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Abstract: This paper proposes a modified version of HPM method (DOHPRhat, introducing in a systematic fashion, adjustment
parameters in order to obtain analytical approximate swmiatfor nonlinear differential equations by using certifferential operators

to turn a nonlinear differential equation into other of feglarder. Comparison with exact solution shows that DOHP hoekis highly
efficient if the initial guess is chosen adequately.
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1 Introduction 15,36,37,38,39,40,41,42], homotopy analysis method
[43,44], perturbation method4p,46], modified Taylor
The importance of research in nonlinear differential series method47], optimal homotopy analysis method
equations is that many phenomena, practical orl4849,50,51], differential transform methodg, 49, Lie
theoretical, are of nonlinear nature. On the engineering@roup analysis §1] among others. Also, a few exact
and science fields, physical phenomena are frequent|§0|uti0ns to nonlinear differential equations have been
modelled using nonlinear differential equations. Sciati reported occasionallybp].
who work in such disciplines constantly face the
problems of solving linear and nonlinear ordinary From all the above methods, the HPM method is one
differential equations, partial differential equatiorsd  of the most employed because has been successfully used
systems of nonlinear ordinary differential equations.in many nonlinear problems, and its practical application
Recently a wide variety of methods focused to findis simpler than other techniques. However, HPM method
approximate solutions to nonlinear differential equagion often requires adjustment parameters in order to obtain
as an alternative to classical methods, have been reporteletter results 46,30,31,34,35,36], therefore this study
Such as those based on: variational approach@s3 4, proposes a systematic fashion to introduce adjustment
5], tanh method ], exp-function [7,8], Adomian’s  parameters in order to enhance the HPM method. Finally,
decomposition metho®[10,11,12,13,14,15], parameter as we will see, DOHPM method is inspired in the method
expansion 16], homotopy perturbation method.7,18, of coefficients undetermined, therefore will be instruetiv
19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35, establish an analogy between them.
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This paper is organized as follows. In Sectidna Assuming that solution for4) or (5) can be written as
brief review of the basic idea for the HPM method is a power series op.
provided. Section3, will introduce the basic idea of
method of undetermined coefficients. In Sectignwe (6)
will present DOHPM method, as a modified version of
HPM method. Additionally, SectioB present two cases Substituting 6) into (5) and equating identical powers
study. Besides a discussion on the results is presented if p terms, there can be found values for the sequagpce
Section6. Finally, a brief conclusion is given in Sectign Uz, U2, ...

Whenp — 1, it yields in the approximate solution for
(2) in the form

V= V0+V1D+V2p2+"'

2 Standard HPM
)
Another way to build a homotopy, which is relevant for
this paper, it is by considering
the following general equation

V=Vog+Vi+Va+V3...

The standard Homotopy Perturbation Method (HPM) was
proposed by Ji Huan Helf,18], it was introduced like a
powerful tool to approach various kinds of nonlinear
problems. The homotopy perturbation method can be
considered as a combination of the classical perturbation _
techniqgue and the homotopy (whose origin is in the L) +N(v) =0, ®)
topology), but not restricted a small parameter as whereL(v) and N(v) are the linear and no linear
traditional perturbation methods. For example, HPM operators respectively. It is desired that solution for
method requires neither small parameter nor linearization_(v) = 0 describes, accurately, the original nonlinear

but only few iterations to obtain accurate solutiods,[

18].

system.
By the homotopy technique, a homotopy is constructed

To figure out how HPM method works, consider a as follows

general nonlinear equation in the form

A(u)—f(r)=0 reQ, (1)
with the following boundary conditions
Ju
B(U,%)ZO, rerv (2)

wheréA is a general differential operatoB is a
boundary operatorf (r) a known analytical function and
[ is the domain boundary faR. A can be divided into
two operatord. andN, wherelL is linear and\ nonlinear;
from this last statement]) can be rewritten as

L(u)+N(u) — f(r) =0. 3)

Generally, a homotopy can be constructed in the form

[17,18]

H(v,p) = (1= p)[L(V) — L(Uo)]+
p[L(V) +N(v) — f(r)] =0, pe0,1],re Q.

or

(4)

H(v, p) = L(v) — L(Uo) + P[L(Uo) +N(v) — f(r)] =0,
pel(0,1],reQ,
®)

(1= p)L(v)+pL(v)+N(v)] =0. 9)

Again, itis assumed that solution f@)(can be written
in the form @); thus, taking the limit whemp — 1 results
in the approximate solution 08].

