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Abstract: This paper concerns with a new lifetime model named the inverted generalized linear exponential distribution (IGLED).
Statistical properties like moments, quantile and modes are introduced. The classification of the behavior of IGLED based on reliability
analysis like mean residual life (MRL) time, the mean waiting time (MWT), the hazard rate (HR) function and the reversed hazard
rate (RHR) function are discussed. Bonferroni curve(Bc), Lorentz curve, the scaled total time on test (TTT) transform curve and the
measures of income inequality are also studied. The heavy-weight property is proved for IGLED under the shape parameterξ . The
explanation of the other two shape parameter in the sense of economic is shown. Furthermore, maximum likelihood estimation is used
to estimate the parameters of the new model. Four applications are used to show whether the IGLED is better than other well-known
distribution in modeling lifetime data.
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1 Introduction

In reliability theory, the HR and the RHR are important
widely measures. Also, it is well-known that the residual
life time, Ωt and the reversed residual life time (time
since failure) Ω̄t play an important role in reliability
theory. The HR function and the RHR function are based
on Ωt and Ω̄t respectively, where for a system of age t,
Ωt = (T − t)|(T ≥ t) is the remaining life time after t and
Ω̄t = (t − T )|(T ≤ t) is the time elapsed after failure till
time t, given that the unit has already failed by time t.
Another ageing measures widely used in reliability
analysis are MRL time and MWT. Recently, the variance
residual life (VRL) and the variance reversed residual life
(VRRL) have an interest in reliability analysis [see [1],
[2] and [3]]. The behavior of all these measures of the
IGLED are discussed.

The generalized linear exponential distribution
(GLED) is first proposed by [4]. [5] introduced a new
generalization of GLED named exponentiated GLED.
Recently, [6] provided some notes on GLED in [4]. In this
article, we proposed a new inverted distribution named
IGLED. IGLED is considered as a generalization of the
inverted exponential distribution (IED), inverse Weibull

distribution (IWD) and inverse Rayleigh distribution
(IRD). There are many articles dealt with inverted
distributions and its generalizations, see for example, [7],
[8], [9] and [10]. The main theme of this paper is to
obtain the IGLED and study its statistical properties and
the properties in terms of reliability analysis and an
income inequality.

The rest of this article is organized as follows. The
probability density function(pdf), cumulative distribution
function (cdf), hazard rate function, and survival function
of IGLED are introduced in Section2. In Section3, some
important statistical properties are proposed.Properties of
the IGLED in terms of reliability analysis are given in
Section4. The behavior of the(Bc), the B, the Lorentz
curve, the Gini coefficient and the scaled TTT transform
curve are discussed in Section5. In Section6, the MLE
and the ACIs are discussed. Analysis of four real data sets
are presented in Section7.
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2 Inverted Generalized Linear Exponential
Distribution

For a random variable Y, the pdf of GLED is given by

f (y;c,b,ξ ) = ξ e−(c y+ b
2 y2)ξ

(c y+
b
2

y2)ξ−1 (c+ b y),

c > 0, b > 0, ξ > 0, y > 0, (1)

The pdf of IGLED with parameter vectorΘ = (c,b,ξ ) is
given by settingX = 1

Y in (1) as

f (x;Θ) = ξ e
−( c

x+
b

2 x2 )
ξ
(

c
x
+

b
2 x2 )

ξ−1(
c
x2 +

b
x3 ),

c > 0, b > 0, ξ > 0, x > 0. (2)

The cdf of the IGLED are given by;

F(x;Θ) = e
−( c

x+
b

2 x2 )
ξ

, x > 0. (3)

The survival and hazard rate functions are given by:

S(t;Θ) = 1 − e−( c
t +

b
2 t2

)ξ
, (4)

and

h(t;Θ) =
ξ e−( c

t +
b

2 t2
)ξ
( c

t +
b

2 t2
)ξ−1 ( c

t2
+ b

t3
)

1 − e
−( c

t +
b

2 t2
)ξ , t > 0,

(5)
respectively.

Remark 1.

From Equation (2), some special distributions can be
obtained:

1. For b = 0, andξ = 1, Equation (2) reduces to

f (x;c) = (
c
x2 ) e−( c

x ), x > 0, c > 0,

which is the pdf of the IED [8].

2. For c = 0 andξ = 1, Equation (2) reduces to

f (x;b) =
b
x3 e

−( b
2x2 )

2
, x > 0, b > 0,

which is the pdf of the IRD [11].

3. For b = 0, Equation (2) reduces to

f (x;c,ξ ) = ξ e−( c
x )

ξ
(

c
x
)ξ−1 (

c
x2 ), x > 0, c > 0, ξ > 0,

which is the pdf of the IWD.

Remark 2.

(1) Indeed, it is easy to show that the simulated data can
be obtained from,

x =
c+

√
c2+2 b (− lnu)

1
ξ

2 (− lnu)
1
ξ

, (6)

where U follows a standard uniform distribution.
(2) From Equations (2) and (3), we get

x3 (
c
x
+

b
2x2 ) f (x;Θ)= ξ F(x;Θ)

(
− lnF(x;Θ)

)
(c x+b).

(7)

3 Some Statistical Properties

In this section some statistical properties like, moment,
quantiles and mode, are derived. In particular, the median
is derived from the quantiles.

3.1 Moments

Moments play an important role in the applications of the
statistical analysis. A probability distribution may be
characterized by its moments. We now introduce an
explicit form of the k-th moments of IGLED.

Theorem 3.1.

The k-th momentsµ (k) of IGLED; k = 1,2,3, ... is given
by

µ (k) =
k

∑
i=0

∞

∑
j=0

(
k
i

) ( k−i
2
j

)
(

c
2
)k (

2 b
c2 ) j

×
(

Γ (
j− k+ ξ

ξ
)−Γ (

j− k+ ξ
ξ

,(
c2

2 b
)ξ )
)

+
k

∑
i=0

∞

∑
j=0

(
k
i

) ( k−i
2
j

)
(
1
2
)k (

c2

2 b
) j ci (2 b)

k−i
2

×Γ
(2 ξ − i− k−2 j

2 ξ
,(

c2

2 b
)ξ
)
, ( j− k)>−ξ , (8)

whereΓ (.) is gamma function andΓ (., .) is the upper
incomplete gamma function.

Proof. The k-th moments of IGLED can be written in the
form

µ (k) = ξ
∫ ∞

0
xk e

−( c
x+

b
2x2 )

ξ
(

c
x
+

b
2x2 )

ξ−1 (
c
x2 +

b
x3 ) dx

Upon using the substitutionv = ( c
x +

b
2x2 )

ξ , one can show
that the k-th moments is given by

µ (k) =
∫ ∞

0

( c+

√
c2+2 b (v)

1
ξ

2 (v)
1
ξ

)
k e−v dv.

Expanding
(

c+

√

c2+2 b (v)
1
ξ

2 (v)
1
ξ

)
k, yields

µ (k) =
∫ ∞

0

k

∑
i=0

(
k
i

)
ci (c2+2 b v

1
ξ )

k−i
2 e−v dv. (9)
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Fig. 1: a) The pdf of IGLED with different values of parameters b) Thehazard rate function of IGLED with different values of
parameters

a

 

b

 

Fig. 2: a) The cdf function of IGLED with different values of parameters b) The survival function of IGLED with different values of
parameters

One can show that,| 2 b v
1
ξ

c2 |< 1 whenv < ( c2

2 b)
ξ and

| c2

2 b v
1
ξ
|< 1 whenv > ( c2

2 b)
ξ .

