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Abstract: The present paper is concerned with the investigation tfidiances in a homogeneous, isotropic and thermoelasaitmg
medium withmagnetic fieldand a time-dependent heat sotfiet due to thermomechanical source. The formulation thevit energy
dissipation subjected to thermomechanical source. Thmalanode analysisand eigenvalue approach techniques pliecaf solve
the problem. The expressions of displacement, mean valuneraofial stress, dilatation and temperature are obtaineldeirdomain.
Numerical simulated results are depicted graphically tasthe effect of magnetic field and rotation on resulting dites. The
results indicate that the effect of magnetic field, rotatfoequency, wave number and time are very pronounced.
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1 Introduction models. The linearized version of model-I corresponds to
the classical thermoelastic model (based on Fourier's

. . . law). Th i f th [-11 1] it th
During the past few decades, wide spread attention hagrvgéagat?oxersc;?n tﬁermi\lm(\)/;j:ves ar::tl finﬁgmlspegd

been given to thermoelasticity theories that admit a ﬁniteGreen-Nagdahi’s second model (GN-II), in particular
f’p?ﬁd for thetproplatgr]]atloln ofbthercrinal S|gnatl)s.l'lntcontLas%ﬂXhibits a feature that is not present in other established
0 the conventional theories based on paraboliC-lype Neay, oy, 5e|astic models as it does not sustain dissipation of
equation, these theories are referred to as generaliz ermal energy 10l In this model the constitutive
theories. Because of the experimental evidence in suppor quations are derived by starting with the reduced energy
wave, generalized thermoelasticity theories are mor
realistic than conventional thermoelasticity theories in
dealing with practical problems involving very short time
intervals and high heat flux such as those occurring in las f homogeneous and isotropic materials in terms of the
units, - energy Chann.els, nuclear reactors, efc. Th isplacement and boundary value problem. Quintanilla
phenpmen_on of coupling petween the ther_momechanlc 12] investigated thermoelasticity without energy
The investigator 1,7] studied the propagation of plane yiqgination of materials with microstructure. Kumar and

harmonic waves in homogeneous isotropc heat “Devi [13] discussed Magneto thermoelastic with and

conducting elastic materials. The wave propaggtion in th'%Nithout energy dissipation Half-Space in contact with
two temperature theory of thermoelasticity was \,,

. . 72 Vacuum. Abd-Alla, et al. 4] investigated the
'[g\]IEStF')%aSt,[i?a?g dwa[;';)eg[uallgt% ghe?'[e,«fgﬁn agc?n’(\:l:gthdlin propagation of Rayleigh waves in magneto-thermo-elastic

- . half-space of a homogeneous orthotropic material under
the.rmoelastICIty theories and proposed three mOdE3|§he effect of rotation, initial stress and gravity field.
which are subsequently referred to as GN-I, Il and Il '

Nagdahi [L1] included the derivation of a complete set of
overning equations of a linearized version of the theory
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Magneto-thermoelastic problem in rotating al. [37] presented the propagation of a thermoelastic wave
non-homogeneous orthotropic hollow cylinder under thein a half-space of a homogeneous isotropic material
hyperbolic heat conduction model has been investigatedubjected to the effect of gravity field. Abd-Alla, et al.
by Abd-Alla and Mahmoud 15. Abo-Dahab and [38] investigated the rotation effect on thermoelastic
Mohamed [6] investigated the influence of magnetic Stoneley, Love and Rayleigh waves in fibre-reinforced
field and hydrostatic initial stress on reflection anisotropic general viscoelastic media of higher order.
phenomena of P and SV waves from a generalized The problem of response of thermomechanical
thermoelastic solid half-space. Abd-Alla and Abo-Dahabsources in isotropic solid with rotation and magnetic field
[17] found the time-harmonic sources in a generalizedeffect and in contact with the vacuum in the context
magneto-thermo-viscoelastic continuum with and withoutGreen Naghdi theories of type- Il has not been analyzed
energy dissipation. Abd-Alla, et al1§] investigated the earlier and is considered for the first time in this paper.
generalized magneto-thermoelastic Rayleigh waves in &he effect of the magnetic field, frequency, wave number
granular medium under the influence of a gravity field and time on the displacements, temperature distribution,
and initial stress. Abd-Alla, et al.1p] investigated the the mean value of principle stresses and the dilatation
thermal stresses in a non-homogeneous orthotropic elasticave been shown graphically. The normal mode analysis
multilayered cylinder. Abd-Alla and Abo-Dahal2(] and eigenvalue approach techniques are used to solve the
studied the effect of rotation and initial stress on anresulting non-dimensional coupled equations. The results
infinite generalized magneto-thermoelastic diffuse bodyobtained have also been compared and reduce to those
with a spherical cavity. Zhu, et al.2]] studied the available in the literature at appropriate stages of this
steady-state response of the thermoplastic half - planevork. The theoretical development has been verified
with voids subjected to a surface harmonic force and anumerically and illustrated graphically.

