e (X) (Xz

which is the pdf of the IWD.
Remark 2.

), x>0,¢c>0, & >0,

(1) Indeed, it is easy to show that the simulated data can

be obtained from,

1
(o CF c2+2b(—Inu)?

T : (6)
2(—Inu)¢

where U follows a standard uniform distribution.
(2) From Equations?) and @), we get

c b

X (C+55) (x0) =EF(x0)( —INF(x0)) (ex+b).

()

3 Some Statistical Properties

In this section some statistical properties like, moment,
guantiles and mode, are derived. In particular, the median
is derived from the quantiles.

3.1 Moments

Moments play an important role in the applications of the
statistical analysis. A probability distribution may be

characterized by its moments. We now introduce an
explicit form of the k-th moments of IGLED.

Theorem 3.1.
The k-th moments¥) of IGLED; k= 1,2,3,... is given
by
(k) — £ 2 (K k_; (E)k(ﬂ))J
H _i;;i AV
j—k+& j—k+& 2
< (rE—=)-r—=p")
3.5, (0) (7)) @ zpre e
28 —i—k-2j ¢ &\ .
< (Fmr i (5p)) (k> —£.®

where " (.) is gamma function and (.,.) is the upper
incomplete gamma function.

Proof. The k-th moments of IGLED can be written in the
form

W_g [Tka($+)E € beg Cc b
H E/o xe ” (x+2x2) (x2+x3

Upon using the substitution= ( + %)5, one can show
that the k-th moments is given by

) dx

Al

© C c2+2b
H<k>:/ ( * +; v) )ke“’dv.
0 2 (v)E
1
N 7
Expanding( Mﬂ) K yields
2(v)&

o k _ g
p® :/ Z} <k> d (@+2bvi)' eVav. 9)
0 = I
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Fig. 1: a) The pdf of IGLED with different values of parameters b) Theazard

parameters

Cumulative Distribution Function

Fig. 2: a) The cdf function of IGLED with different values of pararet b) The survival function of IGLED with different valuet o

parameters

One can show that,22y> bVE |< Lwhenv < (£)¢ and
(ﬁ)'f :

2b v? i
Hence, 9) should be written as

(G e
w2.5,0) ()6 g o

—2j—i—
X / LV 7 eVdy (10)
(L)%

25_
j=k
vi eVdv

Then the proof is completed.

3.2 Mode and quantile

Theorem 3.2.

The first derivative w.r.t. x of the pdf of the IGLED can be
written as

d

i (x0) = 6i(x0) 9(x.0), (11)
where

oy __¢& ~(s+5%)¢ S P g2 € by
9(x©) = 2 (cx+h)2 © (x 2x2) (x2+x3) ’
and

g(x0)= (cx+b)2<25 ()—C(+2—t:(2)5 —25—2) +b?.

Equating (1) by zero, and it is clear thaj (x;©) > 0,
then

(cx+b)2< 5( b

ﬁ) —25—2) +b2=0. (12)

Itis clear that {2) can also be written as

The pdf of IGLED has a unimodal shape in the interval (Cx+b)2<25 (=+ t))( 3§ —2&— 1) —c2x2—2cbx=0.

1
c+ 1\ 2+2b(1+d)E
where x; = ] and

T
2(1+3)¢

X1, %]

(13)
One can show from1Q) that f(x;©) > 0 whenx < x;
and from (3) that f (x; @) < 0 whenx > x,. Now, define
g(x;©) on a closed intervaxs, xo]. Clearly,g(x;©) is a
continuous function on a closed mterva{kl,xz]
Furthermore, g(x1;0) = b? and
g(x2;0) = —¢® x5 -2 ¢ b x. Then, there exists
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Xo € [x1,%2] such thatg(xo;®@) = 0. Sinceg(x;©) is a  property makes the IGLED distribution widely

differentiable function on an open interval, x,) and applicable. Now, we want to show that the HR of IGLED
is a unimodal.

d (,0) =4c(cx+b) E(E+L)E —-&-1| -

ax I = X 2x2 Theorem 4.1.

X 2x2 x2 X3 Proof.

2 (cx+b)2< 52 (E I L)Efl (ﬁ 4 E)> The HR function of IGLED has a unimodal shape.
Due to [12], n(t) can be written as

is always negative ofxs,X2), then it is clear that this root

is unique. 1
t) = 2(ct+b)2 +2& (ct+h)?
Remark 3. n) t(20t+b)(ct+b)( (ct+b)" +2& (ct+b)
2, b 2
Some special cases can be obtained from Equatityn ( —2¢ (ct+b)” (¢ + ﬁ)é —b ) (18)
1.For& =1 andb = 0, Equation {1) reduces to Z x— The first derivative of) (t) can be obtained as

¢? = 0 which leads to the mode= § of IED.