Hence, (9) should be written as

µ (k) =
k

∑
i=0

∞

∑
j=0

(
k
i

)( k−i
2
j

)
(

c
2
)k(

2 b
c2 ) j

∫ ( c2
2 b )

ξ

0
v

j−k
ξ e−v dv

+
k

∑
i=0

∞

∑
j=0

(
k
i

) ( k−i
2
j

)
(
1
2
)k (

c2

2 b
) j ci (2 b)

k−i
2

×
∫ ∞

( c2
2 b )

ξ
v
−2 j−i−k

2 ξ e−v dv. (10)

Then the proof is completed.

3.2 Mode and quantile

Theorem 3.2.

The pdf of IGLED has a unimodal shape in the interval

[x1,x2] where x1 =
c +

√
c2 + 2 b (1+ 1

ξ )
1
ξ

2 (1+ 1
ξ )

1
ξ

and

x2 =
c +

√
c2 + 2 b (1+ 1

2 ξ )
1
ξ

2 (1+ 1
2 ξ )

1
ξ

.

Proof.

The first derivative w.r.t. x of the pdf of the IGLED can be
written as
d
dx

f (x;Θ) = g1(x;Θ) g(x;Θ), (11)

where

g1(x;Θ) =
ξ

2 (c x+b)2
e−( c

x +
b

2 x2 )
ξ
(

c
x
+

b

2 x2 )
ξ−2 (

c

x2 +
b

x3 )
2,

and

g(x;Θ) = (c x+ b)2

(
2 ξ (

c
x
+

b
2 x2 )

ξ −2 ξ −2

)
+ b2.

Equating (11) by zero, and it is clear thatg1(x;Θ) > 0,
then

(c x+ b)2

(
2 ξ (

c
x
+

b
2 x2 )

ξ −2 ξ −2

)
+ b2 = 0. (12)

It is clear that (12) can also be written as

(c x+b)2

(
2ξ (

c
x
+

b
2x2 )

ξ −2ξ −1

)
−c2 x2−2c b x= 0.

(13)
One can show from (12) that f (x;Θ) > 0 whenx ≤ x1
and from (13) that f (x;Θ) < 0 whenx ≥ x2. Now, define
g(x;Θ) on a closed interval[x1,x2]. Clearly,g(x;Θ) is a
continuous function on a closed interval[x1,x2].
Furthermore, g(x1;Θ) = b2 and
g(x2;Θ) = −c2 x2

2 − 2 c b x2. Then, there exists
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x0 ∈ [x1,x2] such thatg(x0;Θ) = 0. Sinceg(x;Θ) is a
differentiable function on an open interval(x1,x2) and

d
dx

g(x;Θ) = 4 c (c x+ b)

(
ξ (

c
x
+

b
2 x2 )

ξ − ξ −1

)
−

2 (c x+ b)2

(
ξ 2 (

c
x
+

b
2 x2 )

ξ−1 (
c
x2 +

b
x3 )

)

is always negative on(x1,x2), then it is clear that this root
is unique.

Remark 3.

Some special cases can be obtained from Equation (11).

1. For ξ = 1 andb = 0, Equation (11) reduces to 2c x−
c2 = 0 which leads to the modẽx = c

2 of IED.
2. For ξ = 1 andc = 0, Equation (11) reduces to 3b x2−

b2 = 0 which leads to the modẽx =
√

b
3 of IRD.

Moreover, the Quantile of IGLED can be given by

xq =
c+

√
c2+2 b (− lnq)

1
ξ

2 (− lnq)
1
ξ

, 0< q < 1. (14)

Then the median of the IGLED is obtained by settingq =
0.5 in Equation (14) as

Med =
c+

√
c2+2 b (ln2)

1
ξ

2 (ln2)
1
ξ

. (15)

Some special cases of quantile and median for IED, IRD
and IWD can be obtained.

4 Properties of the IGLED in Terms of
Reliability Analysis

In this section some properties of the IGLED, which is
important in reliability analysis, are studied. In particular,
the behavior of the HR, the RHR, the MRL time, the
MWT, the variance of residual life (VRL) and the
variance of reversed residual life (VRRL) are discussed.

4.1 Behavior of hazard rate function

From Equation (5), it is easy to prove that

lim
t→0+

h(t;Θ) = 0, (16)

and
lim
t→∞

h(t;Θ) = 0. (17)

Sinceh(t;Θ) > 0 and from Equations (16) and (17), one
can see thath(t;Θ) is a non-monotonic function. This

property makes the IGLED distribution widely
applicable. Now, we want to show that the HR of IGLED
is a unimodal.

Theorem 4.1.

The HR function of IGLED has a unimodal shape.
Proof.
Due to [12], η(t) can be written as

η(t) =
1

t (2 c t + b) (c t + b)

(
2 (c t + b)2 +2 ξ (c t + b)2

−2ξ (c t + b)2 (
c
t
+

b
2 t2 )

ξ − b2
)

(18)

The first derivative ofη(t) can be obtained as

ή(t) = p1(t;Θ) p(t;Θ),

where

p1(t;Θ) =
1

t2 (2 c t + b)2 (c t + b)2 ,

and

p(t;Θ) = −
(

b4 (1+2 ξ )+c b3 t (6+12 ξ )+c2 b2 t2

(16+22 ξ )+c3 b t3 (16+16 ξ )+c4 t4 (4+4 ξ )−

ξ (
c
t
+

b

2 t2 )
ξ
(

2 b4 (1+2 ξ )+c b3 t (12+16 ξ )+

c2 b2 t2 (22+24 ξ )+c3 b t3 (16+16 ξ )+

c4 t4 (4+4 ξ )
) )

.

Sinceξ > 0, c > 0, b > 0, andt > 0, one can show that
ή(t) > 0 whenevert ≤ t1 and ή(t) < 0 whenevert ≥ t2

where t1 =
c+2 b

√
c2+2 b ( 1

ξ )
1
ξ

2 ( 1
ξ )

1
ξ

and

t2 =
c+2 b

√
c2+2 b ( 1

2 ξ )
1
ξ

2 ( 1
2 ξ )

1
ξ

. Define p(t;Θ) on a closed

interval [t1, t2]. One can show thatp(t1;Θ) > 0,
p(t2;Θ) < 0 and ´p(t;Θ) < 0 on the interval(t1, t2). Then
as in Theorem (3.2), there existt0 such thatp(t0;Θ) = 0
and this root is a unique.

4.2 Behavior of reversed hazard rate function

The reversed hazard rate function of IGLED is given by

r(t;Θ) =
f (t;Θ)

F(t;Θ)
= ξ (

c
t
+

b
2 t2 )

ξ−1 (
c
t2 +

b
t3 ) , t > 0.

(19)
It is easy to prove that

lim
t→0+

r(t;Θ) = ∞, (20)
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 

Fig. 3: Behavior of reversed hazard rate function with different
values of parameters.

and

lim
t→∞

r(t;Θ) = 0. (21)

The first derivative of Equation (19) is given by

d
dt

r(t;Θ) = − ξ
1

2 t6 (
c
t
+

b
2t2 )

ξ−2
(

2 ξ (c t + b)2

+c t (c t + b)2 + b (c t + b)+ c b t
)

(22)

which is always negative fort > 0, c > 0, b > 0 and
ξ > 0. Then the reversed hazard rate function is
decreasing.

