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México.

2 Higher Colleges of Technology, Abu Dhabi Men’s College, P.O. Box 25035, Abu Dhabi, United Arab Emirates
3 National Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro #1, Sta. Marı́a Tonantzintla 72840, Puebla, México.
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1 Introduction

The importance of research in nonlinear differential
equations is that many phenomena, practical or
theoretical, are of nonlinear nature. On the engineering
and science fields, physical phenomena are frequently
modelled using nonlinear differential equations. Scientists
who work in such disciplines constantly face the
problems of solving linear and nonlinear ordinary
differential equations, partial differential equations,and
systems of nonlinear ordinary differential equations.
Recently a wide variety of methods focused to find
approximate solutions to nonlinear differential equations,
as an alternative to classical methods, have been reported.
Such as those based on: variational approaches [1,2,3,4,
5], tanh method [6], exp-function [7,8], Adomian’s
decomposition method [9,10,11,12,13,14,15], parameter
expansion [16], homotopy perturbation method [17,18,
19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,

15,36,37,38,39,40,41,42], homotopy analysis method
[43,44], perturbation method [45,46], modified Taylor
series method [47], optimal homotopy analysis method
[48,49,50,51], differential transform method [48,49], Lie
group analysis [51] among others. Also, a few exact
solutions to nonlinear differential equations have been
reported occasionally [52].

From all the above methods, the HPM method is one
of the most employed because has been successfully used
in many nonlinear problems, and its practical application
is simpler than other techniques. However, HPM method
often requires adjustment parameters in order to obtain
better results [26,30,31,34,35,36], therefore this study
proposes a systematic fashion to introduce adjustment
parameters in order to enhance the HPM method. Finally,
as we will see, DOHPM method is inspired in the method
of coefficients undetermined, therefore will be instructive
establish an analogy between them.
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This paper is organized as follows. In Section2, a
brief review of the basic idea for the HPM method is
provided. Section3, will introduce the basic idea of
method of undetermined coefficients. In Section4, we
will present DOHPM method, as a modified version of
HPM method. Additionally, Section5 present two cases
study. Besides a discussion on the results is presented in
Section6. Finally, a brief conclusion is given in Section7.

2 Standard HPM

The standard Homotopy Perturbation Method (HPM) was
proposed by Ji Huan He [17,18], it was introduced like a
powerful tool to approach various kinds of nonlinear
problems. The homotopy perturbation method can be
considered as a combination of the classical perturbation
technique and the homotopy (whose origin is in the
topology), but not restricted a small parameter as
traditional perturbation methods. For example, HPM
method requires neither small parameter nor linearization,
but only few iterations to obtain accurate solutions [17,
18].

To figure out how HPM method works, consider a
general nonlinear equation in the form

A(u)− f (r) = 0 r ∈ Ω , (1)

with the following boundary conditions

B(u,
∂u
∂η

) = 0, r ∈ Γ , (2)

whereA is a general differential operator,B is a
boundary operator,f (r) a known analytical function and
Γ is the domain boundary forΩ . A can be divided into
two operatorsL andN, whereL is linear andN nonlinear;
from this last statement, (1) can be rewritten as

L(u)+N(u)− f (r) = 0. (3)

Generally, a homotopy can be constructed in the form
[17,18]

H(v, p) = (1− p)[L(v)−L(u0)]+

p[L(v)+N(v)− f (r)] = 0, p∈ [0,1], r ∈ Ω .
(4)

or

H(v, p) = L(ν)−L(u0)+ p[L(u0)+N(ν)− f (r)] = 0,

p∈ [0,1], r ∈ Ω ,
(5)

where p is a homotopy a parameter, whose values are
within range of 0 and 1,u0 is the first approximation for
the solution of (3) that satisfies the boundary conditions.

Assuming that solution for (4) or (5) can be written as
a power series ofp.

ν = ν0+ν1p+ν2p2+ · · · (6)

Substituting (6) into (5) and equating identical powers
of p terms, there can be found values for the sequenceu0,
u1, u2, . . .

