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Abstract: This study elucidates a three-parameter probabilistic model generalized from Kumaraswamy family using half logistic
distribution as a baseline model named as Kumaraswamy half logistic distribution. The properties of the observed modelare also
explored. Further, we explain the behavior of failure rate,cumulative failure rate, and survival rate functions. Monte Carlo simulation
study is being conducted to estimate the parameters under MLestimation method. Moreover, two practical applications illustrate the
flexibility and better fit of the observed model.
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1 Introduction

Probability models are frequently used for the prediction of lifetime products in various fields of applied sciences. These
models are also used to explain the failure rate and survivalrate of the certain product. Therefore, many generalizations are
formed by adding additional shape parameters to increase the flexibility of these probabilistic models. Many generalized
families of distributions have formed from last few decadessuch as Macdonald-G family [1], Exponentiated Exponential-
T family [2], Beta-G family [3], Marshall-Olkin-G family [4], Exponentiated Generalized family [5], Weibull-G family
[6], Beta Marshall-Olkin family [7], Kumaraswamy Marshall Olkin G family [8], Transmuted Kumaraswamy family [9],
Exponentiated Marshall Olkin G family [10] and many others. One of them is Kumaraswamy-G family of distribution
was given by Cordeiro and Castro [11]. The cdf of the generalized form is

F(x) = 1− {1−Ga (x,ξ)}b, (1)

The density function (pdf) of the corresponding cdf is

f(x) = αbg(x,ξ) [G(x,ξ)]a−1{1−Ga (x,ξ)}b−1 (2)

whereα > 0 andb > 0 are two additional shape parameters whileξ represents the parameters of base line distribution.
Since Half-Logistic distribution is formed by [12] using the absolute transformation of the logistic distribution,

therefore, having much importance in statistics, physics,hydrology and logistic regression. Moreover, this distribution is
highly considered in modeling datasets of numerous areas. The pdf and cdf of half-logistic distribution is respectively

g(x) =
2λe−λx

(1+e−λx)
2 ; x > 0,λ > 0, (3)

G(x) =
1−e−λx

1+e−λx
, (4)

whereλ is its shape parameter.
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Many generalized models have formed for the modeling of datasets by using observed generator such as
Kumaraswamy Weibull [13], Kumaraswamy Gumbel [14], Kumaraswamy Birnbaum-Saunders [15], Kumaraswamy
Pareto [16], Kumaraswamy generalized Rayleigh [17], Kumaraswamy inverse Rayleigh [18], Kumaraswamy modified
inverse Weibull [19], Kumaraswamy Laplace [20], Kumaraswamy exponential-Weibull [21], Kumaraswamy
exponentiated inverse Rayleigh [22] and many other distributions exists in the literature. Themain purpose of this study
to introduce a generalized form of half-logistic distribution and describes its flexible behavior. The rest of study contain
following divisions such as Section 2 explain the behavior of pdf and cdf for observed distribution, its hazard and
survival rates including limiting behavior of the observedmodel. Section 3 explains some properties of Kw-HL
distribution such as moment, generating function, and incomplete moments, random number generator and quartile
function, entropies and order statistics. Section 4 contains Monte Carlo simulation study for the estimation of parameters
by maximum likelihood estimates (MLE). Section 5 illustrates the real life application and flexibility of model as
compared to other models. The whole study is being concludedin section 6.

2 The Kw-HL Distribution

If X belongs to Half Logistic distribution with parameterλ > 0 cumulative distribution function (cdf) of Kw-HL
distribution can be obtained by inserting (4) in (1).

F(x;a,b,λ) = 1−

{

1−

(

1−e−λx

1+e−λx

)a
}b

(5)

Its corresponding pdf is

f(x;a,b,λ) =
2αbλe−λx

(1+e−λx)
2

[

1−e−λx

1+e−λx

]a−1
{

1−

(

1−e−λx

1+e−λx

)a
}b−1

(6)

wherea > 0,b > 0 andλ > 0 are shape parameters.