Remark 5.

Since the reversed hazard rate function is decreasing, it is
clearly that the distribution function of IGLEDF(t;Θ) is
log concave.

4.3 Behavior of mean residual life time

The MRL time of positive continuous random variable T
is defined as

m(t;Θ) =E[Ωt ;Θ ] =
1

S(t;Θ)

∫ ∞

t
(x−t) f (x;Θ) dx (23)

Theorem 4.2.

Using the Equations (2), (4) and (23), the explicit forms

for MRL time of IGLED are given by:

m(t;Θ) =





1

1−e
−( c

t +
b

2 t2
)ξ

[
c
2

(
Γ
( ξ−1

ξ
)
−Γ

(
(

ξ−1
ξ ), ( c

t + b
2 t2

)ξ
) )

+ c
2 ∑∞

i=0
( 1

2
i

)
( 2 b

c2 )i
(

Γ (
ξ+i−1

ξ )−Γ
(
(

ξ+i−1
ξ ), ( c2

2 b )ξ
) )

+ 1
2 (2 b)

1
2 ∑∞

i=0
( 1

2
i
)
( c2

2 b )i
(

Γ
(
(

2 ξ−2 i−1
2 ξ ), ( c2

2 b )ξ
)

−Γ
(
(

2 ξ−2 i−1
2 ξ ), ( c

t + b
2 t2

)ξ
) )

− t
(

1− e
−( c

t +
b

2 t2
)ξ )

]
,

( c2
2 b )ξ < ( c

t + b
2 t2

)ξ ;

1

1−e
−( c

t +
b

2 t2
)ξ

[
c
2

(
Γ
( ξ−1

ξ
)
−Γ

(
(

ξ−1
ξ ), ( c

t + b
2 t2

)ξ
) )

+ c
2 ∑∞

i=0
( 1

2
i
)
( 2 b

c2 )i
(

Γ (
ξ+i−1

ξ )−Γ
(
(

ξ+i−1
ξ ), ( c

t + b
2 t2

)ξ
) )

− t
(

1− e
−( c

t +
b

2 t2
)ξ )

]
, ( c2

2 b )ξ > ( c
t + b

2 t2
)ξ .

(24)

Proof.
To derive the explicit forms of the MRL time of IGLED,
the integral

∫ ∞
t x f (x;Θ) dx must be calculated (see

Appendix). The MRL time satisfies the following:

lim
t→0

m(t;Θ) =
c
2

Γ (
ξ −1

ξ
)+

c
2

∞

∑
i=0

(1
2
i

)
(
2 b
c2 )i

×
(

γ
(
(

ξ + i−1
ξ

),(
c2

2 b
)ξ
) )

+
1
2
(2 b)

1
2

×
∞

∑
i=0

(1
2
i

)
(

c2

2 b
)i Γ (

2 ξ −2 i−1
2 ξ

), (25)

,whereγ(., .) is the lower incomplete gamma, which agrees
with the first moment, and

lim
t→∞

m(t;Θ) = ∞. (26)

On the other hand, as in [13], Equation (23) can be
rewritten as

m(t;Θ) =
∫ ∞

t
e−

∫ t+x
t h(t;Θ ) dt dx (27)

whereh(t;Θ) is given by Equation (5). From Equation
(27), it is clear thatm(t;Θ) is decreasing at first and then
starts increasing.

4.4 Behavior of mean waiting time

The MRL time has a mirror image, called MWT. The
MWT of a positive continuous random variable T is
defined as

m̄(t;Θ) = E[Ω̄t ;Θ ] = t− 1
F(t;Θ)

∫ t

0
x f (x;Θ) dx. (28)

Theorem 4.3.
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Using the Equations (2), (3) and (28), the explicit forms
for MWT of IGLED are given by:

m̄(t;Θ) =






t − 1

e
−( c

t +
b

2 t2
)ξ

[
Γ
(
(

ξ−1
ξ ), ( c

t + b
2t2

)ξ
)
+ 1

2
√

2 b

∑∞
i=0

( 1
2
i
)
( c2

2 b )i
(

Γ
(
(

2 ξ−2 i−1
2 ξ ), ( c

t + b
2 t2

)ξ
) ) ]

,

( c2
2 b )ξ < ( c

t + b
2 t2

)ξ ;

t − 1

e
−( c

t +
b

2 t2
)ξ

[
Γ
(
(

ξ−1
ξ ), ( c

t + b
2t2

)ξ
)
+ c

2 ∑∞
i=0

( 1
2
i

)
( 2 b

c2 )i

(
Γ
(
(

ξ+i−1
ξ ), ( c

t + b
2 t2

)ξ
)
−Γ

(
(

ξ+i−1
ξ ), ( c2

2 b )ξ
) )

+ 1
2 (2 b)

1
2 ∑∞

i=0
( 1

2
i

)
( c2

2 b )i Γ
(
(

2 ξ−2 i−1
2 ξ ), ( c2

2 b )ξ
) ]

,

( c2
2 b )ξ > ( c

t + b
2 t2

)ξ .

(29)

Proof.
To derive the explicit forms of the MWT of IGLED, the
integral

∫ t
0 x f (x;Θ) dx must be calculated (see Appendix).

By Theorem (5) of [14], we can say that ¯m(t;Θ) is
monotone increasing becauseF(t;Θ) is log-concave.

4.5 Behavior of the variance of residual life

In this subsection, the variance of r.v.Ωt and its
monotonic properties are studied.

Theorem 4.4.

Let T be a positive continuous r.v., then the explicit forms
for VRL of IGLED are given by:

Var(Ωt ;Θ) =





(
1

1−e
−( c

t +
b

2 t2
)ξ

) [
c2
2

(
Γ (

ξ−2
ξ )−Γ

( ξ−2
ξ , ( c

t + b
2 t2

)ξ
) )

+ b
2

(
Γ (

ξ−1
ξ )−Γ

( ξ−1
ξ , ( c

t + b
2 t2

)ξ
) )

+ c2
2 ∑∞

i=0
( 1

2
i

)
( 2 b

c2 )i

(
Γ (

ξ+i−2
ξ )−Γ

( ξ+i−2
ξ , ( c2

2 b )ξ
) )

+ c
2
√

2 b ∑∞
i=0

( 1
2
i

)
( c2

2 b )i

(
Γ
(

2 ξ−2 i−3
2 ξ , ( c2

2 b )ξ
)
−Γ

(
2 ξ−2 i−3

2 ξ , ( c
t + b

2 t2
)ξ
) ) ]

−
[ (

1

1−e
−( c

t +
b

2 t2
)ξ

) (
c
2

(
Γ (

ξ−1
ξ )−Γ (

ξ−1
ξ , ( c

t + b
2 t2

)ξ )
)

+ c
2 ∑∞

i=0
( 1

2
i

)
( 2 b

c2 )i
(

Γ (
ξ+i−1

ξ )−Γ (
ξ+i−1

ξ , ( c2
2 b )ξ )

) )