thermal source. Chirta2p] discussed the thermoelastic

surface waves on an exponentially graded half-space. Yu,

et al. 23] investigated the domain-independent-Integrals2? Formulation of the problem

for the force and couple stress intensity factor evaluation

of a crack in the micropolar thermoplastic medium. Singh\ye considera medium is a perfect electric conductor, we
and ChakrabortyJ4] presented the reflection of a plane (axe the linearized Maxwell equations governing the

magneto-thermoelastic wave of the boundary of a solidgecromagnetic field, taking into account absence of the
half-space in presence of initial stress. Effect of displacement current Sl a2d:

hydrostatic initial stress on a wave in a thermoelastiadsoli

half-pace studied by Singh29]. Gusarov, et al. 6] 7:curlﬁ>

discussed the thermoelastic residual stresses and e ’ 2

deformations at laser treatment. A three-dimensional —He_>—t=CUF| )

thermoelastic problem for a half-space without energy divh =0,

dissipation investigated by Sarkar and Lah®7]. Deswal divE = 0, (1a)
and Kalkal pg studied the plane waves in a fractional T o H

order micropolar magneto-thermoelastic half-space. Wave = He (T x o),

propagation in an initially stressed transversely isdtrop ﬁ = curl(ﬁ x ﬁo),

thermoelastic solid half-space presented by Sinzdj. [

Leguillon, et al. BO found the applications of the Applying an initial magneticfieldvectd?:ﬁ(o, Ho, 0)

coupled - stress-energy criterion predict the fracturejy cartesian coordinates, y, 2) to the equation (1a) we
behavior of layered ceramics designed with internalpye

compressive stress. Das, et @1] found the reflection

generalized thermoelastic waves form isothermal and — Jdu oJw

insulated boundaries of a half-space. Generalized U=TU(u0w, h=(0 _HO(& + E)’ 0), (1b)
thermoelastic diffusion in a thick circular plate, incladi

heat source investigated by Tripathi, et al3Z][ N d%u  d%w d%u  d%w
Abo-Dahab and Singt8g] studied the rotational and the | = (Ho(5 =+ =), 0, ~Ho(57 + =-=-)).  (1c)
food’s effect on the reflection of P-waves from stress-free )

surface on elastic half-space under the magnetic field an§ylaxwell stress components are given by:

initial stress without energy dissipation. Sherief ance8al
[34] studied A half-space problem in the theory of Tij = He(Hihj + Hjhi — Hdhidj) (1d)
generalized thermoelastic diffusion. Energy-based . o )
delamination theory for pixel loading in the presence of where h is the perturbed magnetic field over the primary
thermal stress discussed by McCartney, et3d].[Kumar  magnetic fieldE is the electric intensity] is the electric
and Deswal 36] investigated the steady-state response ofcurrent densityp is the magnetic permeabilitig is the

a micropolar generalized thermoelastic half-space to theonstant primary magnetic field; is the the Kronecker
moving mechanical/thermal loads. Recently, Abd-Alla, etdelta andl is the displacement vector.
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Equation of motion for isotropic thermoelastic medium wave velocity,Cy is the non dimensional thermal wave
rotating uniformly with an angular velocit} — Qnhas ~ speed in TEWOED anef is a the thermoelastic coupling

centripetal accelerationd x (3 x U) due to time parameter.

varying motion only, wher@ is a unit vector representing Subst]tutlng from equation (8) into Egs. (3)'(7)' the
the direction of the axis of rotation and taking into equations in dimensionless form (after dropping out the

i b
account Lorentz forc? is: prime) become
2 92y 92 92 T
T+ F =p(Ti + (Ox(3xW). ) QU= (1+9 55 +B5E +(1+S-B) 5z — o