N(t) = pi(t;0) p(t;0),
2.For& =1 andc = 0, Equation {1) reduces to ® x> — ) = pt;©) p(t;0)

b? = 0 which leads to the mode= \/g of IRD. where .
t:0) = :
Moreover, the Quantile of IGLED can be given by P(t;0) tZ(2ct+b)Z (ct+ D)2
and

_c 02+2b(—lnq)%

T , 0<g<l1l. (14 p(t;e)_—<b4(1+25)+cb3t(6+125)+c2b2t2
2(—Ing)?

3 3 414
Then the median of the IGLED is obtained by setting (16+22§)+C bt® (16+16¢&)+c 't (4+4¢&)—
0.5in Equatlon 14) as E (§+ ﬁ)é <2b4 (1+2 £)+Cb3t (124—166)4—
c+\/+2b(In2) ¢? b7 17 (22424 &)+ bt® (16+16 ) +

M=

Med T (15)
2(In2)% 4 (444 E)) ) .
Some special cases of quantile and median for IED, IRD _,
and IWIgcan be obtaine%l. Sinceé > 0,c > 0,b > 0, andt > 0, one can show that

n(t) > 0 whenevet < t; andf(t) < 0 whenevet > t,
1

c+2by/c24+2b (%)?
4 Properties of the IGLED in Terms of where b = 212 and
Reliability Analysis :
c+2bw/02+2b(%)% .
In this section some properties of the IGLED, which is 2 = T . Define p(t;®) on a closed
important in reliability analysis, are studied. In partin 2(5)¢
the behavior of the HR, the RHR, the MRL time, the interval [t;,tz]. One can show thatp(t;©) > 0,
MWT, the variance of residual life (VRL) and the P(t2;@) <0 andp(t;©) < 0 on the intervalty,tz). Then
variance of reversed residual life (VRRL) are discussed. as in Theorem (3.2), there existsuch thatp(to;©) = 0
and this root is a unique.

4.1 Behavior of hazard rate function _ )

4.2 Behavior of reversed hazard rate function
From Equationy), it is easy to prove that

The reversed hazard rate function of IGLED is given by

Jm. h(t:©) =0, (16) ft:0) b b
) ; c -1,C
and r(t,@)— F(t;@) —E(f‘i‘ﬁ)é (t—2+t—3) ,t>0.
lim h(t;©) =0. (17) _ (19)
t—oo Itis easy to prove that
Sinceh(t;©) > 0 and from Equationsl@) and (L7), one i
can see thah(t;@) is a non-monotonic function. This tl’gﬁ(t?e) =%, (20)
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for MRL time of IGLED are given by:

1 c &1y §-1, ¢, b &
ST TS [2 (’(T) r(GgE+3h) ))
1e (T2 2t

1 . . .
+ 55720 (B2 (r(%w((%u%ﬁ))

[ ) B

m(t;
Fig. 3: Behavior of reversed hazard rate function with different ( (
values of parameters.

1e T2
+’(2:2im:0(’|21)(%?)l <l—(f+lfl) ,—<(E+é71) ((T:Jrfz)f))
and 4(17{(%*%){)} (zc_26>z>(%+£2>5
limr(t;©)=0. (21)  Proof.
e To derive the explicit forms of the MRL time of IGLED,
the integral X f(x;©) dx must be calculated (see
The first derivative of EquatiorL) is given by Appendix). The MRL time satisfies the following:
_ © 1 .
lim m(t;®) = ¢ I'(E—l)jtE %(2) (%))'
d 1 ¢ b, 5 t—0 2 3 2 S\ c
T(60) = — & oo (4 -5) 2 (2&(ct + b)
dt 26 't 2t E+i-1 ¢ ¢ 1o
+ct(ct+b)2+b(ct+b)+cbt) (22) * y(( & )’(ﬁ))) +3(2D)
o 1 ) _2i_
o | x g(?) (SyrEis2int )
which is always negative for > 0, ¢ > 0, b > 0 and E\i/ 2b 2¢

& > 0. Then the reversed hazard rate function is

decreasing. ,wherey(.,.) is the lower incomplete gamma, which agrees

with the first moment, and
Remark 5. tIin m(t; @) = oo. (26)

Since the reversed hazard rate function is decreasing, it i©n the other hand, as inl§], Equation 3) can be
clearly that the distribution function of IGLEB(t;©) is  rewritten as

log concave. ®
m(t; 0) :/ g kT h(tO) dt gy (27)
t
whereh(t;©) is given by Equation). From Equation
] ] o (27), it is clear thaim(t; ©) is decreasing at first and then
4.3 Behavior of mean residual lifetime starts increasing.

4.4 Behavior of mean waiting time
The MRL time of positive continuous random variable T

is defined as The MRL time has a mirror image, called MWT. The

MWT of a positive continuous random variable T is

1 o defined as
miti0) = E[2:0] = g /t (x—t) f(x,0) dx (23)
_ — 1 t
m(t;©) =E[Q; 0] =t— m/o x f(x;0) dx. (28)
Theorem 4.2.
Theorem 4.3.