3 Basic Idea of Method of Undetermined
Coefficients

As it is well known, a linear differential equation of
constant coefficients

any™ (%) + an_1y " (X) + ... + a2y’ (X) + &y (X) (10)
+agy(x) = f(x),

can be written as33,54]

(anD"™ +a, 1DV 4+ | +a,D?+a;D+ag)y(x) = f(x).
(11)
Expression
P(D) = a.D™ + a, 1DV 4 ... + aD? + aiD + ag
where, D"y = d"y/dX", is called linear differential
operator of orden.
For this case, where; (i=0,1,2,..n) are constants,
P(D) can be possibly factorized, in terms of differential

where p is a homotopy a parameter, whose values areperators of lower order, and therefore it can be handled

within range of 0 and 1 is the first approximation for
the solution of B) that satisfies the boundary conditions.

as an ordinary polynomial. Also it can be shown that the
factors ofP(D) commute.
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Suppose that (x) is a function which has derivatives The application of an adequate differential annihilator
up to order n, then if operatoP(D) to (16), results in the following differential
equation of higher order thad §)

(@aD™ +a, ;DY 4. 4 aD? 4 aD+ag)f(x) =0

(12) -
is said thatg,D" + a,_1D"" + ..+ a;D? + D + Pl([\;v)rzsgezlr(ia)r operaiot(v) has been expressed as

2o, annihilate tof (x). For obtaining the equatiorL(), we used the obvious

P(D)PL(D)(v) + pP(D)N(v) =0, (17)

For example fact that
1.D"annihilate the functions X, x2, x3, ....,x"1. B
2.(D — a)"annihilate the functionse®™, xe&™, x?e® PD)(0) =0. (18)
x1—1e?x, OperatorP(D) is selected such that the solution of the
3.D? + B2 annihilate tocog 8x) andsen(3x). equatiorP(D)Py(D)(v) = 0, describes better the nonlinear

equation 8) thanL(v) =0 (P(D)(v) = 0).
In [5354] can be find additional examples of Next, we apply the HPM method t&7), assuming that
annihilators operators.
Since a linear non homogeneous ordinary differential V=Vo+ vip+vap®+... (29)
equation of constant coefficients,

can be written as Substituting 19) into (17) and equating identical

powers of p terms, there can be found values for the
sequenceg, Vq, Vo, ...
P(D)y =9(x), (13) Whenp — 1, it yields in the approximate solution for

ifPL(D) is an annihilator operator @f(x), then (17) in the form

V=Vy+Vi+ Va4 V3... (20)

] . ] ) As occur with the method of undetermined
General solution of linear equations is expressed agoefficients, {7) contains additional parameters to be
the sum of the complementary and particular solutions determined (as it will be seen, these parameters could be

P.(D)P(D)y=0. (14)

Complementary solution results of solving inserted from the beginning as part of the oper&(@)) .
The method DOHPM consists in adjusting them, so that
P(D)y =0, (15) an approximate solution of1f) corresponds to an

approximate analytic solution o8).

In order that additional constants, resulting from the
solution of (@7), can be employed as adjustment
parameters, it is proposed that the boundary conditions of
the differential equation of lowest order resulting from
4 DOHPM method (17), are the same as those @&Bf. Equations for the other
orders are solved applying the usual procedure of HPM to

The method of undetermined coefficients to solve (17)-
nonhomogeneous differential equations converts the
original nonhomogeneous equatioh3f to one higher
order homogeneoud 4). The process for obtaining the 5 Cases Study
particular solution, leads to calculate values for certain
coefficients (constants), in order that the solution®f( 5.1 Quadratic Riccati Equation
corresponds to the solution df3).
In this section, we will propose by analogy how Riccati equation is an important case of nonlinear
obtaining analytical approximate solutions for nonlinear differential  equation, because its applications in
differential equations, using a modified version of HPM. engineering sciences, such as stochastic realization

Consider for instance, the homotopy given By, this ~ theory, optimal control, and robust stabilization. Recent
equation can be simplified as applications of this equation, includes such areas as

financial mathematic$] among others. We will consider
L(v)+ pN(v) = 0. (16) the quadratic Ricatti equatio,[L5]

particular solution is finding of solving homogeneous
equation 14) [53,54).