+ 1
2
√

2 b ∑∞
i=0

( 1
2
i
)
( c2

2 b )i
(

Γ
(

2 ξ−2 i−1
2 ξ , ( c2

2 b )ξ
)
−

Γ
(

2 ξ−2 i−1
2 ξ , ( c

t + b
2 t2

)ξ
) ) ]2

, ( c2
2 b )ξ < ( c

t + b
2 t2

)ξ ;

(
1

1−e
−( c

t +
b

2 t2
)ξ

) [
c2
2

(
Γ (

ξ−2
ξ )−Γ

( ξ−2
ξ , ( c

t + b
2 t2

)ξ
) )

+

b
2

(
Γ (

ξ−1
ξ )−Γ

( ξ−1
ξ , ( c

t + b
2 t2

)ξ
) )

+

c2
2 ∑∞

i=0
( 1

2
i

)
( 2 b

c2 )i
(

Γ (
ξ+i−2

ξ )−Γ
( ξ+i−2

ξ , ( c
t + b

2 t2
)ξ
) ) ]

−
[ (

1

1−e
−( c

t +
b

2 t2
)ξ

) (
c
2

(
Γ (

ξ−1
ξ )−Γ (

ξ−1
ξ , ( c

t + b
2 t2

)ξ )
)
+

c
2 ∑∞

i=0
( 1

2
i
)
( 2 b

c2 )i
(

Γ (
ξ+i−1

ξ )−Γ (
ξ+i−1

ξ , ( c
t + b

2 t2
)ξ )
) ) ]2

,

( c2
2 b )ξ > ( c

t + b
2 t2

)ξ .

(30)

Proof.
The VRL can be defined as

Var(Ωt ;Θ) = E(T 2|T ≥ t)− [E(T |T ≥ t)]2 =
∫ ∞

t
x2 f (x;Θ)

S(t;Θ)
dx−

( ∫ ∞

t
x

f (x;Θ)

S(t;Θ)
dx

)2

. (31)

To derive the explicit forms for the VRL of IGLED, the
following integrals

∫ ∞
t x f (x;Θ) dx and

∫ ∞
t x2 f (x;Θ) dx

must be calculated (see Appendix).
To study the behavior of VRL for IGLED, it is

important to study the following relations:

Var(Ωt ;Θ)−m(t;Θ)2 =
2

S(t;Θ)
∫ ∞

t
S(x;Θ) [m(x;Θ)−m(t;Θ)] dx (32)

[see [1]], and

∂
∂ t

Var(Ωt ;Θ) = h(t;Θ) m(t;Θ)2 [
Var(Ωt ;Θ)

m(t;Θ)2 −1] (33)

[see [2]]. It is clear from Equation (33) thatVar(Ωt ;Θ) is
increasing if Var(Ωt ;Θ) > m(t;Θ)2; moreover, from
Equation (32) Var(Ωt ;Θ) > m(t;Θ)2 if and only if
m(t,Θ) is increasing(x > t). On the other hand, it is
clear from Equation (33) thatVar(Ωt ;Θ) is decreasing if
Var(Ωt ;Θ) < m(t;Θ)2; moreover, from Equation (32)
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Var(Ωt ;Θ)< m(t;Θ)2 if and only if m(t;Θ) is decreasing
(x < t). Then, it easy to show that the VRL is a bathtub
for IGLED given that the MRL for IGLED is bathtub.

4.6 Behavior of the variance of reversed
residual life

In this subsection, the variance of r.v.̄Ωt and its
monotonic properties are studied.

Theorem 4.5.

Let T be a positive continuous r.v., then the explicit forms
for VRRL of IGLED are given by:

Var(Ω̄t ;Θ) =






(
1

e
−( c

t +
b

2 t2
)ξ

) [
c2
2

(
Γ
( ξ−2

ξ , ( c
t + b

2 t2
)ξ
) )

+

b
2

(
Γ
( ξ−1

ξ , ( c
t + b

2 t2
)ξ
) )

+ c
2
√

2 b ∑∞
i=0

( 1
2
i

)
( c2

2 b )i

(
Γ
(

2 ξ−2 i−3
2 ξ , ( c

t + b
2 t2

)ξ
) ) ]

−

[ (
1

e
−( c

t +
b

2 t2
)ξ

)
( c

2 ) Γ
(
(

ξ−1
ξ ), ( c

t + b
2 t2

)ξ
)
+

1
2
√

2 b ∑∞
i=0

( 1
2
i

)
( c2

2 b )i
(

Γ
(

2 ξ−2 i−1
2 ξ , ( c

t + b
2 t2

)ξ
) ) ]2

,

( c2
2 b )ξ < ( c

t + b
2 t2

)ξ ;

(
1

e
−( c

t +
b

2 t2
)ξ

) [
c2
2

(
Γ
( ξ−2

ξ , ( c
t + b

2 t2
)ξ
) )

+

b
2

(
Γ
( ξ−1

ξ , ( c
t + b

2 t2
)ξ
) )

+ c2
2 ∑∞

i=0
( 1

2
i

)
( 2 b

c2 )i

(
Γ
( ξ+i−2

ξ , ( c
t + b

2 t2
)ξ
)
−Γ

( ξ+i−2
ξ , ( c2

2 b )ξ
) )

+

c
2
√

2 b ∑∞
i=0

( 1
2
i

)
( c2

2 b )i
(

Γ
(

2 ξ−2 i−3
2 ξ , ( c2

2 b )ξ
) ) ]

−

[ (
1

e
−( c

t +
b

2 t2
)ξ

)
( c

2 ) Γ
(
(

ξ−1
ξ ), ( c

t + b
2 t2

)ξ
)
+ c

2 ∑∞
i=0

( 1
2
i
)
( 2 b

c2 )i
(

Γ
( ξ+i−1

ξ , ( c
t + b

2 t2
)ξ
)
−Γ

( ξ+i−1
ξ , ( c2

2 b )ξ
) )

+ 1
2
√

2 b∑∞
i=0

( 1
2
i
)
( c2

2 b )i
(

Γ
(

2 ξ−2 i−1
2 ξ , ( c2

2 b )ξ
) ) ]2

,

( c2
2 b )ξ > ( c

t + b
2 t2

)ξ .

(34)

Proof.
The VRRL can be defined as

Var(Ω̄t ;Θ) = E(T 2|T < t)− [E(T |T < t)]2 =
∫ t

0
x2 f (x;Θ)

F(t;Θ)
dx−

( ∫ t

0
x

f (x;Θ)

F(t;Θ)
dx

)2

. (35)

To derive the explicit forms for the VRRL of IGLED, the
following integrals

∫ t
0 x f (x;Θ) dx and

∫ t
0 x2 f (x;Θ) dx,

must be calculated (see Appendix).
In order to show the behavior of VRRL, one can study

the following relations:

Var(Ω̄t ;Θ)− m̄(t;Θ)2 =
2

F(t;Θ)
∫ t

0
F(x;Θ) [m̄(x;Θ)− m̄(t;Θ)]dx (36)

and

∂
∂ t

Var(Ω̄t ;Θ) = r(t;Θ) m̄(t;Θ)2 [1− Var(Ω̄t ;Θ)

(m̄(t;Θ))2 ] (37)

[see [3]]. From Equation (37), it is clear that the
Var(Ω̄t ;Θ) is increasing if Var(Ω̄t ;Θ) < m̄(t;Θ)2;
moreover, from Equation (36) Var(Ω̄t ;Θ) < m̄(t;Θ)2 if
and only ifm̄(t,Θ) is increasing(t > x). Then, it easy to
show that the VRRL is increasing for IGLED given that
the MWT for IGLED is increasing.

