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1 Introduction and Preliminaries

In recent years, the classical concept of convexity has
been extended in different dimensions, see [1,2,3,4,5,6,
7,8,11,12,13,14,15,17,20,21,22]. Iscan [9] introduced
the notion of harmonic convex set and harmonic convex
functions. These new classes inspired many researchers
and as result several new generalizations of harmonic
convexity came into the literature, for example see [16].
An interesting aspect of theory of convexity is its close
relationship with theory of inequalities. Numerous
inequalities have been obtained via convex functions and
via its variant forms, see [6]. Recently Mishra et al. [11]
introduces the class of invariant harmonic convex set and
invariant harmonic convex functions. They also derived
new Hermite-Hadamard type inequalities via this new
class of harmonic convex functions. Inspired by this, we
in this paper introduce a new unifying class of invariant
harmonic convex function which is called as invariant
harmonicallyh-convex functions. As special case we also
introduce other classes of invariant harmonic convex
function. We also derive some new integral inequalities of
Hermite-Hadamard type associated with invariant
harmonically h-convex functions. This is the main
motivation of writing this paper.

We now recall some previously known concepts. LetX
be a topological vector space. LetK ⊂ X \ {0} be a set
satisfying the following conditions. Forx,y ∈ K , let
I[y,x] be a path joiningy andx contained inK and the
mapγxy; [0,1]→ I[y,x] be continuous. The setK has the
invariant harmonic convex combination property in a
given directionv ∈ K , if the following conditions are
satisfied:
(P1)y+ tv ∈ K for all t ∈ [0,1], v ∈ X andy ∈ K .

(P2)y+ tv =

{

y, i f t=0;
x, i f t=1. andy+ tv = x+y

2 if t = 1
2.

(P3) For any z ∈ I[y,x] ⊂ K , we have
z = y+ tv = x+(1− t)v.
(P4) xy

y+tv ∈ I[y,x] for all x,y ∈ K .

Harmonic convex sets and harmonic convex functions
are defined as:

Definition 1([20]). A set K ⊂ R \ {0} is said to be
harmonic convex, if

xy
tx+(1− t)y

∈ K ∀x,y ∈ K , t ∈ [0,1].

Definition 2([9]). Let K be a harmonic convex set. A
function f : K → R is said to be harmonic convex
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function, if

f

(

xy
tx+(1− t)y

)

≤ (1− t) f (x)+ t f (y),

∀x,y ∈ K , t ∈ [0,1].

Iscan [9] proved following Hermite-Hadamard type
inequality for harmonically convex functions.

Theorem 1.Let f : K → R be harmonically convex
function and a,b ∈ K with a < b. If f ∈ L[a,b], then

f

(

2ab
a+ b

)

≤
ab

b− a

b
∫

a

f (x)
x2 dx ≤

f (a)+ f (b)
2

.

Definition 3([11]). A set K ⊂ R \ {0} is said to be
invariant harmonic convex set in the direction
v ∈ R \ {0}, if K has the invariant harmonic
combination properties (P1) to (P4).

Definition 4([11]). A function f : K → R is said to be
invariant harmonically convex function, if

f

(

xy
y+ tv

)

≤ (1− t) f (x)+ t f (y), ∀x,y ∈ K , t ∈ [0,1].

Mishra et al. [11] proved following Hermite-Hadamard
type of inequality via invariant harmonically convex
function.

Theorem 2([11]). For v ∈ R, let K = Kv ⊂ R\ {0} be a
invariant harmonically convex set. For a,b ∈ K with
a < b, let there exist vectors v,w ∈R\{0} with v+w = 0,
such that

a+ tv =

{

a, i f t=0;
b, i f t=1, and b+ tw =

{

b, i f t=0;
a, i f t=1.

Suppose f : K → R is invariant harmonically convex
function with respect to the direction v ∈ R. If
f ∈ L [a,b], then

f

(

2ab
a+ b

)

≤
ab
v

b
∫

a

f (x)
x2 dx ≤

f (a)+ f (b)
2

.

For the existence of Theorem2 authors [11] have derived
following auxiliary result.

Lemma 1([11]). For v ∈ R, let K = Kv ⊂ R \ {0} be a
invariant harmonically convex set. Let f : K → R be an
invariant harmonically convex function with respect to the
direction v ∈ R\ {0}, then for all x,y ∈ K , the following
inequality holds:

f

(

2xy
x+ y

)

≤
f (x)+ f (y)

2
.

