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Abstract: We propose a numerical scheme for solving the one- and two-dimensional fractional optimal control problems (FOCPs).
The suggested scheme is established by using the operational matrix (OM) of the Riemann-Liouville fractional integral(RLFI) of the
shifted Gegenbauer polynomials (SGPs). These polynomialsgeneralize the shifted Legendre and shifted Chebyshev polynomials, and
are special cases of the Jacobi polynomials. By employing the proposed technique, the FOCP is converted into a variational problem.
The Gegenbauer- Gauss quadrature method (GGQM) and the Rayleigh-Ritz method (RRM) are implemented to convert the obtained
variational problem into a system of algebraic equations (AEs) which is easy to solve. Numerical results of some examples including
the one- and two-dimensional FOCPs are shown to prove the validity of the investigated technique.

Keywords: Riemann-Liouville fractional integral operator, fractional optimal control problems, operational matrix, shifted
Gegenbauer polynomials, Rayleigh-Ritz method.

1 Introduction

Recently, numerous applications in diverse areas scientific areas of engineering and science have been expressed in the
form of fractional differential equations (FDEs) or fractional functional equations (FFEs). This is the reason why the
fractional derivatives give more precise performance of these applications [1,2,3,4].

The optimal control (OC) theory is a mathematical branch which has been under progress for years, however the FOC
theory is a novel subject. The FOCPs are those optimal control problems with constraints expressed by FDEs. FOCPs are
specified according to the used fractional derivatives. Those familiar fractional derivatives are the Riemann-Liouville (RL)
and Caputo fractional derivatives. FOCPs have also received intensive consideration in various applications. Materials with
memory and hereditary effects, dynamical processes containing gas diffusion, and heat conduction in fractal porous media
are sufficiently displayed by fractional-order models thanby integer-order models [5]. Other applications of FOCPs are
given in Refs. [6,7,8]. Several numerical schemes have been established to solvethese problems because most of these
problems don’t have exact solutions.

FOCPs with RL fractional derivatives were first presented inRef. [9] by using the fractional variational principle and
the Lagrange multiplier technique; while the FOCPs were expressed by the Caputo fractional derivatives [10,11]. Also the
polynomial and rational approximations were utilized to solve such problems [12,13]. The optimal solutions for multiple
control problems of Sobolev type with nonlocal nonlinear FDEs were investigated in Ref. [14]. The existence of OCs for
linear time-invariant neutral control systems with different fractional orders is discussed in Ref. [15].

Direct numerical techniques based on the OMs of fractional integral of various orthogonal polynomials have been
derived and applied to solve different kinds of FDEs; such asJacobi polynomials [16], shifted orthonormal Jacobi
polynomials [17], Legendre polynomials [18,19], Laguerre polynomials [20], Bernstein polynomials [21], and Bernoulli
polynomials [22]. Gegenbauer polynomials have many useful properties; they achieve rapid rates of convergence for
small ranges of the spectral expansion terms. Therefor somestudies are interested in using these polynomials for solving
various kinds of DEs (more details are found in Refs. [23,24,25,26,27]). To the best of our knowledge, little studies deal
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with the application of GPs in handling FDEs [28,29]. This encourages us for using such kind of polynomials wishing to
employ them in numerous practical applications. Another motivation is that the Chebyshev and Legendre polynomials
can be considered as special cases of the GPs. During this paper, we investigate a new OM of the RL fractional integral
of the SGPs and utilize it to solve numerically the followingFOCPs with the RL fractional derivative

Min.J =
∫ t

0
f (t,x(t),u(t))dt, (1)

under the constraint,
D(ν)x(t) = g(t,x(t))+ b(t)u(t), (2)

with the initial condition,

D(i)x(0) = xi, i = 0,1, . . . ,m−1,

wherem−1< ν ≤ m andb(t) 6= 0.
The proposed technique can be briefed in the subsequent steps:

1.Using the SGPs in approximating” Dν(x)” with unidentified coefficients.
2.Using the OM of fractional integrals and couple the resultant equation of dynamic constraint (2) with the performance

index (1) to create a new variational problem.
3.Using SGQM to approximate the integration in the obtainedvariational problem, which may be not easy to compute.
4.By using the RRM, the new variational problem is transformed into a system of AEs which is easily solved.