Itis important to notice, that in order to obtain a good dy =2y(x) — y2(X) + 1, y(0) =0. (21)
approximation, DOHPM requires that the solution of dx

L(v) = 0 sketches the main qualitative characteristics of It should be noticed tha() has exact solutionlf]
(8). (see Figurel and discussion section).
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The above equation can be expressed in terms of Instead of adjusting any of the constangsanda, to
operators as satisfy the initial conditiory' (0) of second order equation

(D-2+y)y=1, (22)

An adequate homotopy, which takes into account that
the first approximation for the solution of1) satisfies
the initial conditiony(0) = 0, and adopts the correct

2 —
asymptotic behavior (see Figut®is given in accordance D? —2Dy+Dy*=0 (31)
with (16) by
(D+a)y+p(-a—2+y)y=1, (23)
whereq is an adjustment parameter. o
By substituting 6) into (23), leads to first order ~_ Where 81) results from application of D t02@). We
approximation will use cp anda, in order that the approximate solutions
of (31), correspond to approximate solutions fady (or
D+a)vo=1,  v(0)=0 (24) (22).
with solutionvg(x) = 2 (1—e~9%). In the same way, we obtain the solutions for equations
Although this function satisfies the conditiong0) =  (27)-(29).
0 andvg(w) = 1 = constant is too restrictive because it
only contains one adjust parameter.
To improve it, we apply the annihilator operaforto
(23), to obtain (see (17))
1 C26720!x )
D(D+a)y+ p(—(a+2)Dy+Dy?) =0, (25) privi(x) = +2c5e” Tx — e Teoax — e "eo
_ Substituting £9) into (25), and arranging coefficients e Peox— 2coe” ™ i Co(—Cot+a+2) (32)
with p powers we construct the following equations a a
p?: (D+a)Dvy=0, vy=0, (26)

pt: (D+a)Dvy— (a+2)Dvg+D?vp =0,
v1 =0, vi=0, (27)

2c3eox  4cge ™

2. -
P V2(X) = —e" Xcoax — =25 -
_ 3C26—2a>< _ Ac2e—ax
p?: (D+a)Dvy— (a +2)Dvy +2voDvy + 2v4Dvg = 0, —€ ®Xco + —To— + 4cge GXXJF—C%a
pr— / pr—
v2 =0, v2=0, (28) _de Meox co(a2—6co—3c§g+4a+206+4)
+2c3e 2+ 2ciae” %% — coa?e K2
p3: (D+ a)Dvs— (a 4 2)Dvy + D(VZ + 2vgvp) = 0,
/ —axy2 , Bcgxe X aopxe X
V3(0) =0, VZ(O) =0 (29) —2coae” X"+ a - a
. B chxe—ax n 4che—2ax B 4nge—2ax
Note that the initial conditions fron2¢) and @4) are a a a
chosen equal, in order to dispose of one additional > X2 _axu2 3 axe2
parameter. +4cge *xe — 2c0e” % — 2¢c5e” X
After solving 26), we obtain I
- a2 + a2 + a?
P vo(x) = co(1— &™), (30)
. . g . — c3e—20% _ —ax
which satisfies the conditiom(0) = 0 and has the B S A il Soraaide T
correct asymptotic behavior (see Figdje (33)
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5.2 Approximate Solution of Gelfand’s
Equation.

_ 4cge” % Boge X
3

_ 3a—ax
p3: v3(x) = —e Peoax+ 2, 2

As it is known, Gelfand’s equatiordf]] (also known as
Bratu’'s problem in 1D) models the chaotic dynamics in
combustible gas thermal ignition. Therefore it is impottan
to search for accurate solutions for this equation.

The equation to solve is

_ 5c2e—2ax _ _
—Coe X — c%eT — Be~XCox — 2c3e20%x

+2¢3e” %2 — Lcoa?e %2 — 3coae K2

12coxe 9% n cixe O 8c3xe 2% " Acixe 2%
a a a a

d?y(x)
- se/® =0 0<x<1
+8C(2)e—axX2 o 6coe—axx2 o Cge—axxz + nga?;ax dx2 + s SAS 4
y(0)=0,  y(1)=0, (37)
200%6’2” 12C067"x GCge—Zax Zc%e—axazxs
A T 3 wheree is a positive parameter, which value we choose
ase =3.
3 —ax 24— 0Xy3
_20c0>;3e T Scoe; L lege a®d It is possible to find a handy solution foB7) by
applying the DOHPM method, and identifying terms:
—eoe e — 2o 5+ S Ly) =Y"(¥) (38)
 8chxe 2% 2c3xPe O " Boixe 20X gopx2emox
a? o a? a
N(y) = &'®), (39)

~ 8cgxe " 8c3xPe % B 4cdx3eox i 8cgx3e X
a? a 3 3

where prime denotes differentiation respeck.to
To solve @7), first we expand the exponential term of