5 Measures of Income Inequality using
IGLED

Bonferroni, Lorentz and the scaled TTT plot curves are
widely used tools for analyzing and visualizing income
inequality. TheB and(Bc) have assumed relief not only in
economics to study income and poverty, but also in other
fields like reliability and medicine. Besides, the(Bc) uses
to derive the Lorentz curve. The measures of income
inequality like the(Bc), theB, the Lorentz curve and the
Gini coefficient are studied using IGLED. Also, the
scaled TTT transform curve is introduced to show the
behavior of failure rate function of IGLED.

5.1 Lorentz curve

The Lorentz curve was presented first by [15] as a
graphical representation of income distribution (for more
details, see [16]). The Lorentz curve can be written as

L(q) =
1

µ (1)

∫ q

0
xq dq, (38)

wherexq is the quantile of IGLED given by (14), 0<

q < 1 andµ (1) is the first moment given by (25).
Then, the Lorentz curve of IGLED can be presented in

explicit form as,

L(q) =





1
µ(1)

[
c
2 Γ

( ξ−1
ξ ,− logq

)
+ c

2 ∑∞
i=0

( 1
2
i
)
( 2 b

c2 )i
(

Γ
(

i+ξ−1
ξ ,− logq

)
−

Γ
(

i+ξ−1
ξ , ( c2

2 b )ξ
) )

+ 1
2
√

2 b ∑∞
i=0

( 1
2
i

)
( c2

2 b )i Γ
(

2 ξ−2 i−1
2 ξ , ( c2

2 b )ξ
) ]

,

e
−( c2

2 b )ξ
< e

−( c
xq + b

2 x2
q
)ξ

;

1
µ(1)

[
c
2 Γ

( ξ−1
ξ ,− logq

)
+ 1

2
√

2 b ∑∞
i=0

( 1
2
i
)
( c2

2 b )i Γ
(

2 ξ−2 i−1
2 ξ ,− logq

) ]
,

e
−( c2

2 b )ξ
> e

−( c
xq + b

2 x2
q
)ξ

.

(39)
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whereξ > 1 .

Then the Gini coefficient for IGLED can be given as

G(L(q)) = 1− 2

µ(1)

[
−b
c

(
c2

2 b
)ξ

(
E 1

ξ

(
2 (

c2

2 b
)ξ
)

−e−( c2

2 b )
ξ
E 1

ξ

(
(

c2

2 b
)ξ
) )

− 1
2

√
2 b

∞

∑
i=0

( 1
2
i

)
(

c2

2 b
)

2 ξ−1
2

(
E 1+2 i

ξ

(
2 (

c2

2 b
)ξ
)
−e−( c2

2 b )
ξ
E 1+2 i

ξ

(
(

c2

2 b
)ξ
) )

+

c
4

(
(2−2

1
ξ ) Γ (

ξ −1
ξ

)+2
1
ξ Γ
( ξ −1

ξ
,2 (

c2

2 b
)ξ
)
−

2 e−( c2

2 b )
ξ

Γ
( ξ −1

ξ
,(

c2

2 b
)ξ
) )

+
c
2

∞

∑
i=0

( 1
2
i

)
(
2 b

c2 )i

(
Γ (

i+ξ −1
ξ

)−Γ
(
(

i+ξ −1
ξ

),(
c2

2 b
)ξ
)
+2

1−ξ−i
ξ

(
Γ
(
(

i+ξ −1
ξ

),2 (
c2

2 b
)ξ
)
−Γ (

i+ξ −1
ξ

)
)
+

1
2

√
2 b

∞

∑
i=0

( 1
2
i

)
(

c2

2 b
)i (1−e−( c2

2 b )
ξ
)Γ
( 2 ξ −2 i−1

2 ξ
,(

c2

2 b
)ξ
) ) ]

,

whereE.(.) is an exponential integral function.

Remark 6.

1. One can show that

lim
ξ→∞

G(L(q)) = 0,

and

lim
ξ→1

G(L(q)) = 1.

5.2 Bonferroni curve

The B has appropriate properties, see [17]. Now, the(Bc)
andB are used to analyze IGLED.

For the IGLED, theBc can be presented as

Bc(q) =
L(q)

q
(40)

Then theB can be written as

B = 1−
∫ 1

0
Bc(q) dq = 1− 1

µ (1)

[
c

2 (ξ −1)
(

c2

2 b
)ξ

(
ξ e−( c2

2 b )
ξ
+(ξ (

c2

2 b
)ξ + ξ −1) E 1−ξ

ξ

(
(

c2

2 b
)ξ
) )

+
1
2

√
2 b

∞

∑
i=0

( 1
2
i

)
( c2

2 b )
4 ξ−1

2

1+2 i−2 ξ

(
(2 ξ (

c2

2 b
)ξ +

2 i+1−2 ξ ) E 2 i+1−2 ξ
2 ξ

(
(

c2

2 b
)ξ
)
−2 ξ e−( c2

2 b )
ξ

)

+
c
2

(
γ
( 2 ξ −1

ξ
,(

c2

2 b
)ξ
)
+(

c2

2 b
)ξ Γ

( ξ −1
ξ

,(
c2

2 b
)ξ
) )

+
c
2

∞

∑
i=0

(1
2
i

)
(
2 b
c2 )i

(
γ
(
(

i+ ξ −1
ξ

),(
c2

2 b
)ξ
) )

+

1
2

√
2 b

∞

∑
i=0

(1
2
i

)
(

c2

2 b
)i+ξ Γ

(
(
2 ξ −2 i−1

2 ξ
),(

c2

2 b
)ξ
) ]

.

Remark 7.

1.It is easy to show that

lim
ξ→∞

B = 0,

and

lim
ξ→1

B = 1.

5.3 Scaled total time on test transform curve

A graphical method using the scaled TTT transform curve
was first proposed by [18]. The scaled TTT transform
curve of IGLED can be written as

φq = L(q)+
(1− q) xq

µ (1)
(41)

Remark 8.

It is clear from Equations (39), (40) and (41) that
φq > Bc > L(q). This result agrees with the result in [19].

5.4 Interpretation of IGLED parameters

The shape parameterξ is said to be index tail since it
satisfies the heavy-tailed property for the IGLED. For
x > 0, one can show that

lim
t→∞

1−F(tx;Θ)

1−F(t;Θ)
= x−ξ .
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Furthermore, it is ease to show that the index tail satisfies

lim
t→∞

d logS(t;Θ)

d logx
=−ξ

The specification of the other two parameters c and b can
be studied using the Gini coefficient and the elasticity
function. For more details, see [20]. The elasticity
function of the quantile functionxq with respect to the
shape parameterc is given by

εc(xq) =
c
xq

∂xq

∂c
=

c√
c2+2 b (− logq)

1
ξ

.

It is noticed that the elasticity function is an increasing
function inq, since

∂εc(xq)

∂q
=

c b (− logq)
1
ξ −1

ξ q
(

c2+2 b (− logq)
1
ξ
) 3

2

,

is always positive.
The elasticity function of the quantile functionxq with

respect to the shape parameterb is given by

εb(xq) =
b
xq

∂xq

∂b
=

1
2
− c

2

√
c2+2 b (− logq)

1
ξ

.

