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Abstract: The concept of weighted distributions can be employed in the development of proper models for lifetime data in 

medical sciences and other fields. In this paper, we have introduced a new generalization of Pareto type II distribution 

using the concept of weighting. The statistical properties of this distribution are derived and the model parameters are 

estimated by maximum likelihood estimation along with Monte Carlo simulation procedure. Finally, an application to real 

data set is finally presented for illustration in medical sciences. 
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1 Introduction 

In the last few decades, there has been a growing interest in the construction of generalized flexible parametric classes of 

probability models in medical sciences and other fields. Various forms of the distributions in medical sciences have 

appeared in the literature for data analysis and modeling. The quality of the procedures used in a statistical analysis 

depends heavily on the assumed probability model or distributions. Because of this, considerable effort over the years has 

been expended in the development of large classes of standard distributions along with relevant statistical methodologies, 

designed to serve as models for a wide range of real world phenomena. However, there still remain many important 

problems where the real data does not follow any of the classical or standard models. So to overcome such requirements, 

we use to develop some new models. These newly developed classes of distributions provide greater flexibility in modeling 

complex data from medical sciences and the results drawn from them seems quite sound and genuine. Thus our main 

concern becomes, to give importance especially to model specification and the data interpretation. Weighted probability 

models play very important role in some situations arising in various practical fields like medical sciences, engineering etc. 

These distributions arise in practice when observations from a sample are recorded with unequal probability and provide 

unifying approach for the problems when the observations fall in the non-experimental, non-replicated and non-random 

categories. Van Gove (2003) reviewed some of the more recent results on weighted distributions pertaining to parameter 

estimation in forestry. Warren (1975) was the first to apply the weighted distributions in connection with sampling wood 

cells. Patil and Ord (1978) introduced the concept of size-biased sampling and weighted distributions by identifying some 

of the situations where the underlying models retain their form. The statistical interpretation of weighted and size-biased 

distributions was originally identified by Cox (1964) in the context of renewal theory. Size-biased sampling situations may 

occur in clinical trials, reliability theory, and survival analysis and population studies, where a proper sampling frame is 

absent. In such situations, items are sampled at a rate proportional to their length, so that larger values of the quantity being 

measured are sampled with higher probabilities. Numerous works on various aspects of weighted and size-biased sampling 

are available in literature which include family size and sex ratio , wild life population and line transect sampling , analysis 

of family data, cell cycle analysis , efficacy of early screening for disease, aerial survey and visibility bias Patil and Rao 

(1978).  

 

The probability density function (pdf) of the Pareto type II distribution (PTIID) is given by 
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The rth  Moment, Mean and variance of Pareto type II distribution is given by 
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2 Weighted Pareto Type II Distribution 

 
Suppose X is a non negative random variable with probability density function (pdf)  xf . Let  xW  be the weight 

function which is a non negative function, then the probability density function of the weighted random variable 
wX is 

given by: 
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where )(xw  is a non-negative weight function and         dxxfxwxwE .  

Depending upon the choice of the weight function w(x), we have different weighted models. Clearly when xxw )(  , the resulting 

distribution is called size biased whose pdf is given by: 

                 

0,
)(

)(
)(  x

xE

xxf
xf

SB
 

Weighted distributions occur frequently in research related to reliability, bio-medicine, ecology and branching process and can be 

seen in Patil and Rao (1986). Das and Roy (2011) discussed the size biased weighted Generalized Rayleigh distribution with its 

properties, also they developed the size biased weighted Weibull distribution. 

In this paper, we have considered the weight function as   cxxw   to obtain the weighted Pareto type II model. The 

probability density of weighted Pareto type II distribution is given as: 
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Using (1.1) and (1.2) in (1.4), we have new generalization of Pareto type II distribution called weighted Pareto type II model 

(WPTII) given by 
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CDF of weighted Pareto type II distribution is given by 
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Where  baxB ,;  is an incomplete beta function. 

Graphical overview of weighted Pareto type II distribution for different parameter combinations is given in fig. 1.1 to fig. 