The following auxiliary result [11] plays an important role
in the development of some of our man results.

Lemma 2([11]). Let For v ∈ R, let K = Kv ⊂ R \ {0}
be a invariant harmonically convex set. For a,b ∈ K with
a < b, let there exist vectors v ∈ R\ {0}, such that

a+ tv=

{

a, i f t=0;
b, i f t=1. Suppose f : K →R is differentiable

function on K◦ with respect to the direction v ∈ R\{0}. If
f ′ ∈ L [a,b], then

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

=
abv
2

1
∫

0

1−2t
(a+ tv)2 f ′

(

ab
a+ tv

)

dt

2 Some new classes

In this section, we define new class of invariant
harmonicallyh-convex functions. We also discuss some
special cases.

Definition 5. Let h : J = (0,1)⊂ R→ R a non-negative
function. A function f : K → R is said to be invariant
harmonically h-convex function, if

f

(

xy
y+ tv

)

≤ h(1− t) f (x)+ h(t) f (y),

∀x,y ∈ K , t ∈ [0,1].

I. Under the assumptions of Definition5, if h(t) = t in
Definition 5, then the class of invariant harmonically
h-convex functions reduces to the class of of invariant
harmonically convex functions introduced and studied by
Mishra et al. [11].
II. Under the assumptions of Definition5, if h(t) = ts in
Definition 5, then the class of invariant harmonically
h-convex functions reduces to a new class of Breckner
type of invariant harmonicallys-convex function.

f

(

xy
y+ tv

)

≤ (1− t)s f (x)+ ts f (y),

∀x,y ∈ K , t ∈ [0,1],s ∈ (0,1].

III. Under the assumptions of Definition5, if h(t) = t−s

in Definition 5, then the class of invariant harmonically
h-convex functions reduces to a new class of Godunova-
Levin-Dragomir type of invariant harmonicallys-convex
function.

f

(

xy
y+ tv

)

≤ (1− t)−s f (x)+ t−s f (y),

∀x,y ∈ K , t ∈ (0,1),s ∈ [0,1].

IV. Under the assumptions of Definition5, if h(t) = t−1

in Definition 5, then the class of invariant harmonically
h-convex functions reduces to a new class of Godunova-
Levin type of invariant harmonically function.

f

(

xy
y+ tv

)

≤
1

1− t
f (x)+

1
t

f (y), ∀x,y ∈ K , t ∈ (0,1).
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V. Under the assumptions of Definition5, if h(t) = 1 in
Definition 5, then the class of invariant harmonically
h-convex functions reduces to a new class of invariant
harmonicallyP function.

f

(

xy
y+ tv

)

≤ f (x)+ f (y), ∀x,y ∈ K , t ∈ [0,1].

It is evident from the above discussed special cases that
the class of invariant harmonicallyh-convex functions is
quite unifying one. We now define the class of invariant
harmonically log-convex function.

Definition 6. A function f : K ⊂ R+ \ {0}→ R+ is said
to be invariant harmonically log-convex function, if

f

(

xy
y+ tv

)

≤ f 1−t(x) f t (y), ∀x,y ∈ K , t ∈ [0,1].

Taking log on both sides of above inequality, we have

log f

(

xy
y+ tv

)

≤ (1− t) log f (x)+ t log f (y).

The class of invariant harmonically quasi convex functions
can be defined as:

Definition 7. A function f : K →R is said to be invariant
harmonically quasi convex function, if

f

(

xy
y+ tv

)

≤ max{ f (x), f (y)}, ∀x,y ∈ K , t ∈ [0,1].

3 Main Results

In this section, we prove our main results.

Definition 8. Two functions f and g are said to be
similarly ordered, if

( f (x)− f (y))(g(x)− g(y))≥ 0, ∀x,y ∈ R.

Proposition 1.Let f and g be two invariant harmonically
h-convex functions. If f and g are similarly ordered
functions and h(t)+ h(1− t) ≤ 1, then the product f g is
also harmonically convex function.