It is noticed that the elasticity function is an decreasing
function inq, since

∂εb(xq)

∂q
=− c b (− logq)

1
ξ −1

2 ξ q
(

c2+2 b (− logq)
1
ξ
) 3

2

,

is always negative.

6 Maximum Likelihood Estimation

MLE is probably the most widely used method of
estimation in statistics. Suppose thatX1, ...,Xr be
independent random sample of sizer from IGLED. From
2, the log-likelihood function can be obtained as

ℓ(Θ) = r log ξ −
r

∑
i=1

(
c
xi
+

b

2x2
i

)ξ +
r

∑
i=1

log
(
(

c
xi
+

b

2x2
i

)ξ−1
)

+
r

∑
i=1

log
(
(

c

x2
i

+
b

x3
i

)
)
. (42)

By taking the first derivative (ℓΘ (Θ) = ∂ℓ
∂Θ ) of (42) with

respect toc, b andξ , we get

ℓc(Θ) =
r

∑
i=1

1

x2
i (

c
x2

i
+ b

x3
i
)
+ (ξ −1)

r

∑
i=1

1

xi(
c
xi
+ b

2x2
i
)

−
r

∑
i=1

ξ ( c
xi
+ b

2x2
i
)ξ−1

xi
, (43)

ℓb(Θ) =
r

∑
i=1

1

x3
i (

c
x2

i
+ b

x3
i
)
+ (ξ −1)

r

∑
i=1

1

2x2
i (

c
xi
+ b

2x2
i
)

−
r

∑
i=1

ξ ( c
xi
+ b

2x2
i
)ξ−1

2x2
i

, (44)

and

ℓξ (Θ) =
r
ξ
+

r

∑
i=1

log
( c

xi
+

b

2x2
i

)

−
r

∑
i=1

log
( c

xi
+

b

2x2
i

)
(

c
xi
+

b

2x2
i

)ξ . (45)

6.1 The parameters c and b are known

The normal equationℓξ (Θ) = 0 can be written as

1
ξ
=

1
r

(
r

∑
i=1

log
( c

xi
+

b

2x2
i

) (
(

c
xi
+

b

2x2
i

)ξ −1
) )

(46)

It is clear that the first derivative of the right-side hand
(Ψ(ξ ;x)) of (46) with respect toξ is always positive. This
mean that theΨ(ξ ;x) is increasing function. Then by
graphical method [21] the MLE of ξ exists and unique
see Figures (5a,8a,11a and14a).

6.2 The parameters c, b and ξ are unknown

The MLE Θ̂ of Θ is given by solving the three normal
equationsℓc(Θ) = 0, ℓb(Θ) = 0 andℓξ (Θ) = 0. These
nonlinear equations can not be solved analytically and a
numerical method (Newton-Raphson method) can be
used.

6.3 Fisher information matrix

Since the computation of Fisher information matrix (given
by taking the expectation of the second derivative of (42))
is very difficult, so, it seems appropriate to approximate
these expected values by their MLEs. Then, the asymptotic
variance-covariance matrix is given as [see, [22]];




Var(ĉ) Cov(ĉ, b̂) Cov(ĉ, ξ̂ )
Cov(b̂, ĉ) Var(b̂) Cov(b̂, ξ̂ )
Cov(ξ̂ , ĉ) Cov(ξ̂ , b̂) Var(ξ̂ )


=




−ℓcc(Θ) −ℓcb(Θ) −ℓcξ (Θ)
−ℓbc(Θ) −ℓbb(Θ) −ℓbξ (Θ)
−ℓξ c(Θ) −ℓξ b(Θ) −ℓξ ξ (Θ)




−1

(ĉ,b̂,ξ̂ )

, (47)

where ℓΘiΘ j(Θ) = ∂ 2ℓ
∂ΘiΘ j

, i, j = 1,2,3. Accordingly, the

ACIs based on the asymptotic variance-covariance matrix
for the parametersc, b andξ are, respectively given as:
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ĉ± z α
2

√
Var(ĉ), b̂± z α

2

√
Var(b̂) andξ̂ ± z α

2

√
Var(ξ̂ ),

where z α
2

is the percentile of the standard normal
distribution with right tail probabilityα

2 .

7 Real Data Analysis

In this section, four real data sets are presented for
interpretative study. For every data set, we compare
IGLED with its sub-models (IWD, IRD and IED) and
with the generalized inverse Weibull (GIW) distribution
given in [9], Log-normal distribution (Log-N) and inverse
Gaussian distribution (IGD). For identifying the shapes of
hazard rate for given data sets, the scaled TTT transform
plot is given as

φn(
r
n
) =

∑n
i=1 Xi:n +(n− r) Xr:n

∑n
i=1 Xi

,

where r=1,...,n andXi:n is the order statistics of the data.
Kolmogorov-Smirnov (K-S) distance test, Anderson
Darling (A∗) test andCramér Von-Mises (W ∗) test are
used for non-parametric test statistic. All computations
are introduced byMathematica11.
The pdf of the Log-N distribution is

f (x;c,b) =
1√

2 π x b
e−

(−c+logx)2

2 b2 , x > 0,

and the pdf of the IGD is

f (x;c,b) =

√
b√

2 π x3
e−

b (x−c)2

2 c2 x , x > 0.

7.1 The intervals between successive failures
data

Consider the following data set from [23] consisting of 15
observations of records kept for the time of successive
failures of the air conditioning system of Boeing 720
airplane number 7910. The data are 502, 386, 326, 153,
74, 70, 59, 57, 48, 29, 29, 27, 26, 21, 12. The mean, the
variance, standard deviation, the skewness and the
kurtosis are 121.267, 23798.8, 154.269, 1.52307 and
3.82465 respectively. The measure of skewness indicated
that the data are positively skewed. Furthermore, the TTT
plot of the observed data show that the hazard rate of the
intervals between successive failures data is unimodal
which is first concave and then convex as shown in Fig.
(4b).

From Table1, based on the p-value associated with the
k-s distance value, one can show that

1.The IRD must be rejected atα ≥ 0.18.
2.The IGLED, IWD, GIW, IED, IGD and log-normal

distribution must not be reject at any considerableα.
3.The IGLED fits data better than another distributions

because it has the highest p-value.

Furthermore, the IGLED is the best distribution fits the
data based on(W ∗) and(A∗).

7.2 Burning velocity data

In this subsection, the burning velocity of different
chemical materials which used in [24] is analyzed. The
burning velocity is the velocity of a laminar flame under
stated conditions of composition, temperature, and
pressure. A reference value of 46 cm/sec for the
fundamental burning velocity of propane has been used.
The data set are 68, 61, 64, 55, 51, 68, 44, 82, 60, 89, 61,
54, 166, 66, 50, 87, 48, 42, 58, 46, 67, 46, 46, 44, 48, 56,
47, 54, 47, 80, 38, 108, 46, 40, 44, 312, 41, 31, 40, 41, 40,
56, 45, 43, 46, 46, 46, 46, 52, 58, 82, 71, 48, 39, 41. The
mean, the variance, standard deviation, the skewness and
the kurtosis are 0.61, 0.614174, 0.405184, 4.76642 and
28.6962 respectively. The measure of skewness indicated
that the data are positively skewed. Furthermore, the TTT
plot of the observed data show that the hazard rate of the
burning velocity data is unimodal which is first concave
and then convex as shown in Fig. (7b).