Using the Equations?j, (4) and @3), the explicit forms

(@© 2017 NSP
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Using the Equations2j, (3) and @8), the explicit forms
for MWT of IGLED are given by:

e (1122
1 . T
520(2) (§5) (r((“zz' 1),(%+%>f)ﬂ
(%25)5<(%+£2)5:
. 1
= &1 b o bi
m(t;0) ‘*ﬁ%fﬁ)g {/—<(T)«(%+Ez)s>+%2i:0(?)(%7)' (29)
e 2t
(r((£+i’1),(%+£2)5) 7"((5“71)'(’5‘26)5))
1 . .
+3@n? zf;o(,zw%zﬁ)'r((“;i?’l»(%)f)]
(558 > (£ + 325t
Proof.

To derive the explicit forms of the MWT of IGLED, the
integralfé x f(x; ©) dx must be calculated (see Appendix).

By Theorem (5) of 14], we can say tham(t;©) is
monotone increasing becausé; @) is log-concave.

4.5 Behavior of the variance of residual life

In this subsection, the variance of r\¥ and its
monotonic properties are studied.

Theorem 4.4.

(rEL) B (F08) )

C
1 . .
3 vanso( ) (A2 50 -

Var(Q;0) = - i ) B . (30)
20
r( (°+Zz)5>ﬂ ($p) <(%+ZZ)5:
1 o -2 §-2 ¢, b
— ¢ b ¢ £>[T(F(T)’F<T=(T+7)>>+
<l—e (“Zz) 2t
b (g r (g ) )¢
1 ) )
92[ 2;}0:0(?)(2?}” ,—(f+272> r( 5272 (%+£2)5))}
_ 1 c r(ﬂ),r(ﬂ (¢+ B &)+
(e
i1 i1 2
§ 570 (3) (B (&t —r (S (%+2~$2>5>)ﬂ
(5505 > (F+ 525
Proof.

The VRL can be defined as
Var(Q;;0) =E(TAT >t)— [E(T|T >1))>=

2
* 5 f(x0) © f(x0)
/t X2 50) dx—( | x 560) dx)

To derive the explicit forms for the VRL of IGLED, the
following integrals [ x f(x;©) dx and /" x? f(x;0) dx
must be calculated (see Appendix).

To study the behavior of VRL for IGLED, it is
important to study the following relations:

(31)

Var(Q;0) —m(t;0)% = S(tie)

/t " 5x.0) [m(x; ©) — m(t; )] dx (32)
[see []], and

iVar(Qt; O)=h(t;0) m(t;0)?2 [\M —1] (33)

ot m(t; ©)2

[see P]I. Itis clear from Equation&3) thatVar (Q;; O) is
increasing if Var(Q;;0) > m(t;0)?, moreover, from
Equation 82) Var(Q;0) > m(t;0)? if and only if
m(t,®) is increasing(x > t). On the other hand, it is

Let T be a positive continuous r.v., then the explicit forms clear from Equation33) thatVar (Q;;©) is decreasing if

for VRL of IGLED are given by:

Var(Q;;0) < m(t;0)% moreover, from Equation3Q)

(@© 2017 NSP
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Var (Q;0) < m(t;0)? if and only if m(t; ©) is decreasing
(x < t). Then, it easy to show that the VRL is a bathtub
for IGLED given that the MRL for IGLED is bathtub.

4.6 Behavior of the variance of reversed
residual life

In this subsection, the variance of r.\ﬁt and its
monotonic properties are studied.

Theorem 4.5.

Let T be a positive continuous r.v., then the explicit forms
for VRRL of IGLED are given by:

(T%;W) [%(r(%x%+%)5))+

Br(Sh 0 209)) 5 vhamo(h) )

(2= 09) |-

[(ﬁg) S (e %)+

%mzfﬁo(?l)éﬁ)'(r(“’z'*l (%+§2>5))r
($)F <(§+ )%

— (ko) [F (52t 20)
Var(Q;0) =14 \o @) (34)

8 (52 §+5%%))+ S zr;o@l)%)i

(F(EF2 e 8) r(S2500) )+

gmzr‘;o(%)éﬁ)i(r(”;i?*.(gzﬁﬁ))}f

[(ﬁg) (e 2% + g5,

@) (2p) (r( L 08) r( “}’14525)5))

+%¢ﬁzi70(?l)<§25>‘ (r(“;i"l.(czﬁ))r‘
($5)F > (§+5%5)%.

Proof.

The VRRL can be defined as

Var(Q;0) = E(T?|T <t) — [E(T|T <t)?=
2

t ,f(x0) t f(x0)
/oXZF(t;@) dx — < /o X Fto) dx) .

To derive the explicit forms for the VRRL of IGLED, the
following integrals [§ xf(x;®) dx and [§ ?f(x;©) dx,
must be calculated (see Appendix).