Proof. Let f and g be invariant harmonically convex
functions. Then

f

(

ab
b+ tv

)

g

(

ab
b+ tv

)

≤ [h(1− t) f (a)+ h(t) f (b)][h(1− t)g(a)+h(t)g(b)]

= [h(1− t)]2 f (a)g(a)

+h(t)h(1− t)[ f (a)g(b)+ f (b)g(a)]+ [h(t)]2f (b)g(b)

≤ [h(1− t)]2 f (a)g(a)

+h(t)h(1− t)[ f (a)g(a)+ f (b)g(b)]+ [h(t)]2f (b)g(b)

= [h(1− t) f (a)g(a)+ h(t) f (b)g(b)][h(t)+ h(1− t)]

≤ h(1− t) f (a)g(a)+ h(t) f (b)g(b). (1)

This shows that the product of two invariant harmonically
h-convex functions is again invariant harmonically
h-convex function. ⊓⊔

Theorem 3. For v ∈ R, let K = Kv ⊂ R \ {0} be a
invariant harmonically convex set. For a,b ∈ K with
a < b, let there exist vectors v,w ∈ R\{0} with v+w = 0,
such that

a+ tv =

{

a, i f t=0;
b, i f t=1, and b+ tw =

{

b, i f t=0;
a, i f t=1.

Suppose f : K → R is invariant harmonically h-convex
function with respect to the direction v ∈R. If f ∈ L [a,b]
and h(1

2) 6= 0, then

1

2h(1
2)

f

(

2ab
a+ b

)

≤
ab
v

b
∫

a

f (x)
x2 dx

≤ [ f (a)+ f (b)

1
∫

0

h(t)dt.

Proof. Since f is harmonically h-convex function, so
utilizing Lemma1, we have

f

(

2xy
x+ y

)

≤ h
(1

2

)

[ f (x)+ f (y)].

Let x = ab
b+tv andy = ab

a+tw , then, we have

2xy
x+ y

=
2ab

a+ b+ t(v+w)
=

2ab
a+ b

, ∵ w =−v.

This implies

f

(

2ab
a+ b

)

≤ h
(1

2

)

[

f

(

ab
b+ tv

)

+ f

(

ab
a+ tw

)]

.

Integrating both sides of above inequality with respect tot
on [0,1], we have

1
∫

0

f

(

2ab
a+ b

)

dt

≤ h
(1

2

)





1
∫

0

f

(

ab
b+ tv

)

dt +

1
∫

0

f

(

ab
a+ tw

)

dt



 .

Using the change of variable technique, we have

1

h(1
2)

f

(

2ab
a+ b

)

≤
ab
v

b
∫

a

f (x)
x2 dx−

ab
w

b
∫

a

f (x)
x2 dx.

This implies

1

2h(1
2)

f

(

2ab
a+ b

)

≤
ab
v

b
∫

a

f (x)
x2 dx. (2)

Also, sincef is invariant harmonicallyh-convex function,
then

f

(

ab
b+ tv

)

≤ h(1− t) f (a)+ h(t) f (b).
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Integrating both sides of above inequality with respect tot
on [0,1], we have

ab
v

b
∫

a

f (x)
x2 dx ≤ [ f (a)+ f (b)]

1
∫

0

h(t)dt. (3)

Combining inequalities (2) and (3) completes the proof.
⊓⊔

We now discuss some special cases of Theorem3.
I. Under the assumptions of Theorem3, if h(t) = t, then
we have Theorem 3.3 [].
II. Under the assumptions of Theorem3, if h(t) = ts, then
we have Hermite-Hadamard type of inequality associated
with Breckner type of invariant harmonicallys-convex
functions.

2s−1 f

(

2ab
a+ b

)

≤
ab
v

b
∫

a

f (x)
x2 dx ≤

f (a)+ f (b)
s+1

.

III. Under the assumptions of Theorem3, if h(t) = t−s,
then we have Hermite-Hadamard type of inequality
associated with Godunova-Levin-Dragomir type of
invariant harmonicallys-convex functions.

1
2s+1 f

(

2ab
a+ b

)

≤
ab
v

b
∫

a

f (x)
x2 dx ≤

f (a)+ f (b)
1− s

.

IV. Under the assumptions of Theorem3, if h(t) = 1, then
we have Hermite-Hadamard type of inequality associated
with invariant harmonicallyP-functions.

1
2

f

(

2ab
a+ b

)

≤
ab
v

b
∫

a

f (x)
x2 dx ≤ f (a)+ f (b).

We now derive Hermite-Hadamard type inequality via
product of two invariant harmonucally convex functions.

Theorem 4. For v ∈ R, let K = Kv ⊂ R \ {0} be a
invariant harmonically convex set. For a,b ∈ K with
a < b, let there exist vectors v,w ∈R\{0} with v+w = 0,
such that

a+ tv =

{

a, i f t=0;
b, i f t=1, and b+ tw =

{

b, i f t=0;
a, i f t=1.