Whenp→ 1, it yields in the approximate solution for
(1) in the form

ν = ν0+ν1+ν2+ν3 . . . (7)

Another way to build a homotopy, which is relevant for
this paper, it is by considering

the following general equation

L(ν)+N(ν) = 0, (8)

where L(ν) and N(ν) are the linear and no linear
operators respectively. It is desired that solution for
L(ν) = 0 describes, accurately, the original nonlinear
system.

By the homotopy technique, a homotopy is constructed
as follows

(1− p)L(ν)+ p[L(ν)+N(ν)] = 0. (9)

Again, it is assumed that solution for (9) can be written
in the form (6); thus, taking the limit whenp→ 1 results
in the approximate solution of (8).

3 Basic Idea of Method of Undetermined
Coefficients

As it is well known, a linear differential equation of
constant coefficients

any(n)(x)+an−1y
(n−1(x)+ ...+a2y

′′(x)+a1y′(x)

+a0y(x) = f (x),
(10)

can be written as [53,54]

(anD(n)+an−1D
(n−1)+ ...+a2D

2+a1D+a0)y(x) = f (x).
(11)

Expression
P(D) = anD(n) + an−1D(n−1) + ... + a2D2 + a1D + a0
where, Dny = dny/dxn, is called linear differential
operator of ordern.

For this case, whereai (i=0,1,2, ..n) are constants,
P(D) can be possibly factorized, in terms of differential
operators of lower order, and therefore it can be handled
as an ordinary polynomial. Also it can be shown that the
factors ofP(D) commute.
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Suppose thatf (x) is a function which has derivatives
up to order n, then if

(anD(n)+an−1D
(n−1)+ ...+a2D

2+a1D+a0) f (x) = 0,
(12)

is said thatanD(n)+an−1D(n−1)+ ...+a2D2+a1D+
a0, annihilate tof (x).

For example

1.Dnannihilate the functions 1,x, x2, x3, . . . .,xn−1.
2.(D − a)nannihilate the functionseax, xeax, x2eax,

xn−1eax.
3.D2+β 2 annihilate tocos(βx) andsen(βx).

In [53,54] can be find additional examples of
annihilators operators.

Since a linear non homogeneous ordinary differential
equation of constant coefficients,

can be written as

P(D)y= g(x), (13)

ifP1(D) is an annihilator operator ofg(x), then

P1(D)P(D)y= 0. (14)

General solution of linear equations is expressed as
the sum of the complementary and particular solutions.
Complementary solution results of solving

P(D)y= 0, (15)

particular solution is finding of solving homogeneous
equation (14) [53,54].

4 DOHPM method

The method of undetermined coefficients to solve
nonhomogeneous differential equations converts the
original nonhomogeneous equation (13) to one higher
order homogeneous (14). The process for obtaining the
particular solution, leads to calculate values for certain
coefficients (constants), in order that the solution of (14)
corresponds to the solution of (13).

In this section, we will propose by analogy how
obtaining analytical approximate solutions for nonlinear
differential equations, using a modified version of HPM.

Consider for instance, the homotopy given by (9), this
equation can be simplified as

L(ν)+ pN(ν) = 0. (16)

It is important to notice, that in order to obtain a good
approximation, DOHPM requires that the solution of
L(ν) = 0 sketches the main qualitative characteristics of
(8).

The application of an adequate differential annihilator
operatorP(D) to (16), results in the following differential
equation of higher order than (16)

P(D)P1(D)(ν)+ pP(D)N(ν) = 0, (17)

where linear operatorL(ν) has been expressed as
P1(D)(ν) = L(ν).

For obtaining the equation (17), we used the obvious
fact that

P(D)(0) = 0. (18)

OperatorP(D) is selected such that the solution of the
equationP(D)P1(D)(ν) = 0, describes better the nonlinear
equation (8) thanL(ν) = 0 (P1(D)(ν) = 0).

Next, we apply the HPM method to (17), assuming that

ν = ν0+ν1p+ν2p2+ ... (19)

Substituting (19) into (17) and equating identical
powers of p terms, there can be found values for the
sequenceν0, ν1, ν2, . . .