The central importance of the suggested method is that by using a few numbers of GPs, acceptable results are attainted.
This paper is organized as follows. In Section 2, some preliminaries of fractional calculus and GPs are given. In

Section 3, the SGOM of RLFI is derived. In Section 4, the convergence of the suggested technique is discussed. In
Section 5, the proposed technique of applying SGOM of fractional integration for solving FOCPs is presented. In Section
6, some explanatory examples are shown. The last section is devoted to a conclusion.

2 Preliminaries and Used Formulae

2.1 Fractional calculus

Definition 1.
One of the popular definitions of fractional integral is the RL, which is determined as

Iν f (t) =
1

Γ (ν)

∫ t

0
(t − ξ )ν−1 f (ξ )dξ , m−1< ν ≤ m, m ∈ N, ν > 0, t > 0,

I0 f (t) = f (t).

(3)

The operatorIν has properties, according to Ref. [30], we just recall the next property

Iν tβ =
Γ (β +1)

Γ (ν +β +1)
tν+β

. (4)

Definition 2.
Dν is the RL fractional derivative of orderν which is given as

Dν f (t) =
dm

dxm (Im−ν f (t)), m−1< ν ≤ m, m ∈ N, ν ∈ R, (5)

wherem is the smallest integer order greater thanν.
Lemma 1.

If m−1< ν ≤ m, m ∈ N, then
Dν Iν f (t) = f (t),

IνDν f (t) = f (t)−
m−1

∑
i=0

f (i)(0+)
t i

i!
, t > 0. (6)

For more details see Ref.[30].
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2.2 Shifted ultraspherical (Gegenbauer) polynomials and their properties

The ultraspherical (Gegenbauer) polynomialsC(α)
j (t), of degreej ∈ Z

+, and associated with the parameterα >
−1
2 are

a sequence of real polynomials in the finite domain[−1,1]. They are a set of orthogonal polynomials which have many
applications[23].
Definition 3.

The GPs are the Jacobi polynomials,P(α ,β )
j , with α = β = α − 1

2 so that

C(α)
j (t) =

Γ (α + 1
2)Γ ( j+2α)

Γ (2α)Γ ( j+α + 1
2)

P
(α− 1

2 ,α− 1
2 )

j (t), j = 0,1,2, . . .

•GPs have useful relations to the Chebyshev polynomials of the first, second kind, and the Legendre polynomials as
follows

Tj(t)≡
j
2

lim
α→0

α−1C(α)
j (t), j ≥ 1,

C(1)
j (t)≡ 1

j+1
U j(t),

and

L j(t)≡C
( 1

2 )
j (t),

respectively.
•The GPs can be created from the next recurrence equation

( j+2α)C(α)
j+1(t) = 2( j+α)tC(α)

j (t)− jC(α)
j−1(t), j = 1,2, . . .

with
C(α)

0 (t) = 1, C(α)
1 (t) = t.

•The orthogonality relation of the GPs is given by the weighted inner product

〈

C(α)
i (t),C(α)

j (t)
〉

=
∫ 1

−1
C(α)

i (t)C(α)
j (t)ω(α)(t)dt = λ (α)

j δi, j,

whereω(α)(x) is the weight function, it is an even function given from the relation

ω(α)(t) = (1− t2)α− 1
2 ,

and

λ (α)
j = ‖C(α)

j (t)‖2 =
21−2απΓ ( j+2α)

j!( j+α)Γ 2(α)
, (7)

is the normalization factor andδi, j is the Kronecker delta function.
•These polynomials will be used in the interval[0,L], so the SGPs are formed by replacing the variablet with 2t

L −1,
0≤ t ≤ L, can be written as

C(α)
S, j (t) =C(α)

j (
2t
L
−1), C(α)

S,0 (t) = 1, C(α)
S,1 (t) =

2t
L
−1.

•The analytical form of the SGP is given by

C(α)
S, j (t) =

j

∑
k=0

(−1) j−k Γ (α + 1
2)Γ ( j+ k+2α)

Γ (k+α + 1
2)Γ (2α)( j− k)!k!Lk

tk
,

C(α)
S, j (0) = (−1) j Γ ( j+2α)

Γ (2α) j!
.

