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Abstract: The present paper is concerned with the investigation of disturbances in a homogeneous, isotropic and thermoelastic rotating
medium withmagnetic fieldand a time-dependent heat source effect due to thermomechanical source. The formulation is without energy
dissipation subjected to thermomechanical source. The normal mode analysisand eigenvalue approach techniques are applied to solve
the problem. The expressions of displacement, mean value ofnormal stress, dilatation and temperature are obtained in the domain.
Numerical simulated results are depicted graphically to show the effect of magnetic field and rotation on resulting quantities. The
results indicate that the effect of magnetic field, rotation, frequency, wave number and time are very pronounced.
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1 Introduction

During the past few decades, wide spread attention has
been given to thermoelasticity theories that admit a finite
speed for the propagation of thermal signals. In contrast
to the conventional theories based on parabolic-type heat
equation, these theories are referred to as generalized
theories. Because of the experimental evidence in support
of the finiteness of the speed of propagation of a heat
wave, generalized thermoelasticity theories are more
realistic than conventional thermoelasticity theories in
dealing with practical problems involving very short time
intervals and high heat flux such as those occurring in last
units, energy channels, nuclear reactors, etc. The
phenomenon of coupling between the thermomechanical
The investigator [1,7] studied the propagation of plane
harmonic waves in homogeneous isotropc heat –
conducting elastic materials. The wave propagation in the
two temperature theory of thermoelasticity was
investigated by Warren and Chen [8]. Green and Naghdi
[9] postulated postulated a new concept in
thermoelasticity theories and proposed three models
which are subsequently referred to as GN-I, II and III

models. The linearized version of model-I corresponds to
the classical thermoelastic model (based on Fourier’s
law). The version of the model-II and III permit the
propagation of thermal waves at finite speed
Green-Nagdahi’s second model (GN-II), in particular
exhibits a feature that is not present in other established
thermoelastic models as it does not sustain dissipation of
thermal energy [10]. In this model the constitutive
equations are derived by starting with the reduced energy
equation and by including the thermal displacement
gradient among other constitutive variables. Green and
Nagdahi [11] included the derivation of a complete set of
governing equations of a linearized version of the theory
of homogeneous and isotropic materials in terms of the
displacement and boundary value problem. Quintanilla
[12] investigated thermoelasticity without energy
dissipation of materials with microstructure. Kumar and
Devi [13] discussed Magneto thermoelastic with and
without energy dissipation Half-Space in contact with
Vacuum. Abd-Alla, et al. [14] investigated the
propagation of Rayleigh waves in magneto-thermo-elastic
half-space of a homogeneous orthotropic material under
the effect of rotation, initial stress and gravity field.
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Magneto-thermoelastic problem in rotating
non-homogeneous orthotropic hollow cylinder under the
hyperbolic heat conduction model has been investigated
by Abd-Alla and Mahmoud [15]. Abo-Dahab and
Mohamed [16] investigated the influence of magnetic
field and hydrostatic initial stress on reflection
phenomena of P and SV waves from a generalized
thermoelastic solid half-space. Abd-Alla and Abo-Dahab
[17] found the time-harmonic sources in a generalized
magneto-thermo-viscoelastic continuum with and without
energy dissipation. Abd-Alla, et al. [18] investigated the
generalized magneto-thermoelastic Rayleigh waves in a
granular medium under the influence of a gravity field
and initial stress. Abd-Alla, et al. [19] investigated the
thermal stresses in a non-homogeneous orthotropic elastic
multilayered cylinder. Abd-Alla and Abo-Dahab [20]
studied the effect of rotation and initial stress on an
infinite generalized magneto-thermoelastic diffuse body
with a spherical cavity. Zhu, et al. [21] studied the
steady-state response of the thermoplastic half - plane
with voids subjected to a surface harmonic force and a
thermal source. Chirta [22] discussed the thermoelastic
surface waves on an exponentially graded half-space. Yu,
et al. [23] investigated the domain-independent-Integrals
for the force and couple stress intensity factor evaluations
of a crack in the micropolar thermoplastic medium. Singh
and Chakraborty [24] presented the reflection of a plane
magneto-thermoelastic wave of the boundary of a solid
half-space in presence of initial stress. Effect of
hydrostatic initial stress on a wave in a thermoelastic solid
half-pace studied by Singh [25]. Gusarov, et al. [26]
discussed the thermoelastic residual stresses and
deformations at laser treatment. A three-dimensional
thermoelastic problem for a half-space without energy
dissipation investigated by Sarkar and Lahiri [27]. Deswal
and Kalkal [28] studied the plane waves in a fractional
order micropolar magneto-thermoelastic half-space. Wave
propagation in an initially stressed transversely isotropic
thermoelastic solid half-space presented by Singh [29].
Leguillon, et al. [30] found the applications of the
coupled stress-energy criterion predict the fracture
behavior of layered ceramics designed with internal
compressive stress. Das, et al. [31] found the reflection
generalized thermoelastic waves form isothermal and
insulated boundaries of a half-space. Generalized
thermoelastic diffusion in a thick circular plate, including
heat source investigated by Tripathi, et al. [32].
Abo-Dahab and Singh [33] studied the rotational and the
food’s effect on the reflection of P-waves from stress-free
surface on elastic half-space under the magnetic field and
initial stress without energy dissipation. Sherief and Saleh
[34] studied A half-space problem in the theory of
generalized thermoelastic diffusion. Energy-based
delamination theory for pixel loading in the presence of
thermal stress discussed by McCartney, et al. [35]. Kumar
and Deswal [36] investigated the steady-state response of
a micropolar generalized thermoelastic half-space to the
moving mechanical/thermal loads. Recently, Abd-Alla, et