Suppose f ,g : K → R is invariant harmonically
h-convex function with respect to the direction v ∈ R. If
f g ∈ L [a,b], then

ab
b− a

b
∫

a

(

f (x)g(x)
x2

)

dx

≤ M(a,b)

1
∫

0

h2(t)dt +N(a,b)

1
∫

0

h(t)h(1− t)dt,

where

M(a,b) = f (a)g(a)+ f (b)g(b), (4)

and

N(a,b) = f (a)g(b)+ f (b)g(a). (5)

Proof. Let f ,g be two invariant harmonicallyh-convex
functions, then we have

ab
v

b
∫

a

(

f (x)g(x)
x2

)

dx

=

1
∫

0

f

(

ab
b+ tv

)

g

(

ab
b+ tv

)

dt

≤

1
∫

0

(h(1− t) f (a)+ h(t) f (b))

×(h(1− t)g(a)+ h(t)w(b))dt

= M(a,b)

1
∫

0

(h(t))2dt +N(a,b)

1
∫

0

h(t)h(1− t)dt.

This completes the proof.⊓⊔

Theorem 5.Under the assumptions of Theorem 4, if f and
g are similarly ordered functions, then, we have

ab
b− a

b
∫

a

(

f (x)g(x)
x2

)

dx ≤ M(a,b)

1
∫

0

h(t)dt,

where M(a,b) is given by (4).

Proof. The proof is obvious. ⊓⊔

Now using Lemma2, we prove our next results.

Theorem 6.Under the assumptions of Lemma 2, if | f ′|q,
q ≥ 1 is invariant harmonically h-convex function, then
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

∣

∣

∣

∣

∣

∣

≤
abv
2

A
1− 1

q
1

(

A2| f
′(a)|q +A3| f

′(b)|q
) 1

q ,

where

A1 = a−2
[

2F1
(

2,2;3;−
v
a

)

−2F1
(

2,1;2;−
v
a

)

+ 2F1
(

2,1;3;−
v
2a

)

]

, (6)

A2 =

1
∫

0

|1−2t|h(t)
(a+ tv)2 dt, (7)

and

A3 =

1
∫

0

|1−2t|h(1− t)
(a+ tv)2 dt, (8)

respectively.
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Proof. Using Lemma2, power mean inequality and the fact
that | f ′|q is invariant harmonicallyh-convex function, we
have
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

abv
2

1
∫

0

1−2t
(a+ tv)2 f ′

(

ab
a+ tv

)

dt

∣

∣

∣

∣

∣

∣

≤
abv
2

1
∫

0

∣

∣

∣

∣

1−2t
(a+ tv)2

∣

∣

∣

∣

∣

∣

∣

∣

f ′
(

ab
a+ tv

)∣

∣

∣

∣

dt

≤
abv
2





1
∫

0

|1−2t|
(a+ tv)2dt





1− 1
q

×





1
∫

0

∣

∣

∣

∣

1−2t
(a+ tv)2

∣

∣

∣

∣

∣

∣

∣

∣

f ′
(

ab
a+ tv

)∣

∣

∣

∣

q

dt





1
q

≤
abv
2





1
∫

0

|1−2t|
(a+ tv)2dt





1− 1
q

×

( 1
∫

0

|1−2t|
(a+ tv)2

×
[

h(t)| f ′(a)|q + h(1− t)| f ′(b)|q
]

dt

) 1
q

=
abv
2

A
1− 1

q
1

(

A2| f
′(a)|q +A3| f

′(b)|q
) 1

q .

This completes the proof.⊓⊔

We now discuss some special cases of Theorem6.

Corollary 1. Under the assumptions of Theorem 6, if q =
1, then, we have
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

∣

∣

∣

∣

∣

∣

≤
abv
2

(

A2| f
′(a)|+A3| f

′(b)|
)

,

where A2, A3 are given by (7) and (8) respectively.

If h(t) = ts in Theorem6, we have result for Breckner type
of invariant harmonicallys-convex functions.