Whenp→ 1, it yields in the approximate solution for
(17) in the form

ν = ν0+ν1+ν2+ν3... (20)

As occur with the method of undetermined
coefficients, (17) contains additional parameters to be
determined (as it will be seen, these parameters could be
inserted from the beginning as part of the operatorP(D)) .
The method DOHPM consists in adjusting them, so that
an approximate solution of (17) corresponds to an
approximate analytic solution of (8).

In order that additional constants, resulting from the
solution of (17), can be employed as adjustment
parameters, it is proposed that the boundary conditions of
the differential equation of lowest order resulting from
(17), are the same as those of (16). Equations for the other
orders are solved applying the usual procedure of HPM to
(17).

5 Cases Study

5.1 Quadratic Riccati Equation

Riccati equation is an important case of nonlinear
differential equation, because its applications in
engineering sciences, such as stochastic realization
theory, optimal control, and robust stabilization. Recent
applications of this equation, includes such areas as
financial mathematics [5] among others. We will consider
the quadratic Ricatti equation [5,15]

dy
dx

= 2y(x)− y2(x)+1, y(0) = 0. (21)

It should be noticed that (21) has exact solution [15]
(see Figure1 and discussion section).
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The above equation can be expressed in terms of
operators as

(D−2+ y)y= 1, (22)

An adequate homotopy, which takes into account that
the first approximation for the solution of (21) satisfies
the initial condition y(0) = 0, and adopts the correct
asymptotic behavior (see Figure1) is given in accordance
with (16) by

(D+α)y+ p(−α −2+ y)y= 1, (23)

whereα is an adjustment parameter.
By substituting (6) into (23), leads to first order

approximation

(D+α)ν0 = 1, ν0(0) = 0 (24)

with solutionν0(x) = 1
α (1−e−αx).

Although this function satisfies the conditionsν0(0) =
0 andν0(∞) = 1

α = constant, is too restrictive because it
only contains one adjust parameter.

To improve it, we apply the annihilator operatorD to
(23), to obtain (see (17))

D(D+α)y+ p(−(α +2)Dy+Dy2) = 0, (25)

Substituting (19) into (25), and arranging coefficients
with p powers we construct the following equations

p0 : (D+α)Dν0 = 0, ν0 = 0, (26)

p1 : (D+α)Dν1− (α +2)Dν0+D2ν0 = 0,

ν1 = 0, ν ′
1 = 0, (27)

p2 : (D+α)Dν2−(α+2)Dν1+2ν0Dν1+2ν1Dν0 = 0,

ν2 = 0, ν ′
2 = 0, (28)

p3 : (D+α)Dν3− (α +2)Dν2+D(ν2
1 +2ν0ν2) = 0,

ν3(0) = 0, ν ′
2(0) = 0 (29)

. . .
Note that the initial conditions from (26) and (24) are

chosen equal, in order to dispose of one additional
parameter.

After solving (26), we obtain

p0 : ν0(x) = c0(1−e−αx), (30)

which satisfies the conditionν0(0) = 0 and has the
correct asymptotic behavior (see Figure1).

Instead of adjusting any of the constantsc0 andα, to
satisfy the initial conditiony′(0) of second order equation

D2y−2Dy+Dy2 = 0 (31)

where (31) results from application of D to (22). We
will use c0 andα, in order that the approximate solutions
of (31), correspond to approximate solutions for (21) (or
(22)).

In the same way, we obtain the solutions for equations
(27)-(29).

p1 : ν1(x) =
c2

0e−2αx

α
+2c2

0e−αxx−e−αxc0αx−e−αxc0

−2e−αxc0x−
2c0e−αx

α
+

c0(−c0+α +2)
α

(32)

p2 : ν2(x) =−e−αxc0αx− 2c3
0e−αx

α2 − 4c0e−αx

α

−e−αxc0+
3c2

0e−2αx

α +4c2
0e

−αxx+
4c2

0e−αx

α

−4e−αxc0x+
c0(α2−6c0−3c0α+4α+2c2

0+4)
α2

+2c2
0e−2αxx+2c2

0αe−αxx2− 1
2c0α2e−αxx2

−2c0αe−αxx2+
8c2

0xe−αx

α − 4c0xe−αx

α

− 2c3
0xe−αx

α +
4c2

0xe−2αx

α − 4c3
0xe−2αx

α

+4c2
0e−αxx2−2c0e−αxx2−2c3

0e
−αxx2

− c3
0e−3αx

α2 +
6c3

0e−2αx

α2 +
8c2

0e−αx

α2

− 4c0e−αx

α2 − 2c3
0e−2αx

α2 − c2
0(−3c0+4α+8)e−αx

α2 .
(33)
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p3 : ν3(x) =−e−αxc0αx+
c3
0e−αx

