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Abstract: Topological index is a number associated with moleculaplgrand this number correlate certain physico-chemical
properties of chemical compounds. In the study of QSAR/Q3&Mlogical indices such as, Randic index, Zagreb indereral sum-
connectivity index, atom-bond connectivity (ABC) indexdagieometric-arithmetic (GA) index are exploited to estientéie bioactivity

of chemical compounds. In this paper, we compute genetakandic , first and second Zagreb, first and second multipireb,
hyper Zagreb, general sum connectivity indaBCandGA indices of the line graph of subdivision graph of complefegliite graphs.
Moreover, we also give an explicit formula f&BC; and GAg indices of the line graph of subdivision graph of completeabiite
graphs.

Keywords: Zagreb indices, degree, complete bipartite graph, linptgrsubdivision graph.

1 Introduction 35,36,37,38,39,40]. A number of graphs are composed
of simpler graphs that serve as their basic building blocks.

During past few decades, role of Graph theory hasPue to this, a large number of chemists and
increased considerably in Chemistry. Topological indicesmathematicians have been paying their attentions to study
basically attach a number to a molecular graph whichthe properties of subdivision graphs of well-known
gives a lot of useful information about that organic families of graphs. In this paper, we have observed that
compound. The significance of topological index is the complete bipartite grapgth m can be constructed from
usually associated with quantitative structures propertysimpler star graphSy and hence use this idea to calculate
relationship (QSPR) and quantitative structure activity the topological indices of this family.
relationship (QSAR) (see2f]). First topological index A bipartite graph, also known as bi-graph, consists of
was introduced in 1947 by famous chemist Harolda set of vertices which is decomposed into two disjoint
Wiener 26], known as Wiener index now a day. During sets such that no two vertices within the same set are
90’s a large number of other topological indices came intoadjacent. A cyclic graph is bipartite if and only if its
existence and revolutionized the world of chemistry. cycles are of even length, a well-known result. In
Several physicochemical properties such as moleculaparticular, all acyclic (having no cycles) graphs are
weight, density, boiling point, heats of vaporization, bipartite. A complete bipartite graph is a bipartite graph
vapor pressure, molar volume, equalized such that every pair of graph vertices in the two sets are
electronegativity, infrared group frequency, isomer tshif adjacent. If there are n and m vertices in the two sets, the
quadruple splitting, edge shift, molar refraction, dipole complete bipartite graph is denoted Ky, ) -
movements, van der wall volume, proton-ligand In 2011, Ranjini et al. calculated the explicit
formation and polarizability of organic compounds can beexpressions for the Shultz indices of the subdivision
modeled using topological indices, se[31,32,33,34, graphs of the tadpole, wheel, helm and ladder grap#s [

* Corresponding author e-majlian.garcia@upct.es

(@© 2017 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/110610

1632 NS 2 A. Aslam et al.: Topological indices of the line graph...

They also studied the Zagreb indices of the line graphs of In 2012,Ghorbaniet. al [B] defined new versions of
the tadpole, wheel and ladder graphs with subdivision inZagreb indices of a grap®. These are named dist
[28. In 2015, Su and Xu calculated the general multiple Zagreb index PMG), second Zagreb index
sum-connectivity indices and co-indices of the line graphsPM,(G) and these indices are defined as

of the tadpole, wheel and ladder graphs with subdivision

in [30]. In [29], Nadeem et al. computed ABC4 and GA5 PMi(G) = [] I[d(u)+d(v)] (5)
indices of the line graphs of the tadpole, wheel and ladder uveE(G)
graphs by using the notion of subdivision
PMp(G) = [] [d(w) x d(v)] (6)
uveE(G)

2 Basic concepts and terminology

A graphG — (V,E) with vertex setv and edge SeE is Recently, Shirdel et al.20] proposed thehyper-Zagreb

. ) . . _dndexas
connected if there is a connection among any pair of
vertices ofG. A chemical graph is a graph whose vertices HM(G) = Z [d(u) +d(v)]2 @)
denote atoms and edges denote bonds among these atoms. weE(G)

The degree of a vertexdenoted bydy is the number of
vertices attached to the vertexIn a chemical grapli, Hundreds of research papers have been published on
dy < 4 for all ve V(G). Let us review some important Zagreb indices few are mention hefg?,9,10,16,23].

topological indices: The widely used connectivity topological index is
The first degree based topological index is Randicatom-bond connectivity ABC) index introduced by
index [19] denoted b)R;ZL (G) and is defined as: Estrada et al. ing]. The ABCindex of graphG is defined
as
1