In order to show the behavior of VRRL, one can study
the following relations:

(39)

Var(Q;0) — m(t;0)? = F(fe)

/0 'E(x0) [fix 0) — mt;0)dx (36)
and

SVar(@i0) = 1(0) MO [1- T2 A O] ()

[see B]]. From Equation 87), it is clear that the
Var(Q;0) is increasing if Var(Q;0) < m(t;0)?
moreover, from Equation36) Var(Q;;0) < m(t;0)? if
and only ifm(t,®) is increasingt > x). Then, it easy to
show that the VRRL is increasing for IGLED given that
the MWT for IGLED is increasing.

5 Measures of Income Inequality using
IGLED

Bonferroni, Lorentz and the scaled TTT plot curves are
widely used tools for analyzing and visualizing income
inequality. TheB and(B.) have assumed relief not only in
economics to study income and poverty, but also in other
fields like reliability and medicine. Besides, tf8:) uses

to derive the Lorentz curve. The measures of income
inequality like the(Bc), the B, the Lorentz curve and the
Gini coefficient are studied using IGLED. Also, the
scaled TTT transform curve is introduced to show the
behavior of failure rate function of IGLED.

5.1 Lorentz curve

The Lorentz curve was presented first by5[ as a
graphical representation of income distribution (for more
details, seel6]). The Lorentz curve can be written as

1 q
o) = 7 [ *ada (38)

wherexq is the quantile of IGLED given byl@), 0 <

q< 1 andu® is the first moment given by2g).
Then, the Lorentz curve of IGLED can be presented in
explicit form as,

o

1
-1 oo
L £2 —toga) +§ 570(2) (

2bi
)
ey

2

) 1 ) :
() o3 it ()|
2 (L b
L(q) = BTSSR e i (39)
1 CF<E —Iogq>+1\/ﬁ)2€‘° (:Zl)(cz)ir(szzifl.flog@ s
ao |27 Z iz0(f) (zp 27
(L bE
ei(%zﬁ)s>e a2 .
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whereé > 1.
Then the Gini coefficient for IGLED can be given as

2e (5 r( 5g7(2c?b)5)> +52: ; (

. B . B 2 e
(I_(I-I—f 1)_,_<(I+E 1)7(%)5) +2%

3 ¢

(e hagy) o)

1
3
ii(%)(%)iu—w% )r(L‘Z?‘ & ))]

whereE (.) is an exponential integral function.

A

Remark 6.

1. One can show that

Jim G(L(q)) =0,
and
yian(L(q» =1

5.2 Bonferroni curve

The B has appropriate properties, s&&[Now, the (Bc)
andB are used to analyze IGLED.

For the IGLED, theB. can be presented as

Be() = % (40)

Then theB can be written as

2
B=1— /Bc )dg=1— 11{ (Ecl)(c)E

C2

2 2
(Ee%)EJr(E (Zb) +&—-1)E1 z((zcb)'f)>

NG ?
2 \/_bzo<2) 145;' 25<(25(ﬁ)5+

2i+1- 25)E2|+1 2¢ ((zczb) —2&e £ )
S G + e ()
5, (8) G (W) ) +

- \/_b %(%) (;_b)wér( (2527?_1)’(;3)5)

Remark 7.

1.Itis easy to show that

lim B=0,
{oe
and
limB=1.
E—1

5.3 Scaled total time on test transform curve

A graphical method using the scaled TTT transform curve
was first proposed bylB. The scaled TTT transform
curve of IGLED can be written as

@=L+ (1;% (42)

Remark 8.

It is clear from Equations 39), (40) and @1) that
@ > Bc > L(q). This result agrees with the result ibd).

5.4 Interpretation of IGLED parameters

The shape parametér is said to be index tail since it
satisfies the heavy-tailed property for the IGLED. For
x> 0, one can show that

- 1-F(tx0)

Jim, 1-F(t;0)

(@© 2017 NSP
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Furthermore, it is ease to show that the index tail satisfies/,(©) = Zﬁ +(&-1) Zi 25
i1 X2 733 i= | 2
im dlogS(t; @) _ ¢ SRS ] X % 2
t—o  dlogx r 5(%4_@)67 Ny
The specification of the other two parameters ¢ and b can - i 232 ’ (44)

be studied using the Gini coefficient and the elast|C|ty nd
function. For more details, see2(q]. The elasticity

function of the quantile functioxq with respect to the L c b
shape parameteris given by t(0) = & +i: Iog( Xi + 2x1-2)
cd c ! c b c b
sc(xq):ga_xé‘: = - Iog(£+2—xi2) (24—2—)(12)5. (45)
c2+2b(—logq)? =
It is noticed that the elasticity function is an increasing
function ing, since 6.1 The parameters c and b are known
9€c(Xq) cb(— Iogq)% 1 The normal equatiofis (©) = 0 can be written as
g N A ‘
£q(c?+2b(—loga)? 1.1 C by (e
< ) (S5 g) (Gegpton) ) wo