1.4. The newly introduced generalized distribution has right skewed nature. 

 

 

 

                           Fig 1.1 pdf plot for WPTII( ,  ,c)                           Fig 1.2 pdf plot for WPTII( ,  ,c) 

 

 

                       Fig 1.3 pdf plot for WPTII ( ,  ,c)                               Fig 1.4 pdf plot for WPTII( , ,c)                            

A Size biased Pareto type II distribution (SBPIID) is obtained by applying the weights
cx , where c =1 to the weighted 

Pareto type II distribution. We have from relation equations (1.1) and (1.3) 
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This gives the size biased Pareto type II distribution as 
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and the corresponding cdf is given by 
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where and  are shape and scale parameters, respectively.  The pdf and CDF plot for different parameter combinations 

for size biased Pareto type II distribution is given in fig. 1.5 to fig. 1.8. 

 

3 Reliability Analysis WPTII and SBPTII Distributions 

In this sub section, we have obtained the reliability and hazard rate functions of the weighted Pareto type II model.  

 

3.1 Reliability Function of WPTII Model. 
 

The reliability function is defined as the probability that a system survives beyond a specified time. It is also referred to as 

survival or survivor function of the distribution. It can be computed as complement of the cumulative distribution function 

of the model. The reliability function or the survival function of weighted Pareto type II distribution is calculated as: 
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where  baxB ,;  is an incomplete beta function. 

3.2 Hazard Function WPTII Model 
 

The hazard function is also known as hazard rate or instantaneous failure rate is given as: 
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Where  baxB ,;  is an incomplete beta function 

3.3 Reliability Function of SBPTII Model 

The reliability function of size biased Pareto type II distribution is given by 
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3.4 Hazard Function of SBPTII Model 

 
The hazard function of size biased Pareto type II distribution is given by 
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3.5 Hazard Function SBPTII Model 
 

The reverse hazard function for the Size biased weighted Pareto type II distribution is given as     
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4 Statistical Properties of WPTII and SBPTII Distributions 

In this section we shall discuss structural properties of weighted Pareto type II and size biased Pareto type II distributions. 

Specially moments, order statistics, maximum likelihood estimation, and moment generating function. 

4.1 Moments 

Suppose X denote the weighted Pareto type II distribution random variable with parameters ,  and c then   
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For Size Biased Pareto type II random variable with parameters and , rth moment can be directly obtained by 

substituting c=1 in the rth moment expression (1.9) of weighted Pareto type II distribution. 

               





















1

1
)1()1(

1

0

11

kr
C

k

r

k

rkr

r



 

Substitute r=1, 2, 3, 4, in the rth moment expression of SBPTII distribution, we get first four moments for SBPTII distribution. 
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Fig 1.5 pdf plot for SBPII ( ,  )                                        Fig 1.6 pdf plot for SBPII ( , ) 

 

Fig 1.7 pdf plot for SBPII( ,  )                                         Fig 1.8 pdf plot for SBPII( ,  ) 
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4.2 Moment Generating Function of WPTII and SBPTII Distributions 
 

In this sub section we derived the moment generating function of WPTII. We begin with the well known definition of the moment 

generating function given by 
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The moment generating function of SBPTII distribution can be directly obtained from expression (1.10) by putting c=1 as  
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5 Order Statistics 
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We have from (1.5) and (1.6) the expression of the rth order WPTII random variable X(r) given by 
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Therefore, the expression of the nth order WPTII statistic X(n) is given by 
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and the expression of the first order WPTII statistic X(1) is given by 
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Since we have cdf of size biased Pareto type II distribution in closed form, therefore we have order statistics expression for 

size biased Pareto type II distribution in closed form as well. 

 

we have from (1.7) and (1.8) , the expression of the rth order statistics for SBPII random variable X(r)given by 
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Therefore, the expression of the nth order statistic X(n)for SBPTII distribution is given by 
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and the expression of the first order statistic X(1)for SBPTII distribution is given by 
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5.1 Method of Maximum Likelihood Estimation. 