R1(G) =
2 uve%@ vdudy ABC(G) = dutdv—2 ®)
uve%(G) dydy

Bolloas and Erdos in 2 defined independently the
concept of general Randic ind&. The general RandiC D. Vukicevic and B. Furtula introduced the geometric

indexRy is defined as, arithmetic (GA) index in22] and defined as
Ry = (dydhy)® 1) 2y/dyd
uve%(G) GA(G) = d +u dv' (9)
uveE(G) U TV

The so-called sum-connectivity index is a recent invention . _ . _
by Bo Zhou and Nenad Trinajsti§][and it's definedas ~ The fourth version oABCindex is proposed b@horbani
[12] et al.
1

uve%(G) Vay+dy ABG(G) = ¥ 4/S““;uiss’/_z (10)
uvek(G)

In 2010, the general sum-connectivity indg%(G) was

SCI(G) =

introduced in f]: Graovacet al. [L3] introduced the fifth version dBAindex
a and defined as
Xa(G) = z (dy+dy)7. (2
uveE(G) 2
Gr) -y (1)
In 1972, 1. Gutman[11] introduced one of the oldest uveE(G)

topological index based on degree of vertices of the graph
G named adirst Zagreb indexThe first ZagerliM1(G)) _ _ o
andsecond Zagreb MG) is defined as 3 Constuction of line graph of subdivision

raph of complete bipartite graph and main
W(G)= 5 P ¥ wrdu] @) g ompIETe DIPATTE arap
veV(G) uvekE(G)

We need some terminology and need to understand a

My(G) = Z [d(u) x d(v)] (4)  construction of graphs in order to calculate the
WeE(G) topological indices. By subdivision of a graph, we
mean a graph obtained frof by replacing each edge of
whered(u) is the degree of the vertexin the graphG. G with P,, i.e. path of length 2. We shall denote 8§(G),

the subdivision graph of5. The line graphL(G) of a
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Fig. 1: Knm. Fig. 3: L(S(Sn)).

Fig. 2: Sy andL(Sy).
Flg 4. L(S(K35))

graphG is the graph whose vertices are exactly the edges
of the graphG and two vertices are adjacent i{G) if

and only if they have common vertex in the graph in the Figured. Here note that the degrees of the vertices
Complete bipartite graphs constitute an important andgre either 3 or 5. Similar pattern has been observed in
large family of graphs. A complete bipartite grafis a  general case. It has also been observed that theraGe
graph whose vertex s®t(G) can be partitioned into two  ggges among these- L(S(Sn) graphs. As each(S(Sn))
non-empty set¥; andV- in such a way that every vertex cgnsists ofm+ C' edges and there aresuch graphs so
in V1 is adjacent to every vertex b, no vertex inViis  the total number of edges in(S(Knm)) will be
adjacent to a vertex iy and no vertex in; is adjacent mC) + nC +mn On the other hand, as there arm
to a vertex inV,. Throughout this paper, we shall assume gqges ik, so there will be thn edges inS(Knm) and
V1] = n-and|V,| = m and we shall denote the complete pence nvertices in its line graph. ’
bipartite graph a¥nm (see Figurel). In some sense, we
can think of this graph as it is composed of thestars
graphsSy. The star graplsy and its line grapt.(Sy) are
shown in the figure. Let us now examine the line graph
of the subdivision graph of the star graph, LéS(Sy)).
It is an easy exercise to note that this graph consists of
complete grapliKm along with one edge attached to each
vertex as shown in the Figug It has been observed that
when we construct the line graph of the subdivision grap
of the complete bipartite graph, i.e(S(Knm)) we obtain
n graphs of the formL(S(Sy)) (see Figured) connected
with each other.
For example if we tak@ = 3 andm = 5 then the line
graph of the subdivision graph of the complete bipartite

Let G be a molecular graph ared= u,v is an edge of
G. Then we define the degree vector associated to the
edgee to be (dy,dy). The above construction shows that
degrees of vertices of the line graph of subdivision graph
Qf complete bipartite graph.(S(Knm)) can bem or n
only, so the possible degree vectors in this graph can be
(m,m),(n,n) or (n,m) only. The following tables
hsummarize this data

Table 1: Edge partition of the line graph of subdivision graph of
Knh.m based on degree of end vertices.

graphKss is shown in the Figure. Note that there are | Degree vectofdu, dv) (m;nm) (n,n) (m,n)
3— L(S(Ss)) which are attached with each other as shown_Number of edges nQ mG nm
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Now we are ready to compute the RandRy ], first

Let G be a molecular graph arel= uv is an edge ofG.

and second Zagreb, first and second multiple ZagrebThen the sum-degree vector associated to the edge
Hyper Zagreb, sum connectivity, atom-bond connectivity (S;,S,). The above construction also gives us opportunity

ABC and geometric-arithmetiGA indices of the line
graph of subdivision graph of complete bipartite graphs.