al. [37] presented the propagation of a thermoelastic wave
in a half-space of a homogeneous isotropic material
subjected to the effect of gravity field. Abd-Alla, et al.
[38] investigated the rotation effect on thermoelastic
Stoneley, Love and Rayleigh waves in fibre-reinforced
anisotropic general viscoelastic media of higher order.

The problem of response of thermomechanical
sources in isotropic solid with rotation and magnetic field
effect and in contact with the vacuum in the context
Green Naghdi theories of type- II has not been analyzed
earlier and is considered for the first time in this paper.
The effect of the magnetic field, frequency, wave number
and time on the displacements, temperature distribution,
the mean value of principle stresses and the dilatation
have been shown graphically. The normal mode analysis
and eigenvalue approach techniques are used to solve the
resulting non-dimensional coupled equations. The results
obtained have also been compared and reduce to those
available in the literature at appropriate stages of this
work. The theoretical development has been verified
numerically and illustrated graphically.

2 Formulation of the problem

We considera medium is a perfect electric conductor, we
take the linearized Maxwell equations governing the
electromagnetic field, taking into account absence of the
displacement current SI as [29]:

−→
J = curl

−→
h ,

−µe
∂
−→
h

∂ t = curl
−→
E ,

div
−→
h = 0,

div
−→
E = 0,

−→
E =−µe

(

∂−→u
∂ t ×−→

H 0

)

,

−→
h = curl(−→u ×−→

H 0).

(1a)

Applying an initial magnetic field vector
−→
H =

−→
H (0, H0, 0)

in Cartesian coordinates(x, y, z) to the equation (1a) we
have

−→u =−→u (u, 0, w),
−→
h = (0, −H0(

∂u
∂x

+
∂w
∂ z

), 0), (1b)

−→
j = (H0(

∂ 2u
∂x∂ z

+
∂ 2w
∂ z2 ), 0, −H0(

∂ 2u
∂x2 +

∂ 2w
∂x∂ z

)). (1c)

Maxwell stress components are given by:

τi j = µe(Hih j +H jhi −Hkhkδi j) (1d)

where
−→
h is the perturbed magnetic field over the primary

magnetic field,
−→
E is the electric intensity,

−→
J is the electric

current density,µe is the magnetic permeability,H0 is the
constant primary magnetic field,δi j is the the Kronecker
delta and−→u is the displacement vector.
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Equation of motion for isotropic thermoelastic medium
rotating uniformly with an angular velocity

−→
Ω = Ωn has

centripetal acceleration
−→
Ω × (

−→
Ω × −→u ) due to time

varying motion only, wheren is a unit vector representing
the direction of the axis of rotation and taking into
account Lorentz force

−→
F is:

τi j +
−→
F = ρ(−→̈u i +(

−→
Ω x(

−→
Ω x−→u ). (2)

For a homogeneous, isotropic elastic solid, the basic
equations of the linear generalized theory of
thermoelasticity without energy dissipation in the
presence of a magnetic field are:

(i)The equations of motion in terms of displacement in a
rotating medium with magnetic fields as follows:

ρ
[

∂ 2u
∂ t2

−Ω2u
]

= µeH2
0

(

∂ 2u
∂x2 +

∂ 2w
∂x∂ z

)

+(λ +2µ) ∂ 2u
∂x2 + µ ∂ 2u

∂ z2 +(λ + µ) ∂ 2w
∂x∂ z − γ ∂T

∂x ,

(3)

ρ
[

∂ 2w
∂ t2

−Ω2w
]

= µeH2
0

(

∂ 2u
∂x∂ z +

∂ 2w
∂ z2

)

+(λ +2µ) ∂ 2w
∂x2 + µ ∂ 2w

∂x∂ z +(λ + µ) ∂ 2u
∂x∂ z − γ ∂T

∂ z .