 
Maximum likelihood estimation has been the most widely used method for estimating the parameters of the probability 

distributions. Let nxxxx .......,, 321 be a random sample from the weighted Pareto type II distribution, then the corresponding 

likelihood function is given as 
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The log-likelihood function is given as: 
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Now, differentiating equation () with respect to  , and c, we obtain the normal equations 
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The MLE )ˆ,,(


 c
w

 of ),,( cw   is obtained by solving this nonlinear system of equations (1.12), (1.13) and 

(1.14). It is usually more convenient to use nonlinear optimization algorithms such as quasi-Newton algorithm to 

numerically maximize the log likelihood function given in (1.11). Applying the usual large sample approximation, the 

MLE w



  can be treated as being approximately normal with variance-covariance matrix equal to the inverse of the 

expected information matrix, i.e. 
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In case of SBPTII distribution, we have likelihood function given by 
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The log-likelihood function is given as: 
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Now, differentiating equation (1.15) with respect to parameters  and , we obtain the normal equations 
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is obtained by solving this nonlinear system of equations. It is usually more 

convenient to use nonlinear optimization algorithms such as quasi-Newton algorithm to numerically maximize the log 

likelihood function given in (16). Applying the usual large sample approximation, the MLE 


  can be treated as being 

approximately bivariate normal with variance-covariance matrix equal to the inverse of the expected information matrix, 

i.e. 
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5.2 Monte Carlo Simulation Procedure for ML Estimates of SBPII distribution 

 
In this section, we investigate the behavior of the ML estimators for a finite sample size n. Simulation study based on 

different   ,,xSBPTII  is carried out. The random observations are generated by using the inverse cdf method 

presented in section 3.4 from SBPTII   , . Monte Carlo simulation study was carried out for four parameter 

combinations as ( =2.5,  =0.1), ( =2.7,  =0.5), ( =2.3,  =0.2) and ( =2.6,  =0.3) .The process was repeated 1000 

times by taking different sample sizes n = (25,50,75,100,150,200,300,500). We observe in table 1.1 that the agreement 

between theory and practice improves as the sample size n increases. MSE and Variance of the estimators suggest us that 
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the estimators are consistent and the maximum likelihood method performs quite well in estimating the model parameters 

of the proposed distribution. 

 

6 Applications 
 

Example 1. n table1.2 we consider a data set reported by Efron (1988) represent the survival times of a group of patients suffering 

from Head and Neck cancer disease and treated using a combination of radiotherapy and chemotherapy (RT+CT). 

In order to compare the two distribution models, we consider the criteria like AIC (Akaike information criterion (1974)), AICC 

(corrected Akaike information criterion) and BIC (Bayesian information criterion (1986)). The better distribution corresponds to 

lesser AIC, AICC and BIC values.   

AIC = 2k-2logL, AICC = AIC+
1

)1(2





kn

kk
 and BIC = k logn-2logL 

where k is the number of parameters in the statistical model, n is the sample size and –logL is the maximized value of the log-

likelihood function under the considered model. From Table 1.3, it has been observed that the weighted Pareto type II and size 

biased Pareto type II distribution have the lesser AIC, -logL and BIC values as compared to Pareto type II Distribution. Hence we 

can conclude that weighted Pareto type II and size biased Pareto type II distribution leads to a better fit as compared to  Pareto type 

II distribution.  

 

Example 2. Here we consider an uncensored data set corresponding to the remission times (in months) of a random sample of 128 

bladder cancer patients. Bladder cancer is a disease in which abnormal cells multiply without control in the bladder. The most 

common type of bladder cancer recapitulates the normal histology of the urothelium and is known as transitional cell carcinoma. 

These data were previously studied by Lemonte (2012), Zea et al. (2012) and Lee and Wang (2003). Table1.4 lists the remission 

times of the bladder cancer patients. 

 

We have fitted the weighted Pareto type II and size biased Pareto type II distribution to the dataset using MLE for parameter 

estimations of the models and compared the proposed models with Pareto type II distribution. Estimation of parameters and other 

parts of analysis are carried out in R studio statistical software. 