2.1 Some useful expansions

By using binomial expansion

(1− z)n =

∞∑

j=0

(

n

j

)

(−1)jzj for z > 0

We can also express pdf as follows

f(x) = 2αbλ
∞∑

i,j,k=0

(−1)i+j

(

b−1
i

)(

a+ai−1
j

)(

−(a+ai+1)
k

)

(

e−λx
)j+k+1

f(x) = 2αbλ
∞∑

i,j,k=0

wi,j,k

(

e−λx
)j+k+1

(7)

where

wi,j,k = (−1)i+j

(

b−1
i

)(

a+ai−1
j

)(

−(a+ai+1)
k

)

Eq. (8) represents the failure rate function for X variable of Kw-HL distribution.

h(x) =

2αbλe−λx

(1+e−λx)
2

[

1−e−λx

1+e−λx

]a−1

1−
(

1−e−λx

1+e−λx

)a (8)
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(a) PDF curves (b) hrf curves

Fig. 1: pdf & hrf curves at different selection of parameters

The cumulative hazard rate function and survival functionsof Kw-HL model is

H(x) = − log

[

1−

(

1−e−λx

1+e−λx

)a
]

(9)

S(x) = 1−

(

1−e−λx

1+e−λx

)a

(10)

respectively.
Figure (1a) and (1b) represent the behavior of density function and hazard rate function of KW-HL distribution at a

different combination of parameters. The observed model has bathtub failure rate.

2.2 Limiting behavior Kw-HL density and hazard rate functions

Lemma 1: For x approaches to origin, limits of Kw-HL density functionis as follows

lim
x→0

f(x) =






∞ for a < 1
abλa

2a for a= 1
0 for a > 1

(11)

Proof: As pdf of Kw-HL distribution is

lim
x→0

f(x) = lim
x→0





2αbλe−λx

(1+e−λx)
2

[

1−e−λx

1+e−λx

]a−1
{

1−

(

1−e−λx

1+e−λx

)a
}b−1





The quantity

lim
x→0

e−λx ∼= 1 , lim
x→0

1+e−λx ∼= 2 and lim
x→0

{

1−

(

1−e−λx

1+e−λx

)a
}b−1

∼= 1

The above expression becomes

lim
x→0

f(x) = lim
x→0

(

(2αbλ/4)

[

1−e−λx

2

]a−1
)

lim
x→0

f(x) = lim
x→0






(2αbλ/4)







1−
(

1−λx+
(λx)2

2! −
(λx)3

3! + . . .
)

2







a−1
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lim
x→0

f(x) = lim
x→0







(

αbλ

2

)

(λx)a−1





1− λx
2! +

(λx)2

3! − . . .

2





a−1






Now results can be formed easily.
Lemma 2: For x approaches to origin, limits of Kw-HL hazard rate is as follows

lim
x→0

h(x) =






∞ for a < 1
abλa

2a for a= 1
0 for a > 1

(12)

Proof: The distribution function of Kw-HL distribution is

lim
x→0

h(x) = lim
x→0

2αbλe−λx

(1+e−λx)
2

[

1−e−λx

1+e−λx

]a−1

1−
(

1−e−λx

1+e−λx

)a

The results are straightforward from the equation

2.3 Some special models of Kw-HL

An approximation to other probabilistic models shows the flexibility of models for different assumed values. By
considering the pdf of Kw-HL distribution from Eq. (6) here we present some special cases of observed model.

–If a= 1 andb= 1, Kw-HL converts into half logistic distributionHL(λ).
–If b= 1, observed distribution converts into exponentiated halflogisticEHL(a,λ).
–If a= 1, observed distribution becomes generalized half logistic GHL(a,λ).

3 Properties of Kw-HL Distribution

This section particularizes some structural quantities ofKw-HL distribution with algebraic expressions. These algebraic
expressions are found more efficient to express statisticalmeasures instead of direct integration of density function.