(8)
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•The orthogonal relation of SGPs is obtained from
〈

C(α)
S,i (t),C

(α)
S, j (t)

〉

=

∫ L

0
C(α)

S,i (t)C
(α)
S, j (t)ω

(α)
S (t)dt = λ (α)

S, j δi, j, (9)

whereω(α)
S (t) is the weight function, it is an even function given from the relation

ω(α)
S (t) = (tL− t2)α− 1

2 ,

and

λ (α)
S, j =

(

L
2

)2α
λ (α)

j .

•This polynomial recovers the shifted Chebyshev polynomialof the first kindTS, j(t) ≡ C(0)
S, j (t), the shifted Legendre

polynomialLS, j(t)≡C
( 1

2 )
S, j (t), and the shifted Chebyshev polynomial of the second kindC(1)

S, j (t)≡ 1
j+1US, j(t).

•The square integrable functiony(t) in [0,L] can be approximated by SGPs as:

y(t) =
N

∑
j=0

ỹ jC
(α)
S, j (t),

where the coefficients ˜y j are obtained from

ỹ j = (λ (α)
S, j )

−1
∫ L

0
y(t)ω(α)

S (t)C(α)
S, j (t)dt. (10)

•The approximation of functiony(t) in the vector form is defined by

y(t) = Y T φ(t), (11)

whereY T = [ỹ0, ỹ1, . . . , ỹN ] is the shifted Gegenbauer coefficient vector, and

φ(t) =
[

C(α)
S,0 (t),C

(α)
S,1 (t), . . . ,C

(α)
S,N (t)

]T
(12)

is the shifted Gegenbauer vector.
•Theq times repeated integration of Gegenbauer vector can be extracted from

Iqφ(t)≃ P(q)φ(t), (13)

whereP(q) is called the OM of the integration ofφ(t).

3 Fractional Shifted Gegenbauer Operational Matrix (SGOM)of Integration

At this section, SGOM of RL fractional integral is proved.

Theorem(1)
Let φ(t) be the shifted Gegenbauer vector andν > 0 then

Iνφ(t)≃ P(ν)φ(t), (14)

wheret ∈ [0,1] andP(ν) is called OM of fractional integration of orderν in the RL sense, it is a square matrix of order
(N +1)× (N+1) is written as follows:

P(ν) =































∑0
k=0 ξ0,0,k ∑0

k=0 ξ0,1,k . . . ∑0
k=0 ξ0,N,k

∑1
k=0 ξ1,0,k ∑1

k=0 ξ1,1,k . . . ∑1
k=0 ξ1,N,k

. . .

. . . . . .

. . .

∑i
k=0 ξi,0,k ∑i

k=0 ξi,1,k . . . ∑i
k=0 ξi,N,k

. . .

. . . . . .

. . .

∑N
k=0 ξN,0,k ∑N

k=0 ξN,1,k . . . ∑N
k=0 ξN,N,k































(15)
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whereξi, j,k is given by:
ξi, j,k = Ξ ×ϒ ,

where

Ξ =
i

∑
k=0

(−1)i−k Γ (α + 1
2)Γ (i+ k+2α)

Γ (k+α + 1
2)Γ (2α)Γ (k+ν +1)(i− k)!

,

ϒ =
j

∑
f=0

(−1) j− f j!( j+α)Γ 2(α)Γ 2(α + 1
2)Γ (2α + j+ f )Γ (ν + k+ f +α + 1

2)

2(1−4α)πΓ (2α + j)Γ (2α)Γ (α + f + 1
2)( j− f )! f !Γ (ν + k+ f +2α +1)

(16)

Proof
From relation (8) and by using Eqs. (3) and (4), we can write

IνC(α)
S,i (t) =

i

∑
k=0

(−1)i−k Γ (α + 1
2)Γ (i+ k+2α)

Γ (k+α + 1
2)Γ (2α)(i− k)!k!