From Table2, based on the p-value associated with the
k-s distance value, one can show that

1.The IRD and IED must be rejected atα ≥ 0.001.
2.The IGD must be rejected atα ≥ 0.09.
3.The log-normal distribution must be rejected atα ≥

0.13.
4.The IGLED, IWD and GIW must not be reject at any

considerableα.
5.The IGLED fits data better than another distributions

because it has the highest p-value.

Also, the IGLED is the best distribution fits the data
based on(W ∗) and(A∗).

7.3 Fatigue lives data

[25] gave the data below which gives the fatigue lives in
(hours) for 10 bearings tested in each of two testers. Here,
the failures time for tester II is presented 152.7 , 172.0 ,
172.5 , 173.3 , 193.0 , 204.7 , 216.5 , 234.9 , 262.6 ,
422.6. The mean, the variance, standard deviation, the
skewness and the kurtosis are 220.48, 6147.44, 78.4056,
1.86358 and 5.58507 respectively. The measure of
skewness indicated that the data are positively skewed.
Furthermore, the TTT plot of the observed data is
presented in Fig. (10b). For computational ease, we
consider the failure times in (days).

From Table3, based on the p-value associated with the
k-s distance value, one can show that

1.The IED must be rejected atα ≥ 0.04.
2.The IGLED, IWD, GIW, and IRD must not be reject at

any considerableα.
3.The IGLED fits data better than another distributions

because it has the highest p-value.

Clearly, the IGLED is the best distribution fits the data
based on(W ∗) and(A∗).
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Table 1: The MLEs of unknown parameters, the K-S test with the corresponding P-value, theW ∗ test with the corresponding P-value
andA∗ test with the corresponding P-value for different models using the intervals between successive failures data

Model MLEs K-S test p-value (W ∗) p-value (A∗) p-value
IGLED c=34.009, b=253.128,ξ=1.05339 0.139 0.934 0.0403 0.9314 0.286 0.948
IWD c=38.357,ξ=1.146 0.1479 0.898 0.044 0.913 0.307 0.933

GIW(c,a,ξ ) c=3.765, a=14.296,ξ=1.1459 0.1479 0.898 0.044 0.913 0.307 0.933
IRD b=1884.45 0.282 0.185 0.3001 0.135 2.925 0.0299
IED c=40.2438 0.153 0.875 0.0537 0.8535 0.322 0.921

Log-Normal(c,b) c=4.156, b=1.09139 0.1797 0.7179 0.0893 0.64 0.5582 0.6884
IGD(c,b) c=121.267, b=60.233 0.1733 0.7585 0.076 0.716 0.4424 0.806

a

 

b

 

Fig. 4: a) Empirical distribution functions versus distribution functions of modeling distributions based on the intervals between
successive failures data b) Scaled TTT transform of the intervals between successive failures data.

a

 

b

 

Fig. 5: (a) Plot of the1
ξ andΨ (ξ ;x) functions for the intervals between successive failures data. (b) The profile log-likelihood of the

parameter c for the intervals between successive failures data

7.4 Annual wage data

The annual wage data (in multiple of 100 US dollars)
from [26] which gave a random sample of 30
production-line workers under age 40 in a States
industrial firm. [27] used this data for computing the
Bayesian estimation of the survival function of Pareto
distribution of the second kind. The data set are 101, 103,
103, 104, 104, 105, 106, 107, 108, 111, 112, 112, 112,

115, 115, 116, 119, 119, 119, 123, 125, 128, 132, 140,
151, 154, 156, 157, 158, 198. The mean, the variance,
standard deviation, the skewness and the kurtosis are
123.767, 519.082, 22.7834, 1.47393 and 4.8866
respectively. The measure of skewness indicated that the
data are positively skewed. Furthermore, the TTT plot of
the observed data is given in Fig. (13b).
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a

 

b

 

Fig. 6: (a) The profile log-likelihood of the parameter b for the intervals between successive failures data (b) The profile log-likelihood
of the parameterξ for the intervals between successive failures data

Table 2: The MLEs of unknown parameters, the K-S test with the corresponding P-value, theW ∗ test with the corresponding P-value
andA∗ test with the corresponding P-value for different models using the burning velocity data

Model MLEs K-S test p-value (W ∗) p-value (A∗) p-value
IGLED c=0.215, b=0.2464,ξ=2.7587 0.1237 0.3692 0.09881 0.591 0.6141 0.63477
IWD c=0.4772,ξ=4.1741 0.1322 0.292 0.1183 0.5024 0.7298 0.5345

GIW(c,a,ξ ) c=0.596 , a=0.396,ξ=4.1741 0.1322 0.292 0.1183 0.5024 0.7298 0.5345
IRD b=0.51 0.26 0.0012 1.2754 0.00056 6.454 0.00059
IED c=0.524 0.3904 1×10−7 2.764 2.52×10−7 13.36 4.16×10−7

Log-Normal(c,b) c=-0.591466, b=0.374694 0.157 0.132 0.462 0.0498 2.745 0.0369
IGD(c,b) c=0.61, b=3.7113 0.1676 0.091 0.589 0.0238 3.321 0.01885

a

 

b

 

Fig. 7: a) Empirical distribution functions versus distribution functions of modeling distributions based on the burning velocity of
different chemical materials data b) Scaled TTT transform of the burning velocity of different chemical materials data.

From Table4, based on the p-value associated with the
k-s distance value, one can show that

1.The IRD and IED must be rejected atα ≥ 0.001.
2.The IGD and log-normal distribution must be rejected

at α ≥ 0.21.
3.The IGLED and IWD must not be reject at any

considerableα.
4.The IGLED fits data better than another distributions

because it has the highest p-value.

Furthermore, the IGLED is the best distribution fits the
data based on(W ∗) and(A∗).

8 Conclusion

This paper deals with a new lifetime distribution known
as IGLED. The unimodality property is studied for the
pdf and HR function of IGLED. From Section (6), one
can show that the IGLED is very good model for the
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a

 

b

 

Fig. 8: (a) Plot of the 1
ξ andΨ(ξ ;x) functions for the burning velocity of different chemical materials data. (b) The profile log-

likelihood of the parameter c for the burning velocity of different chemical materials data

a

 

b

 

Fig. 9: (a) The profile log-likelihood of the parameter b for the burning velocity of different chemical materials data (b) The profile
log-likelihood of the parameterξ for the burning velocity of different chemical materials data

Table 3: MLEs of unknown parameters, the K-S test with the corresponding P-value, theW ∗ test with the corresponding P-value and
A∗ test with the corresponding P-value for different models using the fatigue lives data

Model MLEs K-S test p-value (W ∗) p-value (A∗) p-value
IGLED c=4.435, b=52.017,ξ=3.785 0.177 0.9134 0.031 0.9731 0.2399 0.9755
IWD c=7.804,ξ=5.294 0.179 0.9062 0.0324 0.9676 0.2588 0.9655

GIW(c,a,ξ ) c=4.3208, a=22.879,ξ=5.294 0.179 0.9062 0.0324 0.9676 0.2588 0.9655
IRD b=136.776 0.335 0.211 0.3009 0.1344 1.528 0.17
IED c=8.495 0.4399 0.0417 0.5654 0.02727 2.726 0.0378

Lorentz curve andBc. This property make the new model
has important role in income inequality. Figures (16a,b)
and (17a,b) show the contours of the log-likelihood for
the various data and the red points indicate the values of
the MLEs of the parameters. The applications of the
IGLED to real data sets are given to show that it may
engage wider in reliability analysis, engineering
chemistry and economic.