3.1 Moments

Theorem: Let X is a r.v belong to Kw-HL distribution with three shape parametersa, b andλ > 0. Therth ordinary
moment of proposed model is

µ
′

r = 2αbλ
∞∑

i,j,k=0

wi,j,k

(λ(1+ j+k))r+1 Γ (r+1) (13)

Proof: By definition,rth moment of a distribution function is

µ
′

r = E(Xr) =

∞∫

0

xrf(x) dx

By using Eq. (7)

µ
′

r = 2αbλ
∞∑

i,j,k=0

wi,j,k

∞∫

0

xr
(

e−λx
)j+k+1

dx

Put λx(1+ j+k) = z andx= z
λ(1+j+k)

, dx= 1
λ(1+j+k)

dz
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= 2αbλ
∞∑

i,j,k=0

wi,j,k

∞∫

0

zr

(λ(1+ j+k))
r+1e

−xdz

µ
′

r = 2αbλ
∞∑

i,j,k=0

wi,j,k

(λ(1+ j+k))
r+1 Γ (r+1)

The proof follows.

3.2 Incomplete Moment

Theorem: Let a random variableX belongs to Kw-HL distribution then itsrth incomplete moment is

φ(x) = 2αbλ
∞∑

i,j,k=0

wi,j,k

(λ(1+ j+k))r+1 Γ (r+1,λx(1+ j+k)) (14)

Proof: rth incomplete moment for variable X is defined as

φ(x) =

x∫

0

trf(t)dt

= 2αbλ
∞∑

i,j,k=0

wi,j,k

x∫

0

tr
(

e−λt
)j+k+1

dt

Putλt(1+ j+k) = z andt = z
λ(1+j+k)

, dt= 1
λ(1+j+k)

dz

= 2αbλ
∞∑

i,j,k=0

wi,j,k

λx(1+j+k)∫

0

zr

(λ(1+ j+k))r+1e
−zdz

= 2αbλ
∞∑

i,j,k=0

wi,j,k

(λ(1+ j+k))r+1

λx(1+j+k)∫

0

zr+1−1e−zdz

Incomplete gamma function completes the proof.

3.3 Moment generating function

Theorem: Suppose r.vX have pdf of Kw-HL distribution described in Eq. (7) andM(t) represents its moment generating
function (mgf) as

M(t) = 2αbλ
∞∑

i,j,k,m=0

wi,j,kt
m

m!(λ(1+ j+k))m+1 Γ (m+1) (15)

Proof: mgf for variable X is defined as

M(t) = E
(

etx
)

=

∞∫

0

etxf(x)dx

M(t) = 2αbλ
∞∑

i,j,k=0

wi,j,k

∞∫

0

etxe−λx(j+k+1)dx
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Since

etx =
∞∑

m=0

tm

m! x
m

M(t) = 2αbλ
∞∑

i,j,k,m=0

wi,j,kt
m

m!

∞∫

0

xme−λx(j+k+1)dx

Putλx(1+ j+k) = z

M(t) = 2αbλ
∞∑

i,j,k,m=0

wi,j,kt
m

m!

∞∫

0

zm

(λ(1+ j+k))m+1e
−zdz

3.4 Quantile Function

If q belongs to uniform distribution with interval (0,1), then random variableX=G(q) has density of Eq. (6). The quantile
function ofX is

x=−
1
λ

log







1−
(

1−(1−q)
1
b

)1/a

1+
(

1−(1−q)
1
b

)1/a






(16)

3.5 Skewness and Kurtosis

Skewness is used to measure the asymmetry and kurtosis is used to measure the peakedness of probabilistic models. Both
measures are the descriptive measures of the shape of the probability distribution. Skewness and kurtosis can be easily
determined by the following expressions based on first four mean moments calculated by Eq. (13).

γ1(sk) =
µ3

µ
3
2
2

and β2 =
µ4

µ2
2

(17)

3.6 Mean deviation

If X belongs to Kw-HL distribution, then we can measure the scattering of r.v X by the average deviation of observations
from mean and median. It particularly knows as mean deviation about mean and mean deviation about the median. It is
defined as

M.D
(

X̄
)

=

∞∫

0

|x−µ|f(x)dx and M.D
(

X̃
)

=

∞∫

0

|x−M| f(x)dx

respectively, whereµ represent the expected value of random variable X and could be calculated from Eq. (13) while

M = − 1
λ log

[(

1+
(

1−(1−q)
1/b
)1/a

)