Corollary 2. Under the assumptions of Lemma 2, if | f ′|q,
q ≥ 1 is Breckner type of invariant harmonically s-convex
function, then
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

∣

∣

∣

∣

∣

∣

≤
abv
2

A
1− 1

q
1

(

B1| f
′(a)|q +B2| f

′(b)|q
) 1

q ,

where A1 is given by (6), and

B1 =

1
∫

0

|1−2t|ts

(a+ tv)2 dt

= a−2

[

2
s+2 2F1

(

2,s+2;s+3;−
v
a

)

−
1

s+1 2F1
(

2,s+1;s+2;−
v
a

)

+
1

2s(s+1)(s+2) 2F1
(

2,s+1;s+3;−
v
2a

)

]

, (9)

B2 =

1
∫

0

|1−2t|(1− t)s

(a+ tv)2 dt

= a−2

[

2
(s+1)(s+2) 2F1

(

2,2;s+3;−
v
a

)

−
1

s+1 2F1
(

2,1;s+2;−
v
a

)

+
1
2 2F1

(

2,1;3;−
v
2a

)

]

, (10)

respectively.

If h(t) = t−s in Theorem6, we have result for Godunova-
Levin-Dragomir type of invariant harmonicallys-convex
functions.

Corollary 3. Under the assumptions of Lemma 2, if | f ′|q,
q ≥ 1 is Godunova-Levin-Dragomir type of invariant
harmonically s-convex function, then
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

∣

∣

∣

∣

∣

∣

≤
abv
2

A
1− 1

q
1

(

C1| f
′(a)|q +C2| f

′(b)|q
) 1

q ,

where A1 is given by (6), and

C1 =

1
∫

0

|1−2t|t−s

(a+ tv)2 dt

= a−2

[

2
2− s 2F1

(

2,2− s;3− s;−
v
a

)

−
1

1− s 2F1
(

2,1− s;2− s;−
v
a

)

+
2s

(1− s)(2− s) 2F1
(

2,1− s;3− s;−
v
2a

)

]

, (11)

C2 =

1
∫

0

|1−2t|(1− t)−s

(a+ tv)2 dt
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= a−2

[

2
(1− s)(2− s) 2F1

(

2,2;3− s;−
v
a

)

−
1

1− s 2F1
(

2,1;2− s;−
v
a

)

+
1
2 2F1

(

2,1;3;−
v
2a

)

]

, (12)

respectively.

If h(t) = 1 in Theorem6, we have result for invariant
harmonicallyP-functions.

Corollary 4. Under the assumptions of Lemma 2, if | f ′|q,
q ≥ 1 is invariant harmonically P-function, then
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

∣

∣

∣

∣

∣

∣

≤
abv
2

A1
(

| f ′(a)|q + | f ′(b)|q
) 1

q ,

where A1 is given by (6).

Theorem 7.Under the assumptions of Lemma 2, if | f ′|q,
1
p +

1
q = 1, p,q > 1, is invariant harmonically h-convex.

Then, we have
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

∣

∣

∣

∣

∣

∣

≤
ab(b− a)

2

(

1
p+1

) 1
p
(

A4| f
′(a)|q +A5| f

′(b)|q
) 1

q ,

where

A4 =

1
∫

0

h(t)
(a+ tv)2q dt, (13)

and

A5 =

1
∫

0

h(1− t)
(a+ tv)2q dt, (14)

respectively.

Proof. Using Lemma2, Holder’s inequality and the fact
that | f ′|q is invariant harmonicallyh-convex function, we
have
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

∣

∣

∣

∣

∣

∣

≤
ab(b− a)

2

1
∫

0

∣

∣

∣

∣

1−2t
(a+ tv)2

∣

∣

∣

∣

∣

∣

∣

∣

f ′
(

ab
a+ tv

)∣

∣

∣

∣

dt

≤
ab(b− a)

2





1
∫

0

|1−2t|pdt





1
p

×





1
∫

0

1
(a+ tv)2q

∣

∣

∣

∣

f ′
(

ab
a+ tv

)∣

∣

∣

∣

q

dt





1
q

≤
ab(b− a)

2

(

1
p+1

) 1
p

×

( 1
∫

0

1
(a+ tv)2q

×
{

h(t)| f ′(a)|q + h(1− t)| f ′(b)|q
}

dt

) 1
q

=
ab(b− a)

2

(

1
p+1

) 1
p
(

A4| f
′(a)|q +A5| f

′(b)|q
) 1

q .

This completes the proof.⊓⊔

If h(t) = ts in Theorem7, we have result for Breckner type
of invariant harmonicallys-convex functions.

