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Abstract: Balasooriya and Gadag (1994) proposed a location and scale invariant test based on the test statistic Zk for testing the k
upper outliers in two-parameter exponential sample. Kumaret al have proposed test statistics for testing multiple upper outlier detection
in gamma sample. In literature, various test statistics have been proposed to detect outliers in an exponential sample.Likes (1966) also
proposed a new test statistics to detect outlier in the exponential case. In this paper, the test statistic proposed by Likes has been used to
detect outliers in a two parameter gamma sample and the null distribution of the test statistics has been obtained. A simulation study is
carried out to compare the theoretical developments.
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1 Introduction

The two parameters of a gamma distribution represent the scale and the shape parameters and because of this, it has
flexibility in analysing any positive real data. It has increasing as well as decreasing failure rate depending on the shape
parameter, which gives an extra edge over exponential distribution, which has only constant failure rate. Since sum of
independent and identically distributed (i.i.d.) gamma random variables has a gamma distribution, it has more practical
utility. For example, if a system is dependent on a particular component which requires n-spare parts for maintenance,
and if the component and each spare parts has i.i.d. gamma lifetime distributions, then the lifetime distribution of the
system also follows a gamma distribution. Another interesting property of the family of gamma distributions is that it has
likelihood ratio ordering, with respect to shape parameter, when the scale parameter remains constant. It naturally implies
the ordering in hazard rate as well as in distribution. Hence, if some outlying observations are present in a sample from
Gamma distribution, the inferences made on the basis of thissample may not be dependable. Hence, a study of detection of
outlying observations is needed. For gamma samples, a number of discordancy tests for a single and multiple upper outliers
have been proposed by various authors; for example, see Barnett and Lewis (1994), Kale (1976), Kimber (1979, 1983),
Chikkagoudar and Kunchur (1983), Likes (1987), Lewis and Fieller (1979), Balasooriya and Gadag (1994) and Zhang
(1998) etc. Jabbari Nooghabi et. al. (2010) extended the work of Zerbet and Nikulin (2003) for gamma distribution. In
this paper a test statistic is developed for identification of multiple upper outliers. To start with, the null and the alternative
hypotheses are formulated. Thus the null hypothesisH0 says that there is no outlying observation in the sample and the
alternative hypothesisHk states that there arek upper outliers in the sample.

2 The Test Statistic

In case of a sample from an exponential distribution, Likes (1987) proposed a test statistic for testing upper outliers

Dk =
X(n)−X(n−k)

X(n)−X(1)
(1)

The test statistic (1) is based on score function for testingH0 againstHk. The statistic (1) will have small values if upper
outliers are present in the data and declare them as discordant if they exceed by a specified value. Since, exponential
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distribution has constant failure rate, so it may not be appropriate to assume that the outliers are from the exponential
distribution. However, it would be more appropriate to consider more general lifetime model for detecting upper outliers
in the data.

The probability density function (pdf) of a gamma distribution with shape parameter and scale parameterθ is given
by

f (x;λ ,θ ) = 1
Γλ θ λ xλ−1exp

(

− x
θ
)

, x > 0,λ > 0, θ > 0.

For identification of outliers, a statistical test procedure called a discordancy test to decide whether or not the
contaminant observations are to be declared as discordant is performed. Thus, given a sampleX1,X2, . . . ,Xn and its
corresponding order statisticsX(1),X(2), . . . ,X(n), it may be desirable to test the null hypothesisH0 such that all the
observations are members of aG(l,θ ) against the alternativeHk thatn− k observations are from this model butk values
come from aG(λ ,bθ ), b ≥ 1. Clearly,Hk is a scale slippage alternative.

Thus for a discordancy test of thesek observations, the test statisticDk proposed by Likes (1987) for testingk upper
outliers in exponential sample, is applied for gamma sampleand the performance of the test is computed.

3 Null Distribution of the Test Statistics

For developing a test procedure, the null distribution of the test statistic has to be obtained. The null distribution ofthe
test statisticDk is obtained in a similar manner as that was obtained by Kumar and Lalitha (2012) for Exponential sample.
The distribution ofDk under the null hypothesisH0 is given in the following theorem.

Theorem Under the null hypothesis, the statisticDk defined in (1) follows a beta distribution of second kind with
parametersλ k andλ (n−1) respectively.

Proof: This theorem can be proved using the characteristic function and the inversion theorem. Let

Yj = X(n− j+1)−X(n− j), j = 1,2, . . . n−1.

Then the numerator and denominator of (1) may be written as-
k
∑
j=1

Yj = X(n)−X(n−k) and
n−1
∑
j=1

Yj = X(n)−X(1) respectively.

The test statistic can be rewritten as

Dk =
∑k

j=1(X(n− j+1)−X(n− j))

∑n−1
j=1(X(n− j+1)−X(n− j))

.