is always positive.
The elasticity function of the quantile functiog with It is clear that the first derivative of the right-side hand

respect to the shape parameids given by (W(&;x)) of (46) with respect tc& is always positive. This
mean that the¥’(&;x) is increasing function. Then by
b(Xg) = b dxq _1 c . graphical method41] the MLE of & exists and unique
R X
Xqg b 2 5 \/CZ+2b (—loga) ? see Figuresda, 8a, 11a andl4a).
It is noticed that the elasticity function is an decreasing
function ing, since 6.2 The parametersc, b and ¢ are unknown
1_ R
O&p(Xg) cb(—logg)? ! The MLE O of O is given by solving the three normal
oq N equations/¢(@) = 0, /,(©) = 0 and/¢(©) = 0. These
2&q (CZ+2 b (—|OQQ)5) nonlinear equations can not be solved analytically and a
) ) numerical method (Newton-Raphson method) can be
is always negative. used.
6 Maximum Likelihood Estimation 6.3 Fisher information matrix

MLE is probably the most widely used method of Since the computation of Fisher information matrix (given
estimation in statistics. Suppose tha;,...,X; be by taking the expectation of the second derivative4@))
independent random sample of siz&#om IGLED. From is very difficult, so, it seems appropriate to approximate
2, the log-likelihood function can be obtained as these expected values by their MLEs. Then, the asymptotic

variance-covariance matrix is given as [s&2][,
©) =rlog & - ‘4 Iog< +£)5 1)
Z 2><2 Z 2¢

Var(€) Cov(€,b) Cov(¢, &)
+i21'09( (;+p)) : (42) Cov(b,é) Var(b) Cov(b,¢) | =
= 1 ~ A A ~
' Cov(é,6) Cov(é,b) Var(é)
By taking the first derivativelp (©) = ae) of (42) with .
respect ta, b and&, we get —lec(©) —Lep(O) —Les(O)
S, r —ebcge; —ebb((e; —ebége% , (47)
—ls(O) —Lsp(O) —Lss (O - e
0:(0) = + (& &e &b & (€bé)
(@) i;XZ(X%JF%) Zixl X % ,
e b i % where (g e,(©) = %' i,j = 1,2,3. Accordingly, the
Gt 5) ACls based on the asymptotic variance-covariance matrix
L L S 43) o .
& Xi for the parameters, b and& are, respectively given as:
(@© 2017 NSP
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6+ 2g \/Var(€), b zg \/Var (b) andé + zg /Var (§), 7.2 Burning velocity data
where g is the percentile of the standard normal

distribution with right tail probabilitya In this subsection, the burning velocity of different

chemical materials which used i24] is analyzed. The
burning velocity is the velocity of a laminar flame under
7 Real Data Analysis stated conditions of composition, temperature, and
pressure. A reference value of 46 cm/sec for the
In this section, four real data sets are presented fofundamental burning velocity of propane has been used.
interpretative study. For every data set, we comparelhe data set are 68, 61, 64, 55, 51, 68, 44, 82, 60, 89, 61,
IGLED with its sub-models (IWD, IRD and IED) and 54, 166, 66, 50, 87, 48, 42, 58, 46, 67, 46, 46, 44, 48, 56,
with the generalized inverse Weibull (GIW) distribution 47,54, 47, 80, 38, 108, 46, 40, 44, 312, 41, 31, 40, 41, 40,
given in [9], Log-normal distribution (Log-N) and inverse 56, 45, 43, 46, 46, 46, 46, 52, 58, 82, 71, 48, 39, 41. The
Gaussian distribution (IGD). For identifying the shapes of mean, the variance, standard deviation, the skewness and
hazard rate for given data sets, the scaled TTT transfornthe kurtosis are 0.61, 0.614174, 0.405184, 4.76642 and

plot is given as 28.6962 respectively: The measure of skewness indicated
r S Xin+ (N—=1) Xen that the data are positively skewed. Furthermore, the TTT

(=)= =, plot of the observed data show that the hazard rate of the
3 2i=1 X burning velocity data is unimodal which is first concave

where r=1,...,n and., is the order statistics of the data. 5,4 then convex as shown in Figh.
Kolmogorov-Smirnov (K-S) distance test, Anderson  prom Table2, based on the p-value associated with the
Darling (A") test andCramér Von-Mises (W*) test are | s gistance value. one can show that

used for non-parametric test statistic. All computations ’

are introduced bathematicall. 1.The IRD and IED must be rejectedat> 0.001.
The pdf of the Log-N distribution is 2.The IGD must be rejected at> 0.09.
3.The log-normal distribution must be rejectedoat-
1 _ (—c+|ogx)2 0.13.
f(xc,b) = N T >, x>0, 4.The IGLED, IWD and GIW must not be reject at any
d the pdf of the IGD i considerabler.
andthep o\/_e IS s 5.The IGLED fits data better than another distributions
b (x—c) . N ]

F(xc,b) = b _ e 275, x>0, because it has the highest p-value.