/

(

1+
(

1−(1−q)
1/b
)1/a

)]

is median of X. The measures

M.D
(

X̄
)

and M.D
(

X̃
)

can be calculated from

M.D
(

X̄
)

= 2µF(µ)−2J(µ) and M.D
(

X̃
)

= µ−2J(M)

whereJ(t) =
t∫

0
tf(t)dt

Mean deviation is practically used to explain the behavior of Bonferroni and Lorenz curves. Mostly, these curves are
applied theoretically in many fields such as economics, reliability, demography, insurance, and medicine [13].
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3.7 Entropies

The entropy of a random variable X is the measure of variationof the uncertainty. A common measure of entropy is Rényi
entropy.

3.7.1 Rényi Entropy

Theorem: If the random variable X is defined as Eq. (5), then the Rényi entropy is given by

IR (δ) =
δ log2
1−δ

+
δ loga
1−δ

+
δ logb
1−δ

− logλ+
1

1−δ
log





∞∑

i,j,k=0

yi,j,k

j+k+δ



 (18)

Proof: If r.v X belong to Kw-HL distribution then by definition, Rényi entropy is

IR (δ) =
1

1−δ
log[I(δ)]

whereδ > 0 and δ 6= 1.

I(δ) =

∞∫

0

fδ (x)dx

I(δ) =

∞∫

0

2δαδbδλδe−λδx

(1+e−λx)
2δ

[

1−e−λx

1+e−λx

]δ(a−1)
{

1−

(

1−e−λx

1+e−λx

)a
}δ(b−1)

dx

On simplification the final expression becomes

I(δ) = 2δαδbδλδ−1





∞∑

i,j,k=0

yi,j,k

j+k+δ





wi,j,k = (−1)i+j

(

δ(b−1)
i

)(

δ(a−1)+ai

j

)(

−δ(a+1)−ai

k

)

So using this expression inIR (δ) , the result follows.

3.7.2 q-Entropy

The q-entropy (Hq) is defined by

Hq =
1

q−1
log(1−(1−q)IR (δ))

By putting the above expression ofIR (δ) in above equation, we obtain

=
1

q−1
log



1−(1−q)





2δαδbδλδ−1





∞∑

i,j,k=0

yi,j,k

j+k+δ












 (19)
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3.8 Order Statistics

Let X1,X2,X3, ....Xn be a random sample and its ordered values are denoted asX(1),X(2),X(3), ....X(n). The probability
density function (pdf) of order statistics is obtained using the below function

fs:n (x) =
n!

(s−1)! (n− s)!
[F(x)]s−1[1−F(x)]n−sf(x)

The density of thenth ordered statistics follows the Kw-HL distribution is derived as follow

fs:n (x) =
n!

(s−1)! (n− s)!



1−

{

1−

(

1−e−λx

1+e−λx

)a
}b




s−1



{

1−

(

1−e−λx

1+e−λx

)a
}b




n−s

2αbλe−λx

(1+e−λx)
2

[

1−e−λx

1+e−λx

]a−1
{

1−

(

1−e−λx

1+e−λx

)a
}b−1

3.9 Maximum Likelihood Estimates

Since maximum likelihood estimators give the maximum information about the population parameters, therefore, this
section presents the maximum likelihood estimates (MLEs) of the parameters that are inherent within the Kw-HL
distribution function is given by the following: LetX1, ...,Xn be random variables of the Kw-HL distribution of size n.
Then sample likelihood function of Kw-HL is obtained as

L(x1,x2, . . . . . .xn;a,b,λ) =
n∏

i=1

f(x) = 2nαnbnλn
n∏

i=1

e−λx

[

1−e−λx
]α−1

[1+e−λx]
a+1

{

1−

(

1−e−λx

1+e−λx

)a
}b−1

Log-likelihood function isΦ = log[L(x1,x2, . . . . . .xn;a,b,λ)]

Φ = n log2+n loga+n logb+n logλ−λ
∑

x+(α−1)
∑

log
[

1−e−λx
]

−(α+1)
∑

log
[

1+e−λx
]

+(b−1)
∑

log

[

1−

(

1−e−λx

1+e−λx

)a
]

Therefore, The MLE’s of parameters (a,b andλ) which maximize the above log-likelihood function must satisfy the
normal equations. We take the first derivative of the above log-likelihood equation with respect to parameters and equate
to zero respectively.