Or Dk =
∑k

j=1Yj

∑n−1
j=1 Yj

= V
W , where,V =

k
∑
j=1

Yj andW =
n−1
∑
j=1

Yj.

The joint characteristic function of and is-

ϕv,w (t,z) = E
(

ei(vt+wz)
)

= E



e
i

k
∑

j=1
y jt+i

n−1
∑

j=1
y jz





= ∫ e
i

k
∑

j=1
y jt+i

n−1
∑

j=1
y jz

f (y1,y2, . . . ,yn−1)dy1dy2 . . .dyn−1 .

Under the null hypothesis, i.e. when no outlying observations are present,Yj follows a Gamma distribution.Then V
and W being functions ofYj, the joint characteristic function of V and W is given by

ϕv,w (t,z) =
k
∏
j=1

∞
∫
0

1
Γλ θ λ yλ−1

j e−ity j/θ dy j
n−1
∏
j=1

∞
∫
0

1
Γλ θ λ yλ−1

j e−izy j/θ dy j.
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=
k
∏
j=1

1
θ λ

(

it
θ
)−1 n−1

∏
j=1

1
θ λ

(

iz
θ
)−1

.

Or

ϕ (v,w) =
(

1
θ λ

)k k
∏
j=1

(

it
θ
)−1

(

1
θ λ

)n−1 k
∏
j=1

(

iz
θ
)−1

.

Now using inversion theorem, the joint distribution of V andW can be obtained as follows-

fv,w (v,w) = 1
(2π)2

∞
∫
0

∞
∫
0

ϕv,w (t,z)e−i(vt+wz)dtdz

= 1
(2π)2

1
θ λk

∞
∫
0

k
∏
j=1

(

it
θ
)−1

e−ivtdt 1
θ λ(n−1)

∞
∫
0

n−1
∏
j=1

(

iz
θ
)−1

e−iwzdz.

Since
∞
∫
0

e−ivt

( it
θ )

λ dt = 2πvλ−1e−v/θ

Γλ , v > 0 and

∞
∫
0

e−iwz

( iz
θ )

λ dt = 2πwλ−1e−w/θ

Γλ , w > 0,

fv,w (v,w) = 1
θ λk

vλk−1

Γλ k e−v/θ 1
θ λ(n−1)

vλ(n−1)−1

Γλ (n−1) e−w/θ .
Hence, the joint distribution ofv andw is

fv,w (v,w) = 1

(θ λ)
n+k−1

vλk−1

Γλ (n−1)
wλ(n−1)−1

Γλ k e−
v
θ e−

w
θ .

Or

fv,w (v,w) = wλ(n−1)−1

θ λ(n−1)
e−

w
θ

Γλ (n−1)
vλk−1

θ λk
e−

v
θ

Γλ k ; v,w > 0; λ ,θ > 0.

= f (v) f (w),

where f (v) = vλk−1

θ λk
e−

v
θ

Γλ k ; v > 0; λ ,θ > 0,

and f (w) = wλ(n−1)−1

θ λ(n−1)
e−

w
θ

Γλ (n−1) ; w > 0; λ ,θ > 0.

From this, the probability density function (pdf) ofDk is obtained as

fdk (D) =
1

B(λ k,λ (n−1))

dλ k−1
k

(1+ dk)
λ (n+k−1)

, 0< dk < ∞. (2)

This is aβ2(λ k, λ (n−1)) density.
Now, let 1

1+dk
= dk

′
. then equation (2) transform to

f
dk

′ (D) =
1

B(λ (n−1) , λ k)

(

dk
′
)λ (n−1)−1(

1− dk
′
)λ k−1

, 0< dk
′
< 1. (3)

where,B(a,b) = ΓaΓb
Γ(a+b) is a complete beta function.

4 Critical Values

It can be seen that ifk largest observations are outlying, then the statisticDk will assume small value. Hence, the critical
valuesdα for level of significanceα may be obtained by using from the following equation.

P [Dk < dα |H0] = α (4)

Consequently,
dα
∫
0

f
dk

′ (D)dD = α has to be solved fordα for obtaining critical values.

Thus on using (3),

dα = Iλ (n−1), λ k (α) , where,Ia,b (x) =
1

B(a,b)

x
∫
0

ya−1(1− y)b−1
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is an incomplete beta function of first kind. This equation has to be solved for obtaining the values ofdα .

Hence, the test procedure is as follows: RejectH0, whenDk < dα otherwise it may be accepted. Here k denotes the
number of largest observations that are declared as discordant atα level of significance.