27X Also, the IGLED is the best distribution fits the data

based orfW*) and(A*).

7.1 The intervals between successive failures
data ) _

_ _ o 7.3 Fatigue lives data
Consider the following data set fror23] consisting of 15
observations of records kept for the time of successivg2s) gave the data below which gives the fatigue lives in
failures of the air conditioning system of Boeing 720 (hours) for 10 bearings tested in each of two testers. Here,
airplane number 7910. The data are 502, 386, 326, 153he failures time for tester Il is presented 152.7 , 172.0 ,
74,70, 59, 57, 48, 29, 29, 27, 26, 21, 12. The mean, thq 725 , 173.3 , 193.0 , 204.7 , 216.5 , 234.9 , 262.6 ,
variance, standard deviation, the skewness and th@22.6. The mean, the variance, standard deviation, the
kurtosis are 121.267, 23798.8, 154.269, 1.52307 an@kewness and the kurtosis are 220.48, 6147.44, 78.4056,
3.82465 respectively. The measure of skewness indicatedl 86358 and 5.58507 respectively. The measure of
that the data are positively skewed. Furthermore, the TTTskewness indicated that the data are positively skewed.
plot of the observed data show that the hazard rate of th@urthermore, the TTT p|0t of the observed data is

intervals between successive failures data is unimodapresented in Fig. 10b). For computational ease, we

which is first concave and then convex as shown in Fig.consider the failure times in (days).

(4D). _ . From Table3, based on the p-value associated with the
From Tablel, based on the p-value associated with thek-s distance value, one can show that

k-s distance value, one can show that

1.The IRD must be rejected at> 0.18.

2.The IGLED, IWD, GIW, IED, IGD and log-normal
distribution must not be reject at any considerable

3.The IGLED fits data better than another distributions
because it has the highest p-value.

Furthermore, the IGLED is the best distribution fits the  Clearly, the IGLED is the best distribution fits the data
data based ofW*) and(A*). based orfW*) and(A*).

1.The IED must be rejected at> 0.04.

2.The IGLED, IWD, GIW, and IRD must not be reject at
any considerabla.

3.The IGLED fits data better than another distributions
because it has the highest p-value.
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Table 1: The MLEs of unknown parameters, the K-S test with the cooeding P-value, theV* test with the corresponding P-value
andA* test with the corresponding P-value for different modelagishe intervals between successive failures data

iln

Model MLEs K-Stest| p-value| (W*) | p-value| (A") | p-value
IGLED €=34.009, b=253.12&=1.05339| 0.139 0.934 | 0.0403| 0.9314 | 0.286 | 0.948
IWD ¢c=38.357,£=1.146 0.1479 0.898 0.044 0.913 0.307 0.933
GIW(c,aé) €=3.765, a=14.296=1.1459 0.1479 | 0.898 | 0.044 | 0.913 | 0.307 | 0.933
IRD b=1884.45 0.282 0.185 | 0.3001| 0.135 | 2.925 | 0.0299
IED c=40.2438 0.153 0.875 | 0.0537| 0.8535 | 0.322 0.921
Log-Normal(c,b) €=4.156, b=1.09139 0.1797 | 0.7179 | 0.0893| 0.64 | 0.5582| 0.6884
IGD(c,b) c=121.267, b=60.233 0.1733 | 0.7585| 0.076 0.716 | 0.4424| 0.806
10F 1.0}
é 0.9F -~
g l—‘ 0.8}
" oosf
o
2 5 0.6}
.-g 0.7 o
2 |t
{8 ,of — ED IED {F o4l 1}
-é — IGLED IRD
E 08¢ — WD — Log-N 0.2}
© o4af —— GIWD — IGaussian]
: ‘ ‘ ‘ ‘ ‘ 0.0 / . . ) ]
100 200 300 400 500 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4: a) Empirical distribution functions versus distributiomnttions of modeling distributions based on the intervadsveen
successive failures data b) Scaled TTT transform of thevale between successive failures data.

—

Profile Log-likelihood function

20

30

40

50 60

Fig. 5: (a) Plot of the% and¥(&;x) functions for the intervals between successive failuréa.dgb) The profile log-likelihood of the

parameter c for the intervals between successive failuats d

115, 115, 116, 119, 119, 119, 123, 125, 128, 132, 140,
151, 154, 156, 157, 158, 198. The mean, the variance,
The annual wage data (in multiple of 100 US dollars) standard deviation, the skewness and the kurtosis are
from [26] which gave a random sample of 30 123.767, 519.082, 22.7834, 1.47393 and 4.8866
production-line workers under age 40 in a Statesrespectively. The measure of skewness indicated that the
industrial firm. P7] used this data for computing the data are positively skewed. Furthermore, the TTT plot of
Bayesian estimation of the survival function of Paretothe observed data is given in Fid.3).