 

From Table 1.5, it has been observed that  weighted Pareto type II and size biased Pareto type II distribution have the lesser AIC, -

logL and BIC values as compared to Pareto type II distribution in case of data set corresponding to the remission times (in months) 

of a random sample of 128 bladder cancer patients.. Hence we can conclude that the weighted Pareto type II and size biased Pareto 

type II distributions leads to a better fit than the Pareto type II distribution. So weighted Pareto type II and size biased Pareto type II 

distributions  are better models as compared to Pareto type II distribution in case of data set corresponding to the remission times (in 

months) of a random sample of 128 bladder cancer patients. 

 

From table 1.7, it has been observed that weighted Pareto type II and size biased Pareto type II distribution have the lesser AIC, -

logL and BIC values as compared to Pareto type II Distribution in case of data set of Survival times (in months) of patients of 

melanoma studied by Susarla and Vanryzin (1978). Hence we can conclude that weighted Pareto type II andsize biased Pareto type 

II distribution leads to a better fit than the Pareto type II distribution.  

 

 

7 Conclusions 

In this paper, we have introduced a new generalization of Pareto type II distribution using the concept of weighting. 

The statistical properties of this distribution are derived and the model parameters are estimated by maximum likelihood 

estimation along with Monte Carlo simulation procedure. Finally, an application to real data set is finally presented for 

illustration in medical sciences.The application of the weighted Pareto type II and size biased Pareto type II distributions 

have also been demonstrated with real life examples from medical science. The results are compared with Pareto type II 

distribution, revealed that the WPTII and SBPTIImodels  provides a better fit than the Pareto type II  distribution. 
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Table 1.1Simulated data for size biased Pareto type II distribution for ML estimates 

sample size n 
 =2.5,  =0.1  =2.7,  =0.5 

Bias Variance MSE Bias Variance MSE 

25 
0.600579 0.592284 0.952979 0.344433 0.370515 0.489149 

0.035769 0.004367 0.005646 0.08103 0.03207 0.038636 

50 
0.282992 0.135943 0.216028 0.326387 0.28049 0.387018 

0.021599 0.001994 0.002461 0.144305 0.045631 0.066454 

75 
0.098617 0.164621 0.174346 0.207626 0.215917 0.259026 

0.009842 0.00175 0.001847 0.066496 0.028579 0.033001 

100 
0.01138 0.063056 0.063186 0.159797 0.182414 0.207949 

0.004999 0.000829 0.000854 0.079329 0.033553 0.039846 

150 
0.085046 0.057419 0.064651 0.123347 0.076522 0.091737 

0.006377 0.000444 0.000485 0.050436 0.011825 0.014368 

200 
0.047186 0.060636 0.062862 0.048678 0.069837 0.072207 

0.005217 0.000627 0.000654 0.018855 0.013152 0.013508 

300 
0.025181 0.026319 0.026953 0.027002 0.050838 0.051567 

-0.00059 0.000194 0.000194 0.013289 0.00809 0.008266 

500 
0.002418 0.011087 0.011093 0.034904 0.027641 0.028859 

-0.00048 0.000119 0.000119 0.00973 0.004338 0.004433 

   =2.3,  =0.2  =2.6,  =0.3 

25 
0.189826 0.335486 0.37152 0.271904 0.703984 0.777916 

0.050167 0.017461 0.019978 0.209723 0.324641 0.368625 

50 
0.142218 0.101107 0.121333 0.193477 0.240305 0.277739 

0.038076 0.006197 0.007647 0.21445 0.459922 0.505911 

75 
0.128496 0.145956 0.162467 0.115453 0.229064 0.242394 

0.025173 0.006789 0.007423 0.063089 0.147863 0.151843 

100 
0.103434 0.068826 0.079525 0.108786 0.156908 0.168742 

0.032452 0.003627 0.00468 0.102331 0.063343 0.073815 

150 
0.077086 0.075555 0.081497 0.097808 0.100834 0.1104 

0.025934 0.005026 0.005699 0.148577 0.065928 0.088003 

200 
0.060296 0.036531 0.040167 0.057534 0.045225 0.048535 

0.011341 0.002073 0.002202 0.018355 0.048957 0.049294 

300 
0.027856 0.017034 0.01781 0.0143 0.046247 0.046451 

0.011665 0.001351 0.001487 0.024201 0.050007 0.050593 

500 
0.010879 0.014777 0.014895 0.000705 0.014354 0.014354 

0.001649 0.000563 0.000565 0.017471 0.008124 0.00843 
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Table 1.2 Survival times of a group of patients suffering from Head and Neck cancer disease 