An Example: Kimber and Steven(1981) in which the time intervals data are given by 25, 52, 7, 61, 446, 34, 87, 76,4, 17,
19, 240, 116, 45, 64, 141, 31, 503, 10, 181, 101. For testing k=2 upper outliers, the value of the test statistic for k=1 and 2
were found to beD1 = 0.1142285 andD2 = 0.5270541 respectively at 5 percent level of significance. Thecritical values
for k=1 and 2 ared1 = 0.2641682andd2 = 0.6231105. Hence, in this case both upper extreme observations were declared
as outliers.

5 Performance Criteria

To compute the performance of the discordancy test, David (1981) and Barnett and Lewis (1994) have described different
performance criteria for single and multiple outliers in a sample. These are refined by Hayes and Kinsella (2003). Under
Hk, the following probabilities were defined for different values ofk.

pk
i j = P(AcceptHi|H j); i, j = 1,2, ,k. (5)

Whenk = 2, from (5), the probabilitiesp2
11 andp2

22 of correct decisions andp2
12, p2

21 of masking and swamping effects
respectively were computed for the level of significanceα = 0.05 and for different choices ofn & b.

When k ≥ 3, from (5), similar probabilities can be defined for performance studies. For a good performance, the
probabilities in (5) should be high fori = j, i, j = 1,2, ,k, while it should be low fori < j, i, j = 1,2, ,k, (case of masking)
andi > j, i, j = 1,2, ,k (case of swamping).

6 Simulation Study

Here, a simulation study is carried out to compute the performance of the test statistic (1) using the method given by Lin
et al (2014). The powers were evaluated and also the probabilities of masking and swamping for the case whenk = 2 & 3
were determined. For givenn,k andb, the samples of size n under the hypothesisHk, were first generated by choosing a
sample of size n fromG(1,1). After that, these samples were arranged in ascending orderof magnitude to obtain the
ordered samples. Fork = 2,N = 10000, replications of sizen = 10, the samples were generated fromG(1,1) distribution
and(n−1)th andnth observations were replaced bybxn−1 andbxn, whereb > 1. The test statisticDk was computed and
compared with the respective critical values. The different performance probabilities given in (5) were obtained for
b = 10(5)50,50(10),100(50)150. Graphs of these probabilities were plotted which are shown in figure 1 to 9 for
different value of significance.

It can be seen from 1 and 5 that has low power at initial value ofb but asb increases, the power of the test increases
very rapidly and become steady for both the cases. The probability p2

22 , shown in figure 2, also increases asb increases.
The probability of swamping and masking effectsp2

12& p2
21 , respectively, shown in figures 3, and 4, are very low for all

values ofb.

From fig. 1, it can be seen that the probabilityp2
11 increases moderately tillb = 20, but beyond that it increases very

rapidly.

From fig. 2, it can be seen that the probabilityp2
22 increases moderately tillb = 22, but beyond that it increases very

rapidly.

From fig.3, it can be seen that the probabilityp2
12 is same at all value forb and very low. From fig.4, it can be seen that

the probabilityp2
21 high at initial value ofb and moderately drop atb = 20 beyond that it decreases very rapidly.

From fig. 6, it can be seen that probabilityp3
22 increases very rapidly tillb = 90 after that it become steady. From

fig.7, the probabilityp3
33 is very low till b = 100 and after that it increases very rapidly and fromb = 300, it becomes

steady. From fig.8 & 9, masking and swamping effects fork = 3 are also very low.
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Fig. 1: Over all Power of the statisticDk for n = 10 andk = 2 andα = 0.05.

Fig. 2: Performance criterionp2
22 of testing procedure forn = 10 andk = 2 andα = 0.05.
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Fig. 3: Masking effect probability ofDk for n = 10 andk = 2 andα = 0.05.

Fig. 4: Swamping effect probability ofDk for n = 10 andk = 2 andα = 0.05.
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Fig. 5: Power of testing procedure forn = 15 andk = 3 andα = 0.05.

Fig. 6: Performance criterionp3
22 of testing procedure forn = 15 whenk = 3 andα = 0.05.
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Fig. 7: Performance criterionp3
33 of testing procedure forn = 15 whenk = 3 andα = 0.05.

Fig. 8: Masking effect of testing procedure forn = 15 whenk = 3 andα = 0.05.
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Fig. 9: swamping effect of testing procedure forn = 15 whenk = 3 andα = 0.05.

This implies that larger the deviation in scale parameter the lower the effect on the power of testing procedure beyond
b = 90.

Hence, it shows that all powers and masking, swamping effects have similar pattern for different value ofn&k.Similar
pattern can be seen for other values of level of significance,i.e for α = 0.01 and 0.1.

7 Concluding Remarks

On the basis of performance, in terms of general power and probabilities of swamping and masking effects, it can be
concluded that the test based onDk has a good performance as it correctly identifies the contaminant observations as
discordant. Also,Dk has very low probability of masking effect i.e. of not identifying the contaminant observations as
outliers. Masking effect ofDk is not very good however, it is considerably low.
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