(4)

(ii) The modified heat conduction equation is

K

(

∂ 2T
∂x2 +

∂ 2T
∂ z2

)

= ρCE
∂ 2T
∂ t2 + γT0

∂ 2e
∂ t2 (5)

(ii)The stress-displacement-temperature relations with
incremental isotropy are given by:

σxx = 2µ ∂u
∂x +λ e− γT,

σzz = 2µ ∂w
∂ z +λ e− γT,

τxz = µ
(

∂u
∂ z +

∂w
∂x

)

(6)

(iii)The components of magnetic stresses are

τxx =
β µeH2

0
µ ( ∂u

∂x +
∂w
∂ z ),

τzz =
β µeH2

0
µ ( ∂u

∂x +
∂w
∂ z )

(7)

where,λ and µ are Lame’s elastic constants,ρ is the
density,σxx, σzz, τxz are the components of the stress,u, w
are the components of the displacement,t is the time,T
is the temperature,γ = (3λ + 2µ)αT where αT is the
coefficient of linear thermal expansion,K is the thermal
diffusivity, CE isthe specific heat at constant strain,T0 is
the temperature of the medium in its natural state,

assumed to be such that
∣

∣

∣

T−T0
T0

∣

∣

∣<< 1, where,

e =
(

∂u
∂x +

∂w
∂ z

)

.

Introducing the following non-dimensional variables

(x′, z′) = 1
l (x, z), t ′ = C1t

l , (u′, w′) = (λ+2µ)
γT0l (u, w), Ω ′ = l

C1
Ω

T ′ = T
T0
, σ ′

i j =
σi j
γT0

, C2
T = K

ρCEC2
1
, εT = γ2T0

ρCE (λ+2µ) ,

(8)
where,l is the length andCT = C3

C1
,C2

1 = λ+2µ
ρ , C2

3 = µ
ρ .

HereC1is the longitudinal wave velocity,C3 is the shear

wave velocity,CT is the non dimensional thermal wave
speed in TEWOED andεT is a the thermoelastic coupling
parameter.
Substituting from equation (8) into Eqs. (3)-(7), the
equations in dimensionless form (after dropping out the
prime) become

∂ 2u
∂ t2

−Ω2u = (1+ S) ∂ 2u
∂x2 +β ∂ 2u

∂ z2 +(1+ S−β ) ∂ 2w
∂x∂ z −

∂T
∂x ,

(9)

∂ 2w
∂ t2

−Ω2w = (1+ S) ∂ 2w
∂ z2 +β ∂ 2w

∂x2 +(1+ S−β ) ∂ 2u
∂x∂ z −

∂T
∂ z ,

(10)

C2
T ∇2T =

∂ 2T
∂ t2 + εT

∂ 2e
∂ t2 , (11)

σxx= 2β ∂u
∂x +(1−2β )e−T ,

σzz= 2β ∂w
∂ z +(1−2β )e−T,

τxz= β
(

∂u
∂ z +

∂w
∂x

)

(12)

where

S =
µeH2

0

(λ +2µ)
, ∇2 =

∂ 2

∂x2 +
∂ 2

∂ z2 , β =
µ

(λ +2µ)
.

From equations (9) and (10) by using the value of straine,
we get the following equations

β ∇2 ∂u
∂x

+(1+ S−β )
∂ 2e
∂x2 −

∂ 2T
∂x2 =

∂ 3u
∂ t2∂x

−Ω2 ∂u
∂x

,

(13)

β ∇2 ∂w
∂ z

+(1+ S−β )
∂ 2e
∂ z2 − ∂ 2T

∂ z2 =
∂ 3w

∂ t2∂ z
−Ω2 ∂w

∂ z
.