12.2 23.6 23.7 25.9 32.0 37.0 

41.4 47.4 55.5 58.4 63.5 68.5 

78.3 74.5 81.4 84.0 92.0 94.0 

110.0 112.0 119.0 127.0 130.0 133.0 

140.0 146.0 155.0 159.0 173.0 179.0 

194.0 195.0 209.0 249.0 281.0 319.0 

339.0 432.0 469.0 519 633 725 

817 1776         

 

Table 1.3 ML estimates and Criteria for Comparison for data of Survival times of a group of patients suffering from Head 

and Neck cancer disease. 

Distribution     
c AIC BIC -logL 

Weighted Pareto type II 3.75 78.7 
1.82 

560.98 566.34 277.49 

SB Pareto type II 3.319465 151.1415 
- 

559.44 563.01 277.72 

Pareto Type II 4.409056 758.139 
- 

564.92 568.48 280.45 

 

Table 1.4: Remission times (in months) of a random sample of 128 bladder cancer patients. 

0.08 2.09 3.48 4.87 6.94 8.66 

13.11 23.63 0.20 2.23 3.52 4.98 

6.97 9.02 13.29 0.40 2.26 3.57 

5.06 7.09 9.22 13.80 25.74 0.50 

2.46 3.64 5.09 7.26 9.47 14.24 

25.82 0.51 2.54 3.70 5.17 7.28 

9.74 14.76 26.31 0.81 2.62 3.82 

5.32 7.32 10.06 14.77 32.15 2.64 

3.88 5.32 7.39 10.34 14.83 34.26 

0.90 2.69 4.18 5.34 7.59 10.66 

15.96 36.66 1.05 2.69 4.23 5.41 

7.62 10.75 16.62 43.01 1.19 2.75 

4.26 5.41 7.63 17.12 46.12 1.26 

2.83 4.33 5.49 7.66 11.25 17.14 

79.05 1.35 2.87 5.62 7.87 11.64 

17.36 1.40 3.02 4.34 5.71 7.93 

11.79 18.10 1.46 4.40 5.85 8.26 

11.98 19.13 1.76 3.25 4.50 6.25 

8.37 12.02 2.02 3.31 4.51 6.54 

8.53 12.03 20.28 2.02 3.36 6.76 

12.07 21.73 2.07 3.36 6.93 8.65 

12.63 22.69         

 

Table 1.5 ML estimates and Criteria for Comparison for data of remission times (in months) of a random sample of 128 

bladder cancer patients 

Distribution     
c AIC  BIC -logL 

Weighted Pareto type II 

5.13  

(1.80) 

20.8 

 (14.01) 

0.586 

 (0.28) 826.15 

 

834.71 410.08 

SB Pareto type II 

4.37 

(0.93) 

11.20 

(3.81) 

- 

825.74 

 

831.44 410.87 

Pareto Type II 

13.94 

(15.38) 

121.02 

(142.71) 

- 

831.67 

 

837.37 413.83 
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Table 1.6 Survival times (in months) of patients of melanoma studied by Susarla and Vanryzin (1978) 

3.25 3.50 4.75 4.75 5.00 5.25 

5.75 5.75 6.25 6.50 6.50 6.75 

6.75 7.78 8.00 8.50 8.50 9.25 

9.50 9.50 10.00 11.50 12.50 13.25 

13.50 14.25 14.50 14.75 15.00 16.25 

16.25 16.50 17.50 21.75 22.50 24.50 

25.50 25.75 27.50 29.50 31.00 32.50 

34.00 34.50 35.25 58.50     

 

Table 1.7 ML estimates and Criteria for Comparison for data in table 1.6 

Distribution     
c AIC BIC -logL 

Weighted Pareto type II 11.78 3.32 8.79 334.6 340.5 164.210 

SB Pareto type II 62.92241 476.9776 - 335.6 339.3 165.836 

Pareto Type II 43675.12 686106.2 - 349.1 352.8 172.546 
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