α2 − 4c0e−αxx3

3 − 6c0e−αx

α

−c0e−αx− 5c2
0e−2αx

α −6e−αxc0x−2c2
0e

−2αxx

+2c2
0e

−αxx2− 1
2c0α2e−αxx2−3c0αe−αxx2

− 12c0xe−αx

α +
c3
0xe−αx

α − 8c2
0xe−2αx

α +
4c3

0xe−2αx

α

+8c2
0e

−αxx2−6c0e−αxx2− c3
0e

−αxx2+
c3
0e−3αx

2α2

− 20c2
0e−2αx

α2 − 12c0e−αx

α2 +
6c3

0e−2αx

α2 +
2c2

0e−αxα2x3

3

− 2αc3
0x3e−αx

3 +
8c2

0e−αxx3

3 − 1
6c0e−αxα3x3

−c0e−αxα2x3−2αc0e−αxx3+
2c3

0xe−αx

α2

− 8c2
0xe−2αx

α2 − 2c3
0x2e−αx

α +
8c3

0xe−2αx

α2 − 4c0x2e−αx

α

− 8c0xe−αx

α2 +
8c2

0x2e−αx

α − 4c3
0x3e−αx

3 +
8c2

0x3e−αx

3

− 20c2
0e−2αx

α3 +
c3
0e−3αx

α3 +
12c3

0e−2αx

α3 +
2c3

0e−αx

α3

− 8c0e−αx

α3 +
c2
0(16α2+64α−19c0α−38c0+64)e−αx

2α3

+
c0(α3−12c0α−3c0α2+6α2+2c2

0α+8+12α−12c0+4c2
0)

α3 .
(34)

. . .
and so on.
By substituting solutions (30), (32)-(34) into (19) and

calculating the limit whenp → 1, results in a third order
approximation

y(x) = lim
p→1

(

3

∑
i=0

νi p
i

)

. (35)

Constantsc0 andα, are calculated using the Nonlinear
Fit build-in command from Maple 15, obtaining

y(x) = 2.4252−8.0294xe−3.6046x−7.329x3e−3.6046x

−9.9728x2e−3.6046x−0.15446xe−7.2092x

−2.26285e−3.6046x−0.1618e−7.2092x

−0.00054e−10.814x.
(36)

5.2 Approximate Solution of Gelfand’s
Equation.

As it is known, Gelfand’s equation [44] (also known as
Bratu’s problem in 1D) models the chaotic dynamics in
combustible gas thermal ignition. Therefore it is important
to search for accurate solutions for this equation.

The equation to solve is

d2y(x)
dx2 + εey(x) = 0, 0≤ x≤ 1,

y(0) = 0, y(1) = 0, (37)

whereε is a positive parameter, which value we choose
asε = 3.

It is possible to find a handy solution for (37) by
applying the DOHPM method, and identifying terms:

L(y) = y′′(x), (38)

N(y) = ey(x), (39)

where prime denotes differentiation respect tox.
To solve (37), first we expand the exponential term of

Gelfand,s problem, resulting

y′′+ ε
(

1+ y+
1
2

y2+
1
6

y3+ ...