distribution of the second kind. The data set are 101, 103,

103, 104, 104, 105, 106, 107, 108, 111, 112, 112, 112,

7.4 Annual wage data
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Fig. 6: (a) The profile log-likelihood of the parameter b for the imtds between successive failures data (b) The profileilegithiood
of the parametef for the intervals between successive failures data

Table 2: The MLEs of unknown parameters, the K-S test with the comrding P-value, theV* test with the corresponding P-value
andA* test with the corresponding P-value for different modelagithe burning velocity data

Model MLEs K-Stest| p-value (W) p-value (A%) p-value
IGLED c=0.215, b=0.2464£=2.7587 | 0.1237 0.3692 | 0.09881 0.591 0.6141 0.63477
IWD c=0.4772£=4.1741 0.1322 0.292 0.1183 0.5024 0.7298 0.5345
GIW(c,ag) c=0.596, a=0.396£=4.1741 | 0.1322 0.292 0.1183 0.5024 0.7298 0.5345
IRD b=0.51 0.26 0.0012 1.2754 0.00056 6.454 0.00059
IED c=0.524 0.3904 | 1x10°7 | 2.764 | 252x10°7 | 13.36 | 416x 107
Log-Normal(c,b) ¢c=-0.591466, b=0.374694 0.157 0.132 0.462 0.0498 2.745 0.0369
IGD(c,b) ¢=0.61, b=3.7113 0.1676 0.091 0.589 0.0238 3.321 0.01885
1.0 1.0 1
s /
g 0.8r
é 06
{8 oal — ED IED 7} 1)
% — IGLED IRD
2 02 — WD  — Log-N
3 —— GIWD — IGaussian
00r ‘ ‘ ‘ ‘ ‘ ] R
0.5 1.0 1.5 2.0 2.5 3.0 1.0
a X b iln

Fig. 7: a) Empirical distribution functions versus distributiomnttions of modeling distributions based on the burningeity of
different chemical materials data b) Scaled TTT transfoftie burning velocity of different chemical materials data

Furthermore, the IGLED is the best distribution fits the
data based ofW*) and(A*).

From Table4, based on the p-value associated with the
k-s distance value, one can show that

1.The IRD and IED must be rejectedat> 0.001. .

2.The IGD and log-normal distribution must be rejected 8 Conclusion
ata > 0.21.

3.The IGLED and IWD must not be reject at any This paper deals with a new lifetime distribution known
considerabler. as IGLED. The unimodality property is studied for the

4.The IGLED fits data better than another distributionspdf and HR function of IGLED. From Section (6), one
because it has the highest p-value. can show that the IGLED is very good model for the
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Fig. 8: (a) Plot of the% and ¥ (&;x) functions for the burning velocity of different chemical teaals data. (b) The profile log-
likelihood of the parameter ¢ for the burning velocity offdient chemical materials data
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Fig. 9: () The profile log-likelihood of the parameter b for the hogavelocity of different chemical materials data (b) Thefe
log-likelihood of the parametef for the burning velocity of different chemical materialgala

Table 3: MLEs of unknown parameters, the K-S test with the correspan®-value, th&V* test with the corresponding P-value and
A* test with the corresponding P-value for different modelagishe fatigue lives data

Model MLEs K-Stest| p-value| (W*) | p-value | (A") | p-value
IGLED €=4.435,b=52.0176=3.785 | 0.177 | 0.9134 | 0.031 | 0.9731 | 0.2399| 0.9755
IWD c=7.804,6=5.294 0.179 | 0.9062 | 0.0324| 0.9676 | 0.2588 | 0.9655
GIW(c,af) | c=4.3208, a=22.87%=5.294 | 0.179 | 0.9062 | 0.0324| 0.9676 | 0.2588| 0.9655
IRD b=136.776 0.335 0.211 | 0.3009| 0.1344 | 1.528 0.17
IED €c=8.495 0.4399 | 0.0417 | 0.5654 | 0.02727| 2.726 | 0.0378

Lorentz curve and.. This property make the new model Acknowledgement
has important role in income inequality. Figurd<sd,b)

and (L7a,b) show the contours of the log-likelihood for .

the various data and the red points indicate the values of N€ authors are grateful to the editors and the anonymous
the MLEs of the parameters. The applications of thereferee for a careful checking of the details and for helpful
IGLED to real data sets are given to show that it may c0mments thatimproved this paper.

engage wider in reliability analysis, engineering Appendix.

chemistry and economic. _ _
The following integrals must be calculated for

constructing the explicit forms of MRL time, MWT, VRL
time and VRRL time.
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Fig. 10: a) Empirical distribution functions versus distributiamttions of modeling distributions based on fatigue livetad b) Scaled
TTT transform of the Fatigue lives data.
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Fig. 11: (a) Plot of the% and¥(&;x) functions for the fatigue lives data. (b) The profile logelikood of the parameter c for the
fatigue lives data