Corollary 5. Under the assumptions of Lemma 2, if | f ′|q,
q ≥ 1 is Breckner type of invariant harmonically s-convex
function, then
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

∣

∣

∣

∣

∣

∣

≤
abv
2

(

1
p+1

) 1
p
(

D1| f
′(a)|q +D2| f

′(b)|q
) 1

q ,

where

D1 =

1
∫

0

ts

(a+ tv)2q dt

=
a−2q

2F1[2q,1+ s,2+ s,− v
a]

1+ s
, (15)

and

D2 =

1
∫

0

(1− t)s

(a+ tv)2q dt

=
a−2q

2F1[2q,1,2+ s,− v
a]

1+ s
, (16)

respectively.

If h(t) = t−s in Theorem7, we have result for Godunova-
Levin type of invariant harmonicallys-convex functions.

Corollary 6. Under the assumptions of Lemma 2, if | f ′|q,
q ≥ 1 is Godunova-Levin type of invariant harmonically
s-convex function, then
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

∣

∣

∣

∣

∣

∣

≤
abv
2

(

1
p+1

) 1
p
(

D3| f
′(a)|q +D4| f

′(b)|q
) 1

q ,
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where

D3 =

1
∫

0

t−s

(a+ tv)2q dt

=
a−2q

2F1[2q,1− s,2− s,− v
a]

1− s
, (17)

and

D4 =

1
∫

0

(1− t)−s

(a+ tv)2q dt

=
a−2q

2F1[2q,1,2− s,− v
a ]

1− s
, (18)

respectively.

If h(t) = 1 in Theorem7, we have result for invariant
harmonicallyP-functions.

Corollary 7. Under the assumptions of Lemma 2, if | f ′|q,
q ≥ 1 is invariant harmonically P-function, then
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
ab
v

b
∫

a

f (x)
x2 dx

∣

∣

∣

∣

∣

∣

≤
abv
2

(

1
p+1

) 1
p

D
1
q
(

| f ′(a)|q + | f ′(b)|q
) 1

q ,

where

D =

1
∫

0

1
(a+ tv)2q dt

= a−2q
2F1[2q,1,2,−

v
a
]. (19)

Now we derive results for harmonically log-convex
functions.

Theorem 8. For v ∈ R, let K = Kv ⊂ R \ {0} be a
invariant harmonically convex set. For a,b ∈ K with
a < b, let there exist vectors v,w ∈R\{0} with v+w = 0,
such that

a+ tv =

{

a, i f t=0;
b, i f t=1, and b+ tw =

{

b, i f t=0;
a, i f t=1.

Suppose f : K → R+ is invariant harmonically
log-convex function with respect to the direction v ∈ R. If
f ∈ L [a,b], then

f

(

2ab
a+ b

)

≤ exp





ab
v

b
∫

a

log

(

f (x)
x2

)

dx



≤
√

( f (a) f (b)). (20)

Proof. Let f be harmonically log-convex function. Fort =
1
2, we have

f

(

2xy
x+ y

)

≤ [( f (x))( f (y))]
1
2 .

This implies that

f

(

2ab
a+ b

)

≤

[{

f

(

ab
b+ tv

)}{

f

(

ab
a+ tw

)}] 1
2

.

Taking log on both sides, we get

log f

(

2ab
a+ b

)

≤
1
2

[

log f

(

ab
b+ tv

)

+ log f

(

ab
a+ tw

)]

.

Integrating above inequality with respect tot on [0,1], we
have

log f

(

2ab
a+ b

)

≤
1
2





1
∫

0

log f

(

ab
b+ tv

)

dt +

1
∫

0

log f

(

ab
a+ tw

)

dt



 .

This implies that

log f

(

2ab
a+ b

)

≤
ab
v

b
∫

a

log

(

f (x)
x2

)

dx. (21)

Also

f

(

ab
b+ tv

)

≤ f 1−t(a) f t(b).

This implies that

log f

(

ab
b+ tv

)

≤ (1− t) log f (a)+ t log f (b).

Integrating above inequality with respect tot on [0,1], we
have

ab
v

b
∫

a

log

(

f (x)
x2

)

dx ≤
log f (a)+ log f (b)

2

= log( f (a) f (b))
1
2 . (22)

Combining (21) and (22), we have

log f

(

2ab
a+ b

)

≤
ab
v

b
∫

a

log

(

f (x)
x2

)

dx

≤ log( f (a) f (b))
1
2 . (23)

Taking antilog on both sides of (23), we have

f

(

2ab
a+ b

)

≤ exp





ab
v

b
∫

a

log

(

f (x)
x2

)

dx



≤
√

( f (a) f (b)).

This completes the proof.⊓⊔
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