Acknowledgement

The authors are grateful to the editors and the anonymous
referee for a careful checking of the details and for helpful
comments that improved this paper.

Appendix.

The following integrals must be calculated for
constructing the explicit forms of MRL time, MWT, VRL
time and VRRL time.
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a

 

b

 

Fig. 10: a) Empirical distribution functions versus distribution functions of modeling distributions based on fatigue lives data b) Scaled
TTT transform of the Fatigue lives data.

a

 

b

 

Fig. 11: (a) Plot of the1
ξ andΨ(ξ ;x) functions for the fatigue lives data. (b) The profile log-likelihood of the parameter c for the

fatigue lives data

Table 4: MLEs of unknown parameters, the K-S test with the corresponding P-value, theW ∗ test with the corresponding P-value and
A∗ test with the corresponding P-value for different models using the annual wage data

Model MLEs K-S test p-value (W ∗) p-value (A∗) p-value
IGLED c=66.6216, b=10593.9,ξ=6.31625 0.1209 0.773 0.08716 0.652 0.658 0.595
IWD c=113.489,ξ=8.7882 0.1219 0.764 0.0934 0.618 0.698 0.561

GIW(c,a,ξ ) c=230.56,ξ=8.79, a=0.002 0.1219 0.764 0.0934 0.618 0.698 0.561
IRD b=28372.1 0.4002 0.000134 1.447 0.00023 7.128 0.00029
IED c=120.45 0.5001 6×10−7 2.137 6.295×10−7 10.037 0.0000132

Log-Normal(c,b) c=4.80399, b=0.164704 0.1933 0.212 0.229 0.2171 1.34 0.219
IGD(c,b) c=123.767, b=4495.2 0.195 0.2045 0.233 0.211 1.35 0.216

–For calculating the following integral
I1=

∫ ∞
t x f (x;Θ) dx

Making use ofv = ( c
x +

d
2 x2 )

ξ , yields

I1=

∫ ( c
t +

b
2 t2

)ξ

0
(

c +

√
c2 + 2 b v

1
ξ

2 v
1
ξ

) e−v dv.

One can show that

(
c+

√
c2+2 b v

1
ξ

2 v
1
ξ

) =
c
2

v
−1
ξ +

1
2

v
−1
ξ (c2+2 b v

1
ξ )

1
2 .

Also, it is easy to show that2 b v
1
ξ

c2 < 1 whenv< ( c2

2 b)
ξ

and c2

2 b v
1
ξ
< 1 whenv > ( c2

2 b)
ξ . Then the integralI1
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a

 

b

 

Fig. 12: (a) The profile log-likelihood of the parameter b for the fatigue lives data (b) The profile log-likelihood of the parameter ξ
for the fatigue lives data

a

 

b

 

Fig. 13: a) Empirical distribution functions versus distribution functions of modeling distributions based on the annual wagedata b)
Scaled TTT transform of the annual wage data.

can be written as:

I1=





c
2

∫ ( c
t +

b
2 t2

)ξ

0 v
−1
ξ e−v dv+ c

2 ∑∞
i=0

( 1
2
i

)
(2 b

c2 )
i

∫ ( c2
2 b )

ξ

0 v
i−1
ξ dv+ 1

2

√
2 b ∑∞

i=0

( 1
2
i

)
( c2

2 b )
i

∫ ( c
t +

b
2 t2

)ξ

( c2
2 b )

ξ
v
−2 i−1

2 ξ dv, ( c2

2 b )
ξ < ( c

t +
b

2 t2
)ξ ;

c
2

∫ ( c
t +

b
2 t2

)ξ

0 v
−1
ξ e−v dv+ c

2 ∑∞
i=0

( 1
2
i

)
(2 b

c2 )
i

∫ ( c
t +

b
2 t2

)ξ

0 v
i−1
ξ dv, ( c2

2 b)
ξ > ( c

t +
b

2 t2
)ξ .

(48)
–For calculating the following integral
I2=

∫ ∞
t x2 f (x;Θ) dx

Making use ofv = ( c
x +

d
2 x2 )

ξ , yields

I2=

∫ ( c
t +

b
2 t2

)ξ

0
(

c +

√
c2 + 2 b (v)

1
ξ

2 (v)
1
ξ

)2 e−v dv.

It is clear that

(c+

√
c2+2 b (v)

1
ξ

2 (v)
1
ξ

)2

=
c2

2
v
−2
ξ +

b
2

v
−1
ξ +

c
2

v
−2
ξ
(
c2+2 b v

1
ξ
) 1

2 .
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a

 

b

 

Fig. 14: (a)Plot of the1
ξ andΨ(ξ ;x) functions for the annual wage data. (b) The profile log-likelihood of the parameter c for the

annual wage data

a

 

b

 

Fig. 15: (a) The profile log-likelihood of the parameter b for the annual wage data (b) The profile log-likelihood of the parameterξ
for the annual wage data

Then the integralI2 can be presented as:

I2=





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ξ dv+
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2
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(49)

–For calculating the following integral
I3=

∫ t
0 x f (x;Θ) dx

As in the previous integralI1, the integralI3 can be
given as

I3=


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
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(50)
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a

 

b

 

Fig. 16: (a) The contour of log-likelihood for the annual wage data (b) The contour of log-likelihood for the fatigue lives data

a

 

b

 

Fig. 17: (a) The contour of log-likelihood for the burning velocity of different chemical materials data (b) The contour of log-likelihood
for the intervals between successive failures data

–For calculating the following integral
I4=

∫ t
0 x2 f (x;Θ) dx

As in the previous integralI2, the integralI4 can be
obtained as:
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I4=






c2

2

∫ ∞
( c

t +
b

2 t2
)ξ v

−2
ξ e−v dv+ b

2

∫ ∞
( c

t +
b

2 t2
)ξ v

−1
ξ e−v dv

+ c2

2 ∑∞
i=0

( 1
2
i

)
(2 b

c2 )
i ∫ ( c2

2 b )
ξ

( c
t +

b
2 t2

)ξ v
i−2
ξ dv

+ c
2

√
2 b ∑∞

i=0

( 1
2
i

)
( c2

2 b )
i ∫ ∞

( c2
2 b )

ξ v
−2 i−3

2 ξ dv,

( c2

2 b )
ξ > ( c

t +
b

2 t2
)ξ ;

c2

2

∫ ∞
( c

t +
b

2 t2
)ξ v

−2
ξ e−v dv+ b

2

∫ ∞
( c

t +
b

2 t2
)ξ v

−1
ξ e−v dv

+ c
2

√
2 b ∑∞

i=0

( 1
2
i

)
( c2

2 b )
i ∫ ∞

( c
t +

b
2 t2

)ξ v
−2 i−3

2 ξ dv,

( c2

2 b )
ξ < ( c

t +
b

2 t2
)ξ .

(51)
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