20c2e—20% c3e—3ax 12c3e—20% 2c3e—0ax .
_ 053 + 0‘23 + Co;s + CO; Gelfand,s problem, resulting
8coe 9% | C3(16a2+64a—19co0 —38Cy+64)e 9%
T3 T 2a3 , 1 1
y'+¢ 1+y+§y2+éy3+... =0, 0<x<1,
" 00(03—12c0c1—300a2+6a243—2c%a+8+12a—12c0+4c(2)) .
a
34
(34 Y0)=0.  y(1)=0, (40)
and so on. in terms of differential operators
By substituting solutions30), (32)-(34) into (19) and
calculating the limit wherp — 1, results in a third order 2 1.1 _
approximation (D T (1+ >y 6y2 yre=0. (41)
In order to obtain an analytical solution we construct a
] 3 . homotopy in accordance witi©)
Y= lm | 5 P (35)
pP=1l\ =

1 1
(D2+ pe <1+ Sy+ 6y2)>y+e =0, (42
Constantgg anda, are calculated using the Nonlinear

Fit build-in command from Maple 15, obtaining applying the annihilator operat®? to (42), we obtain

y(X) = 2.4252— 8.0294e 36048 _ 7 320¢3g—3604& <D4 + pe (02 + %D2y+ éD2y2> ) y=0.  (43)

_ 20—3.6046¢ _ —7.209%
9.9728¢e 0.15446e By substituting 19) into (43), and equating identical

2 2628536046 () 161 g 720K powers of p, we obtain the equations

—0.00054 10814 0. a4
(36) p-: D Vo = 07 VO(O) = 07 VO(l) = 07 (44)

(@© 2017 NSP
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1 1
pl:D*i+¢ <D2vo+ —DAZ + —D2vg> =0,

2 6

vi(1)=0,  vi(1)=0. (45)
After solving the above equations, we obtain
p° : Vo(x) = A — X) + B(X* — X), (46)

3,11 2Ry10 2 3
Loy (x) = =AX A%Bx (AB A

AB?) 9
— ~180 )X

144 T 142~ 144

B2A |, A2 | AB 5A3
B+35— f— ot s+ o nom) <

B2  13A3 B3
10 4 315 420 " 1680 T 140 T 120 9240 1680
(47)

and so on.

By substituting solutions4@) and @7) into (19) and
calculating the limit wherp — 1, results in a first order
approximation

(48)

1
y(x) = lim (_%Vi p') :

6 Discussion

This paper proposes a modified version of HPM method,
introducing in a systematic way, adjustment parameters in
order to obtain analytical approximate solutions for
nonlinear differential equations. DOHPM method is
inspired in the method of undetermined coefficients to
solve linear non homogeneous ordinary differential
equations of constant coefficients, which employ the
concept of annihilator operator to convert the original
nonhomogeneous equatiod3f into one higher order
homogeneous 1¢). The process of obtaining the
particular solution, leads to calculate values for certain
coefficients (constants), in order that the solution1) (
corresponds to the solution of original equatid®)( In

the same fashion, DOHPM method uses differential
operators to turn a nonlinear differential equation into
other of higher order, however is not required that these
operators, apply to solve non homogeneous equations as
in the case of undetermined coefficients. The criteria for
their use is rather, that the new linear part describesibette
the nonlinear equation to be solved than the original one,
although in our example® andD? are indeed annihilator
operators when acts 083) and @2) respectively.

As aforementioned, the strategy in this paper, to
systematically obtain adjustment parameters, is that the
boundary conditions of the differential equation of lowest
order resulting from17), are the same as those dfg],
while equations for the other orders are solved applying
the usual procedure of HPM tdlT). Thus, instead of
adjusting these parameters to the resulting higher order
equation, we used them to obtain a good approximate
solution of the original equation.

The above procedure proves to be a tool with great
potential, especially if the solution of equatidan= 0,

x?describes adequately the original nonlinear equation (see

(8)), because the lower-order equation resulting from the
method DOHPM, directly depends on this linear
equation, whereby if solutionp(x) resembles in its
general characteristics to the exact solution 8); then

an appropriate adjustment of the above parameters can
result in a good approximate analytical solution & ¢f

the form Q0). Although our examples used andD? to
obtain equations of higher order, other differential
operators can be used, inclusive can be applied
consecutively (as in the Method of Undetermined
Coefficients) to obtain solutions with more parameters,

ConstantsA andB, are calculated using the Nonlinear @nd ease of adjustment. As first case study we chose the

Fit build-in command from Maple 15, which results in

y(x) = 0.358856* + 2.377556+ 0.04x% — 1.188778&3
—1.728¢+0.13x5+0.17064° — 0.16x’
—1.1343151410 1% + 1.10287%10 %10
—3.6556¢10 2%,

(49)
whereA = —3.7689x10 % andB = —2.377557.