Ja =
∂L

∂a
=

n

a
+
∑

log
[

1−e−λx
]

−
∑

log
[

1+e−λx
]

+(b−1)
∑ −

(

1−e−λx

1+e−λx

)a
log
[

1−e−λx

1+e−λx

]

[

1−
(

1−e−λx

1+e−λx

)a] = 0 (20)

Jb =
∂L

∂b
=

n

b
+
∑

log

[

1−

(

1−e−λx

1+e−λx

)a
]

= 0 (21)

Jλ =
∂L

∂λ
=

n

λ
−
∑

x+(α−1)
∑ λe−λx

1−e−λx
+(α+1)

∑ λe−λx

1+e−λx
−(b−1)

∑ a
(

1−e−λx

1+e−λx

)a−1
2λe−λx

[

1−
(

1−e−λx

1+e−λx

)a]

[1+e−λx]
2
= 0(22)

Since the above derived equations are in the complex form, therefore the exact solution of ML estimator for unknown
parameters is not possible. So it is convenient to use nonlinear Newton Raphson algorithm for exact numerically solution
to maximize the above likelihood function.
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Table 1: Mean estimates, bias and MSE of Estimated parameters

a b λ Sample size Parameter Mean Bias MSE

1.5 1.5 2

50
a 1.548 0.048 0.077
b 1.524 0.024 0.049
λ 2.083 0.083 0.239

100
a 1.514 0.014 0.023
b 1.509 0.009 0.016
λ 2.029 0.029 0.066

150
a 1.507 0.007 0.011
b 1.505 0.005 0.007
λ 2.015 0.015 0.030

2.5 2 2

50
a 2.611 0.111 0.313
b 2.039 0.039 0.087
λ 2.196 0.196 0.929

100
a 2.534 0.034 0.083
b 2.01 0.01 0.027
λ 2.049 0.049 0.124

150
a 2.516 0.016 0.04
b 2.006 0.006 0.014
λ 2.027 0.027 0.058

3.5 2.5 2

50
a 3.673 0.173 0.754
b 2.548 0.048 0.138
λ 2.433 0.433 136.1

100
a 3.548 0.048 0.199
b 2.518 0.018 0.043
λ 2.09 0.09 0.221

150
a 3.525 0.025 0.092
b 2.508 0.008 0.021
λ 2.041 0.041 0.091

4 Data Analysis

4.1 Simulation study

This section compares the parameters for different sample sizes at different combination of parameters on the basis of
bias and MSE of Kw-HL distribution. We generate 10,000 samples by using Monte Carlos simulation. All the algorithms
are coded in R language. We calculate ML estimates for a,b andλ based on generated samples. Mean of these estimates
with bias and MSE are represented in the table below.

The values in Table 1 indicate that the MSE of ML estimators ofa,b andλ decreases and their biases reduce towards
0 as sample size increases. While the increase in shape parameters, bias and MSE of estimated parameters increases.

4.2 Applications

We applied two data sets to illustrate the usefulness of the proposed model. The first data set was reported by [23]. The
data represents the survival time of 72 infected with virulent tubercle bacilli. The data are as follows: 0.1, 0.33, 0.44, 0.56,
0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1.00, 1.00, 1.02, 1.05, 1.07, 0.7, 0.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.20,
1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.60, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96,
1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.30, 2.31, 2.40, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02,
4.32, 4.58, 5.55.

The second data set was originally used by [24]. Data consists of 30 observations of March precipitation (in inches)
in Minneapolis/St Paul. The observations are: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51,
2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05. The summary statistics of
the data sets is given in Table 2.