Theorem 1The general Randic index,Rand the general
sum connectivity indexy of the line graph of subdivision
graph of complete bipartite graph(B(Knm)) is

Ra (L(S(Knm))) = %(n(mf 1)mPo+ L 4 20 ImT+  m(n— )2t

Xa (L(S(Knm))) = 2% In(m— 1)me L m(m- n)® + 2% “m(n — (@Y

ProofAs above construction reveals thiatL (S(Knm)))
contains 2nn vertices anch(CJ'+ m) + M edges.
Now there arenC;' edges whose both vertices have
degree asm, m), there areamedges whose degree vector
is (n,m) and remainingw edges havén,n) as the
degree vector. Thus, by using the definition we obtain th
required result.

If we puta = 1 in the formulas of general Randic index,
we get
Ri(L(S(Knm))) = 3(n(m—1)m? + 2n?n? + m(n— 1)nd).
Similarly usinga = 1 in the formula of general sum
connectivity index , we getSCI(L(S(Knm))) =
n(m—1)m?+mn(m+n) +m(n— 1)n?.
Corollary. The classical Randic
nm+ /nm— 550

Note that./nm and 5T represents the geometric and
arithmetic means af, mrespectively.

index will be

Theorem 2Let G be line graph of subdivision graph of
complete bipartite graph &, then

M1(G) = mn(n? +n?)

M2(G) = (M 41— (m—n)?)
PM(G) = m®n®(m—1)(n—1)(m+n)
mPné
PMz(G) = ——(m—-1)(n—-1)

HM(G) = mn(2m® +2n* — (m—n)?)

ProofThe edge partition based on the degree of end GAs(G)

vertices is shown in Table 1. We apply Formal&, 5, 6
and7 to the Table 1 and get the required indices.

to computeS, and hence the corresponding sum-degree
vectors. In (S(Kin,m))) , possibilities for S, are
m-+n(n—1) andn+ m(m— 1) only, for any vertexu.
There are three types of sum-degree vectors in the line
graph of subdivision graph of complete bipartite graph
L(S(Kn,m))) which are (n + m(m — 1),m + n(n —
1)),(n + mm — 1),n + mm — 1)) and
(m+n(n—1),m+n(n—1)) and the number of edge
corresponding to these sum-degree vectorsnangC;'
andmG] respectively. The following table summarize this
data

Table 2: Edge partition of the line graph of subdivision graph of
Kn,m based on sum-degree of end vertices.

Sum-degree vectdS,, S,) Number of edges
(n+m(m-1),n+m(m-1)) nCy
(m+n(n-1),m+n(n-1)) mC)

(m+n(n-1), n+m(m-1)) nm

Now we compute two important topological indices
fourth ABC and fifth GA for line graph of subdivision
graph of complete bipartite grapl{S(Knm)). In order to
compute these indices, we need an edge partition of
L(S(Knm)) based on the degree sum of vertices lying at
unit distance from end vertices of each edge. In Table 2
such a partition is shown. In the following theoreABC,
andGAs indices ofL(S(Knm)) is computed.

Theorem 4Let G be line graph of subdivision graph of
complete bipartite graph (S(Knm)), then

nm(m-— 1)
m\/n@—m+n—l
vn—n+m-1

ABG(G)

nm(n—1)
V2(m+n2 —n)

mn mé +n2 —2
+ (n+m? —m)(m+n? —n)

_mnm+n—2) nmy/(n+nm? —m)(m+n?—n)
B 2 * n2 +m? ’

ProofThe edge partition based on the degree sum of

By Similar arguments we can obtain the expressions of?€ighbors of end vertices is shown in Table 2. We apply

ABC and GA indices of line graph of subdivision graph
of complete bipartite graph(S(Kn m)).

Theorem 3Let G be line graph of subdivision graph of
complete bipartite graph (S(Knm)), then

ABC(G) :\/?(ﬁ(m— 1)++yv/m(n—1)++v2m+2n—4)

n%m%
n+m

_mnm+4n—2)
N 2

GA(G) +2

Formulal1l0 and 11 to the Table 2 and get the required
indices.

4 Conclusion

We have computed degree and sum-degree vectors of all
the edges in the line graph of subdivision graph of
complete bipartite graphL(S(Kn,m))). Using that
information we have computed the general Randic, first
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