(14)
From equations (13) and (14), we get

(1+ S)∇2e−∇2T =
∂ 2e
∂ t2 −Ω2e−2Ω

∂e
∂ t

(15)

The mean value of the normal stressesσ can be obtained
as:

σ =
σxx +σzz

2
(16)

From equations (12) and (16) by using the value of strain
e, and the normal stressesσ , we get

σ = αe−T (17)

where

α =
(2−3β )

2
.

Eliminating e from equations (11), (15) and (16), we
obtain after simple calculations as follows:

(1+ S)∇2σ +(1+ S−α)∇2T = ∂ 2T
∂ t2

+ ∂ 2σ
∂ t2

− Ω2

1+s (T +σ)−2Ω ∂σ
∂ t ,

(18)

∇2T =

(

α + εT

αC2
T

)

∂ 2T
∂ t2 +

εT

αC2
T

∂ 2σ
∂ t2 . (19)
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Fig. 1: Variations ofz,H0,b, t andΩ with respect tox on the displacementu

3 Normal mode analysis

Solution of the physical variables can be decomposed in
terms of normal modes in the following form:

(u, w, e, T, σi j)(x, z, t)= (u∗, w∗
, e∗, T ∗

, σi j
∗)(x)e(ωt+ibz)

(20)
where,i =

√
−1, ω is the angular frequency and b is the

wave numbers in thez-direction.

Using equation (20), we can obtain the following
equations from equations (18) and (19) respectively

d2T ∗

dx2 =C1T ∗+C2σ∗
, (21)

d2σ∗

dx2 = D1T ∗+D2σ∗ (22)
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Fig. 2: Variations ofz,ω,H0,b, t andΩ with respect tox on the mean stressesσ

where

C1 =
1

αC2
T
[ω2(α + εT )+αb2C2

T ],

C2 =
ω2εT
αC2

T
,

D1 =
ω2

αC2
T (1+S)

[(1−Ω2+2ωΩ)αC2
T − (1+ S−α)(α + εT )],

D2 =
1

αC2
T (1+S)

[(1+ S)(αb2C2
T −ω2εT )+αω2(C2

T + εT )− (Ω2+2Ωω)αC2
T ].

(23)
Equations (21) and (22) can be written in a vector-matrix
differential equation as follows:

dV
dx

= AV (24)

where

d
dx









T ∗

σ∗
dT ∗
dx

dσ∗
dx









=







0 0 1 0
0 0 0 1
C1 C2 0 0
D1 D2 0 0






.









T ∗

σ∗
dT ∗
dx

dσ∗
dx









V =









T ∗

σ∗
dT ∗
dx

dσ∗
dx









, A =







0 0 1 0
0 0 0 1
C1 C2 0 0
D1 D2 0 0






(25)
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Fig. 3: Variations ofz,ω,H0,b, t andΩ with respect tox on the temperatureT

4 Solution of the vector-matrix differential
equation

Following the solution methodology through
eigenvalue approach [31], we now proceed to solve the
vector-matrix differential equation (24). The
characteristic equation of a matrix A is

λ 4− (C1+D2)λ 2+(C1D2−C2D1) = 0. (26)

Let λ 2
1 and λ 2

2 are the roots of the above characteristic
equation with positive real parts.Then all the four roots of
the characteristic equation (26) which are also the

eigenvalue of matrix A are of the form:

λ =±λ1, ±λ2 (27)

where

λi =
(C1+D2)+(−1)i+1

√
((C1+D2)2−4(C1D2−C2D1))

2 , i = 1,2

The right eigenvectorχ which it corresponds to the
eigenvalueλ can be written as:

χ =







(λ 2−D2)
C1

λ (λ 2−D2)
λC1






(28)
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Fig. 4: Variations ofz,ω,H0,b, t andΩ with respect tox on the dilatationale1

From Eq. (28) we can easily calculate the eigenvector
χi (i = 1,2,3,4) corresponding to the eigenvalue
±λi (i = 1, 2). For our further reference we shall use the
following notations:

χ1 = [λ ]λ=λ1
, χ2 = [χ ]λ=−λ1

, χ3 = [χ ]λ=λ2
, χ4 = [χ ]λ=−λ2

.

(29)
The solution of equation (24) can be written as follows:

V = A1χ2e−λ1x +A2χ4e−λ2x (x ≥ 0), (30)

where, the terms containing exponentials of growing
naturally in the half-space variablex has been discarded
due to the regularity condition of the solution at infinity
and A1, A2 are constants to be determined by the
boundary conditions of the problem.