The comparison of the Kumaraswamy Half Logistic distribution is being made with Kumaraswamy Logistic (Kw-L),
Beta Exponential (BE), Beta Weibull (BW), Type II Half Logistic Weibull (TIIHLW) and Exponentiated Half Logistic
(EHL) distribution. The numerous accuracy measures including Akeike Info Criterion (AIC), Bayes Info Criterion (BIC),
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Table 2: Descriptive Statistics for data sets

Data Min. Q1 Median Q3 Mean Max.
Set 1 0.080 1.080 1.560 2.302 1.837 7.000
Set 2 0.320 0.915 1.470 2.088 1.675 4.750

likelihood (L), Anderson-Darling test (A∗) and Cramer-von Mises test (W∗) are being calculated. The density functions
of other existing distribution are given as follows:

Beta Exponential Distribution

f(x;a,b,λ) =
λ

Beta[a,b]
e−bλx

(

1−e−λx
)a−1

Beta Weibull Distribution

f(x;a,b,γ,λ) =
λγγ

Beta[a,b]
e−(λx)γ

(

1−e−(λx)γ
)a−1(

1−
(

1−e−(λx)γ
))b−1

xγ−1

Type II Half Logistic Weibull Distribution

f(x;λ,δ,γ) = 2λδγ
xγ−1e−δxγ(

1−e−δxγ)λ−1

(

1+(1−e−δxγ
)
λ
)2

Exponentiated Half Logistic Distribution

f(x;λ,θ) =
2θλ e−λx

(1+e−λx)
2

(

1−e−λx

1+e−λx

)θ−1

Table 3: ML estimates for survival time of infected guinea pigs.

EHL(λ,γ) 1.09538 1.99161 - -
KwHL(a,b,λ) 1.61665 3.82948∗107 0.0000198 -
BE(a,b,λ) 2.55961 1.77383 0.58859 -
TIIHLW(λ,γ,δ) 1.66869 1.41133 0.379459 -
BW(a,b,λ,γ) 1.94921 0.726736 0.906026 1.20367

Table 4: ML estimates for March precipitation data

EHL(λ,γ) 1.28559 2.35058 -
BE(a,b,λ) 3.214041 1.58825 0.803263
TIIHLW(λ,γ,δ) 1.82277 1.4654 0.450975
KwHL(a,b,λ) 1.80925 2.46749∗108 0.0000243

Model SelectionThe model selection is carried by using goodness of fit measures including maximized log-likelihood
(l̂), Akaike information criterion (AIC), Bayesian information criterion (BIC), Anderson Darling test(A∗

0) and Cramer
Von Mises(W∗

0 ). Using these goodness of fit criteria findings of Table 5 and 6 shows that proposed model give superior
fit than other models.

5 Conclusion

The study introduces a new generalization of half logistic distribution named as Kumaraswamy half logistic distribution
and elaborates explicit expression for its fundamental properties. The study also explains the behavior of estimated
parameters by using Monte Carlos simulation approach. Two real life applications have also presented for explaining the
better fit of the observed model as compared to some existing models.

c© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.6, No. 3, 597-609 (2017) /www.naturalspublishing.com/Journals.asp 607

(a) PDF curves (b) CDF curves

Fig. 2: The fitted pdf and cdf of the Kw-HL distribution for first dataset

(a) PDF curves (b) CDF curves

Fig. 3: The fitted pdf and cdf of the Kw-HL distribution for second dataset

Table 5: Some statistics for models fitted to survival time of infected guinea pigs.

Model AIC BIC L A∗ W∗

EHL(λ,γ) 208.387 212.94 -102.194 0.59843 0.08869
KwHL(a,b,λ) 114.223 121.053 -54.1115 0.25968 0.06352
BE(a,b,λ) 211.834 218.664 -102.917 0.70161 0.10251
TIIHLW(λ,γ,δ) 211.156 217.986 -102.578 0.64029 0.09285
BW(a,b,λ,γ) 213.590 222.697 -102.795 0.69309 0.10284
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Table 6: Some statistics for models fitted to March precipitation data

Model AIC BIC L A∗ W∗

EHL(λ,γ) 80.4299 83.2323 -38.2149 0.116806 0.0153267
BE(a,b,λ) 82.1707 86.3743 -38.0854 0.109457 0.0147817
TIIHLW(λ,γ,δ) 82.2453 86.4489 -38.1226 0.111972 0.0152154
KwHL(a,b,λ) 41.6990 45.9026 -17.8495 0.167878 0.0111148
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