)

= 0, 0≤ x≤ 1,

y(0) = 0, y(1) = 0, (40)

in terms of differential operators

(

D2+ ε
(

1+
1
2

y+
1
6

y2
))

y+ ε = 0. (41)

In order to obtain an analytical solution we construct a
homotopy in accordance with (16)

(

D2+ pε
(

1+
1
2

y+
1
6

y2
))

y+ ε = 0, (42)

applying the annihilator operatorD2 to (42), we obtain

(

D4+ pε
(

D2+
1
2

D2y+
1
6

D2y2
))

y= 0. (43)

By substituting (19) into (43), and equating identical
powers of p, we obtain the equations

p0 : D4ν0 = 0, ν0(0) = 0, ν0(1) = 0, (44)
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p1 : D4ν1+ ε
(

D2ν0+
1
2

D2ν2
0 +

1
6

D2ν3
0

)

= 0,

ν1(0) = 0, ν ′
1(0) = 0,

ν1(1) = 0, ν ′
1(1) = 0. (45)

. . .
After solving the above equations, we obtain

p0 : ν0(x) = A(x3− x)+B(x2− x), (46)

p1 : ν1(x) = −A3x11

660 − A2Bx10

180 +
(

A2B
144 +

A3

144−
AB2

144

)

x9

+
(

−B3

336 −
A2

112+
AB2

56 + A2B
56

)

x8

+
(

−A3

84 − A2B
42 − AB

42 +
B3

84

)

x7

+
(

−BA2

60 + A2

30 −
B2

60 −
B3

60 +
AB
30 −

AB2

30

)

x6

+
(

AB
20 +

A3

120+
AB2

40 + B2

20 +
A2B
40 + B3

120−
3A
20

)

x5

+
(

−B
4 − B2

24 −
A2

24 −
AB
12

)

x4

+
(

9A
20 +

B
2 −

A2B
1680−

B2A
5040+

A2

280+
AB
420−

5A3

11088

)

x3

+
(

−3A
10 − B

4 −
A2B
315 −

B2A
420 +

23A2

1680+
3AB
140 +

B2

120−
13A3

9240−
B3

1680

)

x2.

(47)
. . .
and so on.
By substituting solutions (46) and (47) into (19) and

calculating the limit whenp → 1, results in a first order
approximation

y(x) = lim
p→1

(

1

∑
i=0

νi p
i

)

. (48)

ConstantsA andB, are calculated using the Nonlinear
Fit build-in command from Maple 15, which results in

y(x) = 0.358856x4+2.377556x+0.04x8−1.188778x3

−1.728x2+0.13x6+0.17064x5−0.16x7

−1.13431514x10−10x9+1.102877x10−19x10

−3.6556x10−29x11,
(49)

whereA=−3.76891x10−9 andB=−2.377557.

6 Discussion

This paper proposes a modified version of HPM method,
introducing in a systematic way, adjustment parameters in
order to obtain analytical approximate solutions for
nonlinear differential equations. DOHPM method is
inspired in the method of undetermined coefficients to
solve linear non homogeneous ordinary differential
equations of constant coefficients, which employ the
concept of annihilator operator to convert the original
nonhomogeneous equation (13) into one higher order
homogeneous (14). The process of obtaining the
particular solution, leads to calculate values for certain
coefficients (constants), in order that the solution of (14)
corresponds to the solution of original equation (13). In
the same fashion, DOHPM method uses differential
operators to turn a nonlinear differential equation into
other of higher order, however is not required that these
operators, apply to solve non homogeneous equations as
in the case of undetermined coefficients. The criteria for
their use is rather, that the new linear part describes better
the nonlinear equation to be solved than the original one,
although in our examplesD andD2 are indeed annihilator
operators when acts on (23) and (42) respectively.

As aforementioned, the strategy in this paper, to
systematically obtain adjustment parameters, is that the
boundary conditions of the differential equation of lowest
order resulting from (17), are the same as those of (16),
while equations for the other orders are solved applying
the usual procedure of HPM to (17). Thus, instead of
adjusting these parameters to the resulting higher order
equation, we used them to obtain a good approximate
solution of the original equation.