Thus the field variables can be written from the equation
(25), forx ≥ 0 us:

T ∗(x) = A1(λ 2
1 −D2)e

−λ1x +A2(λ 2
2 −D2)e

−λ2x
, (31)

σ∗(x) =C1(A1e−λ1x +A2e−λ2x). (32)

Also from the equation (17) on using equations (31) and
(32), we get

e∗(x) = 1
α [A1(λ 2

1 +C1−D2)e−λ1x +A2(λ 2
2 +C1−D2)e−λ2x]

(33)
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5 Application

In order to determine the constantsA1, A2, we need to
consider the following boundary conditions at the surface
x = 0:

(a)Free surface traction:

σ(0,z, t) = σxx(0,z, t) = σzz(0,z, t) = 0 (34a)

which gives

σ∗(x) = σ∗
xx(x) = σ∗

zz(x) = 0 at x = 0 (34b)

(b)The thermal boundary condition is

qn +νT = Q0eωt+ibz (35)

whereqn are the normal components of the heat flux
vector,ν is Biot’s number, andQ0eωt+ibz represents the
intensity of the applied heat sources. In order to use the
thermal boundary condition, we use the generalized
Fourier’s law of heat conduction in the non-dimensional
form, namely

qn =−∂T
∂n

(36)

From Eqs. (34), (35) and (21), we get

νT ∗− dT ∗

dx
= Q0 at x = 0 (37)

Using the boundary conditions (34) and (37) in equations
(31) and (32) respectively, we get

A1(λ1+ν)(λ 2
1 −D2)+A2(λ2+ν)(λ 2

2 −D2) = Q0
A1+A2 = 0

Solving the above system of equations by using Cramer’s
rule we obtain

A1 =
Q0

∆
and A2 =

−Q0

∆
(38a)

where

∆ = (λ1−λ2)[(λ1+λ2)(ν +λ1+λ2)−λ1λ2−D2]
(38b)

To get the displacement, we will use equation (13) and we
can write it after using equation (20) as follows:

[

d2

dx2 −λ 2
u

]

u∗ = η1e−λ1x +η2e−λ2x (39)

where,ωβ = ω2

β , Ωβ = Ω2

β ,λ 2
u =

(

b2+ωβ +Ωβ
)

and

ηi =
(

Aλi
αβ

)

[(1+ S−β )C1+(1+ S−α−β )(λ 2
i −D2)] i = 1,2

The solution of the ordinary differential equation (39)
takes the form

u∗(x) = A3e−λu x +
η1

(λ 2
1 −λ 2

u )
e−λ1x +

η2

(λ 2
2 −λ 2

u )
e−λ2x

(40)
whereλ 2

1 6= λ 2
2 6= λ 2

u andA3 is a constant to be determined
from boundary conditions (34).
From equations (12) and (20) after using equation (24) we
have

σ∗
xx = 2β

du∗(x)
dx

+
(1−2β )

α
σ∗(x)+

(

(1−2β −α)

α

)

T ∗(x).

(41)
Using the boundary conditions (34) in the above equation,
we get

du∗(x)
dx

=

(

α +2β −1
α

)

T ∗(x) at x = 0 (42)

and hence from equations (31), (40) and (42), we get

A3 =
[

Q0(1−α−2β )(λ 2
1−λ 2

2 )

α∆λu
− η1λ1

λu(λ 2
1−λ 2

u )
− η2λ2

λu(λ 2
2−λ 2

u )

]

(43)
where∆ is given by (38a).
The solutions of equations (31)-(33) and (40) by using (20)
can be written as

T (x,z, t) = eωt cos(bz)[A1(λ 2
1 −D2)e−λ1x +A2(λ 2

2 −D2)e−λ2x
,

(44)

σ(x,z, t) =C1eωt cos(bz)[A1e−λ1x +A2e−λ2x], (45)

e(x,z, t) = eωt cos(bz)
α [A1(λ 2

1 +C1−D2)e−λ1x +A2(λ 2
2 +C1−D2)e−λ2x,

(46)

u(x,z, t) = eωt cos(bz)[A3e−λu x + η1
(λ 2

1−λ 2
u )

e−λ1x + η2
(λ 2

2−λ 2
u )

e−λ2x.

(47)

6 Numerical results and discussion

In order to illustrate the theoretical results obtained in
the preceding sections, we now present some numerical
results. The material chosen for this purpose physical data
for which is given below [12]:

εT = 0.0168, α = 0.67, β = 0.25, ω = 2,
a = 1.2, b = 1.3, ν = 50, Q0 = 100, CT = 2.