case of Riccati equatior2), which has the exact solution

yx) = 1+ \/iTanh(\f2x+%Ln£—j) [15]. Figure 2
and Figure3 show that third order approximatioB€) is a
good approximation, with a maximum absolute error less
than 0.07, it is expected that if more terms are considered
of (20), a better approximation will be obtained, however,
if we operate onZ3) with D(D + ) instead of D, (where

B is other adjustment parameter) the lowest-order

equation 26) would have beeriD + 3)(D + a)Dvp = 0,
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and the solution satisfyingvy = 0, would be s T
Vo(X) = B(e"®* — 1) + C(e PX— 1), thus we would have

four adjustment parameteBsC, a and 3 instead of two. 2 a

For instance, if we require of just three parameters, then 5

we would make the above solution also satisfies 157 =

vy(0) = 1, deduced from21), incidentally it gives greater ¥ x

accuracy to the initial part of the approach. It is clear that 1* x

applying more operators of the for(D + y) to (23) is XX

allowed, and thus more parameters are obtained, i

although, we may face computational problems by the e

requirement to adjust many parameters. In particular O 45 1 s 3 45 3 a5 3 45 s
Figure 2 compares ¥6) with the HPM third order *

approximation obtained following the standard procedure
explained in sectio. The above mentioned figure shows
the accuracy of DOHPM for the whole domak> 0,
while HPM rapidly diverges from the exact solution. On
that matter, unlike of HPM, DOHPM zero approximation be =
employs exponential terms with negative exponents to
model the correct asymptotic behavior. In this case study,
we guarantee that the linear part produce negative
exponential terms; improving notoriously the
convergenceZ6]. In our second case study, we solved ,, A
approximately Gelfand,s equation. Figudeshows the n /A
comparison between (order 1) approximatiat®)( for

& = 3 with the four order Runge Kutta (RK4) numerical 05
solution. It can be noticed that figures are very similar
showing the accuracy ofl@). This is confirmed by Figure o
5, which shows that the maximum absolute error is about
0'0035' this proves the efficiency Qf DOHPM r.nethOd’ Fig. 2. Exact solution of 21) (diagonal cross), DOHPM
especially because only was considered the f'rSt'ordeépproximation 86) (solid line) and HPM third order
approximation. This is a consequence of applyibrgto approximation (dash-dot).

(42), introducing the adjustment parameté&andB. Is

important to note that the lowest order approximation

(46) resembles in its general characteristics to the exact

Fig. 1: Exact solution of 21)

T
0.5

solution for @7) (see Figured). Finally in order to 0.07

compare the accuracy of our results, the same Fidgure 0.061

also shows the HPM third order approximation for 0.051

Gelfand’s problem. We can notice that DOHPM %™

approximations are more precise (zero and first order), 0.051

although we consider the third-order approximation of b0

HPM. This indicates that the proposed methodology o

adequately accelerates the convergence of the proposed o5 1 5 3 s 3 45 4 45 s
problem. *

Fig. 3: Absolute error (A.E.) DOHPM approximatior8) for
. (21).
7 Conclusions

This work presented DOHPM method as a novel

modification for HPM method, with high potential to

solve no linear differential equations. The method worksinitial conditions of the differential equation of lowest

in a similar way to method of undetermined coefficients order resulting from17), were the same as those afyj,

to solve linear non homogeneous differential equationswhile equations for the other orders were solved applying

but in this case differential operators are applied on boththe usual procedure of HPM ta 7). Thus, we disposed of

sides of an homotopy equation, in order to obtainadjustment parameters, which is especially important if

higher-order equations in the successive stages of theolutionvy(x) resembles in its general characteristics to

method. the exact solution forg). In that case, an appropriate
As mentioned, the strategy in this paper, wasadjustment of the above parameters can result in a good

systematically getting adjustment parameters, so that thapproximate analytical solution t8)(of the form @0).
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X Numerical — DOHPM ORDER 1 ® HPM ORDER 3 O DOHPM ORDER 0 |

0.6 OOOOOOO
O gumEmmy 97
° o
0.5 n " o)
-" n
n n
0.4 n L
n n
y(x) [] ]
031 n n
n n
0.2 (]
0.1
[

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
X

Fig. 4: Order zero 46) (circles) and order onet9) (solid line).
DOHPM approximations for37) (diagonal cross) and HPM
third order approximation (squares).

0.0040
0.0035-
0.0030-
0.0025-
A.E. 0.0020
0.0015+
0.0010-
0.0005-

0 T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
x

Fig. 5: Absolute error (A.E.) of DOHPM approximatioA) for
(37).
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