The above procedure proves to be a tool with great
potential, especially if the solution of equationL = 0,
describes adequately the original nonlinear equation (see
(8)), because the lower-order equation resulting from the
method DOHPM, directly depends on this linear
equation, whereby if solutionν0(x) resembles in its
general characteristics to the exact solution for (8), then
an appropriate adjustment of the above parameters can
result in a good approximate analytical solution to (8) of
the form (20). Although our examples usedD andD2 to
obtain equations of higher order, other differential
operators can be used, inclusive can be applied
consecutively (as in the Method of Undetermined
Coefficients) to obtain solutions with more parameters,
and ease of adjustment. As first case study we chose the
case of Riccati equation (21), which has the exact solution

y(x) = 1 +
√

2Tanh
(√

2x+ 1
2Ln

√
2−1√
2+1

)

[15]. Figure 2

and Figure3 show that third order approximation (36) is a
good approximation, with a maximum absolute error less
than 0.07, it is expected that if more terms are considered
of (20), a better approximation will be obtained, however,
if we operate on (23) with D(D+β ) instead of D, (where
β is other adjustment parameter) the lowest-order
equation (26) would have been(D+ β )(D+α)Dν0 = 0,
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and the solution satisfying ν0 = 0, would be
ν0(X) = B(e−αx−1)+C(e−β x−1), thus we would have
four adjustment parametersB,C,α andβ instead of two.
For instance, if we require of just three parameters, then
we would make the above solution also satisfies
ν ′

0(0) = 1, deduced from (21), incidentally it gives greater
accuracy to the initial part of the approach. It is clear that
applying more operators of the form(D + γ) to (23) is
allowed, and thus more parameters are obtained,
although, we may face computational problems by the
requirement to adjust many parameters. In particular
Figure 2 compares (36) with the HPM third order
approximation obtained following the standard procedure
explained in section2. The above mentioned figure shows
the accuracy of DOHPM for the whole domainx ≥ 0,
while HPM rapidly diverges from the exact solution. On
that matter, unlike of HPM, DOHPM zero approximation
employs exponential terms with negative exponents to
model the correct asymptotic behavior. In this case study,
we guarantee that the linear part produce negative
exponential terms; improving notoriously the
convergence [26]. In our second case study, we solved
approximately Gelfand,s equation. Figure4 shows the
comparison between (order 1) approximation (49) for
ε = 3 with the four order Runge Kutta (RK4) numerical
solution. It can be noticed that figures are very similar
showing the accuracy of (49). This is confirmed by Figure
5, which shows that the maximum absolute error is about
0.0035, this proves the efficiency of DOHPM method,
especially because only was considered the first-order
approximation. This is a consequence of applyingD2 to
(42), introducing the adjustment parametersA and B. Is
important to note that the lowest order approximation
(46) resembles in its general characteristics to the exact
solution for (37) (see Figure4). Finally in order to
compare the accuracy of our results, the same Figure4
also shows the HPM third order approximation for
Gelfand’s problem. We can notice that DOHPM
approximations are more precise (zero and first order),
although we consider the third-order approximation of
HPM. This indicates that the proposed methodology
adequately accelerates the convergence of the proposed
problem.

7 Conclusions

This work presented DOHPM method as a novel
modification for HPM method, with high potential to
solve no linear differential equations. The method works
in a similar way to method of undetermined coefficients
to solve linear non homogeneous differential equations,
but in this case differential operators are applied on both
sides of an homotopy equation, in order to obtain
higher-order equations in the successive stages of the
method.

As mentioned, the strategy in this paper, was
systematically getting adjustment parameters, so that the

Fig. 1: Exact solution of (21)

Fig. 2: Exact solution of (21) (diagonal cross), DOHPM
approximation (36) (solid line) and HPM third order
approximation (dash-dot).

Fig. 3: Absolute error (A.E.) DOHPM approximation (36) for
(21).

initial conditions of the differential equation of lowest
order resulting from (17), were the same as those of (16),
while equations for the other orders were solved applying
the usual procedure of HPM to (17). Thus, we disposed of
adjustment parameters, which is especially important if
solution ν0(x) resembles in its general characteristics to
the exact solution for (8). In that case, an appropriate
adjustment of the above parameters can result in a good
approximate analytical solution to (8) of the form (20).
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Fig. 4: Order zero (46) (circles) and order one (49) (solid line).
DOHPM approximations for (37) (diagonal cross) and HPM
third order approximation (squares).

Fig. 5: Absolute error (A.E.) of DOHPM approximation (49) for
(37).
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