9
For a homogeneous, isotropic elastic solid, the baS|c ) )
equations of the linear generalized theory of 2 57 QZW:(1+S)"—W+[3‘;X‘§V+(1+S B)—“—a—T

g ; S 0z oxdz 0z’
thermoelasticity without energy dissipation in the ’ o (16)
presence of a magnetic field are: , ,

o°T Jee
() The equations of motion in terms of displacement in a C20°T = o +eér 22 (11)

rotating medium with magnetic fields as follows:
du
, A Ow=2B% 4+ (1-2B)e—T,
p[ % — Q] = 3 (28 + Zm) + (A +21) %8 + P23 + (A + 1) ok — y 2L, ox
(-] e (e 3) 0 a0 a 0a= 289 +(1-2B)e—T, 12)
te= B (34 3
P[5 — Q2] = eHg (o + 58 + (A -+ 20) 58 + g+ (A 1) S — VO

(4) where
2 2 2
(i) The modified heat conduction equation is — _HeHy 2 _ 0_ + 0_ B = L.
(A+2u)’ ox2 = 072’ (A+2u)
2°T  9°T °T d%e . . .
v + 22 )= PCe — o2 +VYTo—=—> Fe (5) From equations (9) and (10) by using the value of steain
X we get the following equations
(ilThe stress-displacement-temperature relations with 2 2 3
. ; . du Je 0°T J°u Jdu
incremental isotropy are given by: 2_ -~ 2=
py-are gvensy PO TSP~ e ~avax % ox
GXX:Zug +Ae— T, (13)
Oz =252 +Ae—yT, (6) ow % 0T d°w ow
=4 (1+S-B) = — =5 = —Q2—.
rxz—u(%Jr%V) PG TSP o =57 “ a5,
(14)
(iii)The components of magnetic stresses are From equations (13) and (14), we get
d%e de
Bretf ou . ow (1+90%—D0°T = — —Q%-2Q—  (15)
Do = u ( X + {72) (7) ot ot
I, — _ BueH§ (0u + a_W) The mean value of the normal stresgesan be obtained
zZ= " ox " 9z as:
where, A and u are Lame’s elastic constantg, is the o= It 0z (16)
density,0,,, 0z, Tx; are the components of the stregsw 2

are the components of the displacemérns the time, T From equations (12) and (16) by using the value of strain
is the temperaturey = (3 + 2u)at wherear is the € and the normal stresses we get
coefficient of linear thermal expansiol, is the thermal
diffusivity, Ce isthe specific heat at constant straig,is o=o0e—-T a7
the temperature of the medium in its natural state,ynere
assumed to be such thar{—oTO << 1, where, a_ (2—33).
e (2uy ow o 2
ax 9z Eliminating e from equations (11), (15) and (16), we
Introducing the following non-dimensional variables  obtain after simple calculations as follows:

<X i)T: 'l(f(" Z)"git»/ = c|—;‘ <UKW> i )(; w), Q' =gQ (1+ 9020+ (1+S—a)0°T = 2T + %0 2% (T 1 0) - 2092,
= 9= O ey o waam (18)
(8)
2 2
where | is the length an€@r = =, C2 = ﬂ ,C2= mep _ (O EEr) 97T e 0% 19
. . . G 1 2 0'[2 + 2 0'[2' ( )
Here C,is the longitudinal wave velocnyi;g is the shear aCy aCy
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Fig. 1. Variations ofz,Hp, b,t andQ with respect toc on the displacement
3 Normal mode analysis Using equation (20), we can obtain the following
equations from equations (18) and (19) respectively
Solution of the physical variables can be decomposed in d2T* . .
terms of normal modes in the following form: ra CiT +Co”, (21)
(U weT,0)(xzt)= (U, w,e, T, g;")(x)e*™
(20)
where,i = v/—1, wis the angular frequency and b is the d2g* . .
wave numbers in the-direction. o2 —DiT"+D20 (22)
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Fig. 2: Variations ofz, w,Hp,b,t andQ with respect toc on the mean stresses

where where
T 0010 T
Cl=g2—éTz[w2(a+aT)+ab20$], d o* 0001 o
C= 2y, x|l [ = {ccoo0 drr
cTwz 2 > dx dx, 12 dx,
D; = ac%(us)[(lfg +2wQ)aCt — (1+S—a)(a+er)), ddO' D:D,0 O ddi
D2= spirg[(1+ S)(@bPCE — wPer) + aw?(CF +er) - (@7 + 2Qw)ac) % %
(23)
Equations (21) and (22) can be written in a vector-matrix T 0010
differential equation as follows: ag* 0001
V = * A= 25
o | C1C20 0 (25)
do* D; D200
dv =A (24) dX
dx
(@© 2017 NSP
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Fig. 3: Variations ofz, w,Hp,b,t andQ with respect toc on the temperaturé