Table 4: MLEs of unknown parameters, the K-S test with the correspanB-value, th&V* test with the corresponding P-value and
A* test with the corresponding P-value for different modelagishe annual wage data

Model MLEs K-Stest| p-value (W*) p-value (A%) p-value
IGLED €=66.6216, b=10593.4,=6.31625| 0.1209 0.773 0.08716 0.652 0.658 0.595
IWD €=113.489£=8.7882 0.1219 0.764 0.0934 0.618 0.698 0.561
GIW(c,ag) ¢=230.56,£=8.79, a=0.002 0.1219 0.764 0.0934 0.618 0.698 0.561
IRD b=28372.1 0.4002 | 0.000134| 1.447 0.00023 7.128 0.00029
IED c=120.45 0.5001 | 6x10°7 2.137 | 6.295x 107 | 10.037 | 0.0000132
Log-Normal(c,b) €=4.80399, b=0.164704 0.1933 0.212 0.229 0.2171 1.34 0.219
IGD(c,b) c=123.767, b=4495.2 0.195 0.2045 0.233 0.211 1.35 0.216
—For calculating the following integral One can show that
1= ["x f(x;0) dx \/71
Making use ov = (£ + 54;)¢, yields (c+ CZthVE):EVTl—l—}VTl(Cz—i—ZbV%)%.
o\E 2 2
1
2 o [ b Also, |t2|s easy to show th&2Y* < 1 whenv < (£)8
|1:/ ( ) )e " dv. and —=+ < 1 whenv > (£)%. Then the integrall
0 2vE 2bvé
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Fig. 12: (a) The profile log-likelihood of the parameter b for the dag lives data (b) The profile log-likelihood of the paramete
for the fatigue lives data

10f
c
g
2 08f
=1
w
c
8 -
g 061 8
2 o
B E

{8 oaf — ED IRD } {E

3
-% — IGLED Log-N
g 021 — IWD  — IGaussian]
=
© — |ED

00

100 120 140 160 180 200
a X b i/n

Fig. 13: a) Empirical distribution functions versus distributiamttions of modeling distributions based on the annual vezga b)
Scaled TTT transform of the annual wage data.

can be written as: Making use ofv = (¢ + ;%)¢, yields
(f4302)" 2 o (3 i
$Jot 2% VT oeVdv+$§ v, (2) (BY) oo ; -
f+ c 2+ 2b(v)?
- . |2:/t 22 (CHVET2ZDMT 0 vy,
=1 2 =
R VEdv L V2B 37, (2) (L) 0 2 (v)?
(%+£2)6 ’%'{1(’ 2 \¢& c b \&
11= f(ngE)E A v, (ﬂ)) <(f+ﬁ)'
It is clear that
(S4B 1 w /1
Sl 2 vieVdv+$§ v, (2) ()
1
(§4+-b5)¢ i c+1\/c2+2b(v)i\2
o TV (F)F > (5 )t ( —)
(48) 2(v)¢
—For calculating the following integral 2 2 p -1 ¢ -2 11
12=["x% f(x;,©) dx =S Vi VvEfove (+2bvé)2,
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Fig. 15: (a) The profile log-likelihood of the parameter b for the amnvage data (b) The profile log-likelihood of the paraméter
for the annual wage data

Then the integral2 can be presented as:

—For

calculating the following integral

13= [3x f(x@) dx

¢ ((Tra0) 2 gvgyab (Trae) R oy i ous i i
% o vieVdvt; o vEeVdv As in the previous integrdll, the integral 3 can be
given as
e zoio (%) (%))If(zc_zb)f v%dv—s- c [ T oV C <« % 2b\i
z 2i-0 \i/ L&) Jo 2 Jigi e VE €TV SZo () (%)
1 i i)t 2
SVID 3, () (£) [ L 2 vEEdy 2
2 i=0 \7/ 12D 2 ’ (£5)° = © (3
) [Tl VE Q3 VB 52, () (5)
(1+ZZ)
12 = (2%)5<(t9+2%)5- o PNE L (c, by
3= g (25)" > ([ 20)%
c, b cp by _
% fo(t+m) vE e,vdv_i_gféﬁm) vE eVdy
1 1
c [ T eV 1\2by®, (2
2 1y o2byi ((Ftep)® 2 2f(f+ﬁz)zv edvez v2b 3o (1)
+5 3% () (@) o' *77 vid
(cz e v dv (02)5 < (4 25)8
(£5) > (§+ %) 267 I ) Hlzp) = litae)
(49) (50)
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Fig. 17: (a) The contour of log-likelihood for the burning velocitydifferent chemical materials data (b) The contour of ldglihood
for the intervals between successive failures data

—For calculating the following integral
14= [3x2 f(x;O) dx
As in the previous integrdl2, the integral4 can be
obtained as:
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