Taking into consideration, z =1.09, t=0.03,µ =4.25,
H0=2.0,λ=20, b=0.006,ω=3.08.
Fig. (1a-1f) shows the variations of the non-dimensional
values for displacement componentu with respect to the
axial x with a wide range(0 ≤ x ≤ 1) of different values
of the axial z, frequencyω , magnetic fieldH0, wave
numberb, time t and rotationΩ . It is observed that the
displacement component increases with the increasing of
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axial z, frequency and rotation, while it decreases with
increasing of magnetic field, wave number and time as
well it increases with increasing of the axialx. It is clear
that all quantities have a non zero value in a bounded
region of the plane. These results obey the physical
properties of thermoelasticity.
Fig. (2a-2f) shows the variations of the non-dimensional
values of the mean value of normal stressesσ with
respect to the axialx with a wide range(0 ≤ x ≤ 1) has
oscillatory behavior in the whole range of axialx for
different values of the axialz, frequencyω , magnetic field
H0, wave numberb, time t and rotationΩ . It is observed
that the mean value of normal stress increases with the
increasing of axisz and frequency, while it decreases with
increasing of the magnetic field, wave number, time and
rotation as well it satisfied the boundary conditions and
physical meaning. It is clear that all quantities have a non
zero value in a bounded region of the plane.
Fig. (3a-3b) shows the variations of the non-dimensional
values of temperatureT with respect to the axialx with a
wide range(0≤ x ≤ 1) for different values of the axialz,
frequencyω ,magnetic fieldH0, wave numberb, timet and
rotationΩ . It is observed that the temperature increases
with the increasing of magnetic field, wave number, time
and rotation, while it decreases with increasing of axisz
and frequency, as well it is shifting from the negative into
positive gradually with the axialx under influence of the
wave number. It is clear that all quantities have a non zero
value in a bounded region of the plane.
Fig. (4a-4f) shows the variations of the non-dimensional
values of dilatatione1 with respect to the axialx with a
wide range(0 ≤ x ≤ 1) for different values of the axial
z, frequencyω , magnetic fieldH0, wave numberb, time t
and rotationΩ . It is observed that the dilatation increases
with increasing of magnetic field, wave number, time and
rotation, while it decreases with increasing of axiszand
frequency, while it decreases with increasing of the axialz
and frequency, as well it is shifting from the negative into
positive gradually with the axialx under influence of the
wave number. It is clear that all quantities have a non zero
value in a bounded region of the plane.

7 Conclusion

The analysis of graphs permits us some concluding
remarks:
1.The medium deforms due to the application of
normal/thermal point source or uniformly distributed
force/thermal source with rotation and a magnetic field
which indicates the magneto-thermoelastic coupled
effects with vacuum on physical quantities.
2.The temperatureT has significant effect on the
resulting quantities. The theory of Green and Naghdi II
(thermoelasticity without energy dissipation) of
magneto-thermoelasticity describes the behavior of the
particles of elastic body more real than the theory of
classical thermoelasticity.

3.The magnetic field and rotation play a significant role in
the distribution of all the physical quantities. The
parameters of all the physical quantities vary (increase or
decrease).
4.The displacement component, the mean value of the
normal stressesσ and the dilatatione show increases and
decreases with increasing of the physical quantities with
respect tox due to presence of magnetic field and
rotation. 5.The results are graphically described for the
medium of copper. The present theoretical results may
provide interesting information for experimental
scientists/researchers /seismologists working on this
subject. 6.The nature of variations of all the studied
physical quantities in the Green–Naghdi model II is very
much similar to the nature of the variations of the field
variables in the Lord–Shulman model of thermoelasticity,
see Ezzat and Youssef[31] for details.
7.All the physical quantities satisfy the boundary
conditions.8-The result provides a motivation to
investigate conducting thermo-electric materials as a new
class of applications thermo-electric solids. The result
provides a motivation to investigate conducting
thermo-electric materials as a new class of applications
thermo-electric solids. The results presented in this paper
should prove useful for researchers in material science,
designers of new materials, physicists as well as for those
working on the development of
magneto-thermo-elasticity and in practical situations asin
geophysics, optics, acoustics, geomagnetic and oil
prospecting etc. The used methods in the present article
are applicable to a wide range of problems in
thermodynamics and thermoelasticity.
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