4 Solution of the vector-matrix differential eigenvalue of matrix A are of the form:
equation A ==4A, £ (27)

Following the solution methodology through Where
eigenvalue approach [31], we now proceed to solve the Cr4Do)+(—1) 11 /((Ci3D2)2—4(CiDr—CoD )
vector-matrix  differential  equation  (24). The Ai= (CrrDa )V 1102 4G CGl)) 1,2
characteristic equation of a matrix A is

The right eigenvectory which it corresponds to the

A (C1+Dy)A2+ (C1D,—CoD1) =0, (26) eigenvalue\ can be written as:

(A2-Dy)
Let AZ and A2 are the roots of the above characteristic N et )8
equation with positive real parts.Then all the four roots of X= A(A2-Dy) (28)
the characteristic equation (26) which are also the AC,
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Fig. 4. Variations ofz, w,Hgp,b,t andQ with respect toc on the dilatationaé;

From Eq. (28) we can easily calculate the eigenvectorThus the field variables can be written from the equation
Xxi(i = 1,2,3,4) corresponding to the eigenvalue (25), forx> 0 us:
+A; (i=1, 2). For our further reference we shall use the

following notations: T*(x) = Al(/\lz _ Dz)e”\lx—irAz(/\zz _ Dz)ef)\zx’ (31)
Xi=MRAhoy Xe=Xhooa Xs=Xhoa: Xa= X,
(29)

The solution of equation (24) can be written as follows:
V= A]_XZEi)\lX + A2X4€7A2X (x>0), (30)

where, the terms containing exponentials of growing/ISO from the equation (17) on using equations (31) and
naturally in the half-space variablehas been discarded (32), we get

due to the regularity condition of the solution at infinity

and A;, A, are constants to be determined by thee’(x) = 2[A1(A2+Cy —D2)eA1¥+ Ay(AZ+Cy — Dp)e 72X
boundary conditions of the problem. (33)

0" (x) = Cp(Are X + Age™2%), (32)
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5 Application The solution of the ordinary differential equation (39)
takes the form
In order to determine the constams, Ay, we need to

consider the following boundary conditions at the surface u*(x) = Age X+ %e*Alij %e*@‘
X=0: (AL =Ad) (A7 =A§)
(40)
(a)Free surface traction: whereA? # A2 £ A2 andAg is a constant to be determined

from boundary conditions (34).
From equations (12) and (20) after using equation (24) we

have
0(0,zt) = 0x(0,zt) = 0%(0,21t) =0 (34a) dr0 (1-28) 128 a)
x u* (X - * - —a *
which gives O = 2P x  q ¢ (X)+<7a >T (X).
(41)
0" (X) = Oy (X) = 04(x) =0 at x=0 (34b)  Using the boundary conditions (34) in the above equation,
we get
(b)The thermal boundary condition is 9
| du'()  (a+2B-1\_,
On+ vT = Qoewt+lbz (35) dx = ( o > T (X) at x=0 (42)

whereq, are the normal components of the heat flux and hence from equations (31), (40) and (42), we get
vector, v is Biot's number, andQye™*P? represents the

intensity of the applied heat sources. In order to use they [Qo(l—G—ZB)()\f—AZZ)  mAL mAs
thermal boundary condition, we use the generalized © — alAy MAZ=2AD)  A(AZ-22)
Fourier’s law of heat conduction in the non-dimensional (43)
form, namely whereA is given by (38a).
oT The solutions of equations (31)-(33) and (40) by using (20)
%="%n (36)  can be written as
From Egs. (34), (35) and (21), we get T(x,2,t) = € cogbz)[Ay(A2 — Do) M+ Ay(A2 — Dy)e 72X,
dT* (44)
vT* — =Qp at x=0 (37)
dx o(x,zt) = Cie™ cogbz)[AseM* + Aje 2| (45)
Using the boundary conditions (34) and (37) in equations
(31) and (32) respectively, we get e(x,zt) = ww( A2 +Cy— Dp)e M¥+ Ag(A2+Cy — Dp)e 72X,
(46)
Al()\1+ V)()\f — Dz) +A2()\2 + V)()\Zz — Dz) =Qo
At+A2=0 u(x,z t) = e coghz)[Age A + e e Mt e e hex,
(47)

Solving the above system of equations by using Cramer’s
rule we obtain

A= % and A,— —AQo (38a) © Numerical results and discussion
In order to illustrate the theoretical results obtained in
where the preceding sections, we now present some numerical
results. The material chosen for this purpose physical data
A = (A1 —A2)[(A1+A2)(V + A1+ A2) — A1A2 — D) (38b) for which is given below12:
To get the displacement, we will use equation (13) and wesr = 0.0168 a =067, B=025 w=2
can write it after using equation (20) as follows: a=12, b=13 ~v=50 Q=100 Cr=2
o2 Taking into consideration, z =1.09, t=0.0p, =4.25,
{—2 - /\5] U = nie X4 e A2 (39) Hp=2.0,A=20, b=0.006¢v=3.08.
dx Fig. (1a-1f) shows the variations of the non-dimensional
, 0?2 12 5 values for displacement componeantvith respect to the
where,wp = G, Qp = 5 .AF = (0*+wp + Qp) axial x with a wide rangg0 < x < 1) of different values
and of the axial z, frequencyw, magnetic fieldHp, wave
numberb, time t and rotationQ. It is observed that the
ni = (%) [(14+S-B)C1+(1+S—a—B)(A?—Dz)] i=12  displacement component increases with the increasing of
(@© 2017 NSP
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axial z, frequency and rotation, while it decreases with 3.The magnetic field and rotation play a significant role in
increasing of magnetic field, wave number and time asthe distribution of all the physical quantities. The
well it increases with increasing of the axiallt is clear  parameters of all the physical quantities vary (increase or
that all quantities have a non zero value in a boundedecrease).

region of the plane. These results obey the physicalh.The displacement component, the mean value of the
properties of thermoelasticity. normal stresseg and the dilatatiore show increases and
Fig. (2a-2f) shows the variations of the non-dimensionaldecreases with increasing of the physical quantities with
values of the mean value of normal stresgeswith respect tox due to presence of magnetic field and
respect to the axiat with a wide rangg0 < x < 1) has rotation. 5.The results are graphically described for the
oscillatory behavior in the whole range of axialfor medium of copper. The present theoretical results may
different values of the axial frequencyw, magnetic field  provide interesting information for experimental
Ho, wave numbeb, timet and rotationQ. It is observed scientists/researchers /seismologists working on this
that the mean value of normal stress increases with thgubject. 6.The nature of variations of all the studied
increasing of axig and frequency, while it decreases with physical quantities in the Green—Naghdi model Il is very
increasing of the magnetic field, wave number, time andmuch similar to the nature of the variations of the field
rotation as well it satisfied the boundary conditions andvariables in the Lord—Shulman model of thermoelasticity,
physical meaning. It is clear that all quantities have a nonsee Ezzat and Youssél! for details.

zero value in a bounded region of the plane. 7.All the physical quantities satisfy the boundary
Fig. (3a-3b) shows the variations of the non-dimensionalconditions.8-The result provides a motivation to
values of temperaturé with respect to the axiad with @ jnvestigate conducting thermo-electric materials as a new
wide range(0 < x < 1) for different values of the axi@,  class of applications thermo-electric solids. The result
frequencyw, magnetic fieldHo, wave numbeb, timetand  provides a motivation to investigate conducting
rotation Q. It is observed that the temperature inCI’ease&hermo-ebctriC materials as a new class of app"ca’[ions
with the increasing of magnetic field, wave number, time thermo-electric solids. The results presented in this pape
and rotation, while it decreases with increasing of axis should prove useful for researchers in material science,
and frequency, as well it is shifting from the negative into designers of new materials, physicists as well as for those

positive gradually with the axiat under influence of the  \yorking on the development of
wave number. It is clear that all quantities have a non zerqnagneto-thermo-elasticity and in practical situationsias
value in a bounded region of the plane. geophysics, optics, acoustics, geomagnetic and oil

Fig. (4a-4f) shows the variations of the non-dimensionalprospecting etc. The used methods in the present article
values of dilatatiore; with respect to the axiat with a are app|icab|e to a wide range of pr0b|ems in
wide range(O <x< 1) for different values of the axial thermodynamics and thermoe|agticity_

z, frequencyw, magnetic fieldHp, wave numbeb, timet

and rotationQ. It is observed that the dilatation increases

with increasing of magnetic field, wave number, time and

rotation, while it decreases with increasing of axisd Acknowledgment

frequency, while it decreases with increasing of the axial
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