Iν(tk), t ∈ [0,1]

=
i

∑
k=0

(−1)i−k Γ (α + 1
2)Γ (i+ k+2α)

Γ (k+α + 1
2)Γ (2α)(i− k)!Γ (ν + k+1)

tk+ν
, i = 0,1,2, . . . ,N. (17)

The functiontk+ν can be written as a series ofN +1 terms of Gegenbauer polynomials,

tk+ν =
N

∑
j=0

t̃ jC
(α)
S, j (t), (18)

Where

t̃ j =
j

∑
f=0

(−1) j− f j!( j+α)Γ 2(α)Γ 2(α + 1
2)Γ (2α + j+ f )Γ (ν + k+ f +α + 1

2)

2(1−4α)πΓ (2α + j)Γ (α + f + 1
2)( j− f )! f !Γ (2α)Γ (ν + k+ f +2α +1)

. (19)

Now, by employing equations (17)- (19) we obtain:

IνC(α)
S,i (t) =

i

∑
k=0

N

∑
j=0

(−1)i−k Γ (α + 1
2)Γ (i+ k+2α)

Γ (k+α + 1
2)Γ (2α)(i− k)!Γ (ν + k+1)

t̃ jC
(α)
S, j (t),

=
N

∑
j=0

(

i

∑
k=0

ξi, j,k

)

C(α)
S, j (t), i = 0,1, . . . ,N, (20)

whereξi, j,k is obtained from Eq. (16).
Writing the last equation in a vector form gives

IνC(α)
S,i (t)≃

[

i

∑
k=0

ξi,0,k,

i

∑
k=0

ξi,1,k, . . . ,

i

∑
k=0

ξi,N,k

]

φ(t), i = 0,1, . . . ,N, (21)

which ends our proof.

4 Error Estimation and Convergence Analysis

4.1 Error estimation

In the following theorem, the error estimation for the approximated functions is obtained in terms of Gram determinant
[31].
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Theorem(2):
For the Hilbert space H = L2[0,1], suppose that Y be a closed subspace of H such that

Y = Span
{

C(α)
S,0 (t),C

(α)
S,1 (t), . . . ,C

(α)
S,N (t)

}

. Let y(t) be an arbitrary element of H andy∗(t) be the unique best

approximation ofy(t) out ofY , then

‖ y(t)− y∗(t) ‖2=
Gram(y(t),C(α)

S,0 (t),C
(α)
S,1 (t), . . . ,C

(α)
S,N (t))

Gram(C(α)
S,0 (t),C

(α)
S,1 (t), . . . ,C

(α)
S,N (t))

(22)

whereGram(y(t),C(α)
S,0 (t),C

(α)
S,1 (t), . . . ,C

(α)
S,N (t))

=

< y(t),y(t)> < y(t),C(α)
S,0 (t)> . . . < y(t),C(α)

S,N (t)>

<C(α)
S,0 (t),y(t)> <C(α)

S,0 (t),C
(α)
S,0 (t)> . . . <C(α)

S,0 (t),C
(α)
S,N (t)>

<C(α)
S,1 (t),y(t)> <C(α)

S,1 (t),C
(α)
S,0 (t)> . . . <C(α)

S,1 (t),C
(α)
S,N (t)>

. . .

. . . . . .

. . .

<C(α)
S,N (t),y(t)> <C(α)

S,N (t),C
(α)
S,0 (t)> . . . <C(α)

S,N (t),C
(α)
S,N (t)>

4.2 Convergence analysis

Suppose that the error,EIν of the integration OM in RL sense as

EIν = PνΦ(t)− IνΦ(t),

where
EIν =

[

EIν ,0,EIν ,1, ., ., .,EIν ,N
]T

,

is an error vector. From Eq. (17), we had approximatedtk+ν as∑N
j=0 t̃ jCα

S, j(t). From above theorem we have

∥

∥

∥

∥

∥

tk+ν −
N

∑
j=0

t̃ jC
α
S, j(t)

∥

∥

∥

∥

∥

2

=

(

Gram(tk+ν ,C(α)
S,0 (t),C

(α)
S,1 (t), . . . ,C

(α)
S,N (t))

Gram(C(α)
S,0 (t),C

(α)
S,1 (t), . . . ,C

(α)
S,N (t))

) 1
2

(23)

From Eq. (20), we obtain the upper bound of the integration OM as follows

‖EIν,i‖2 =

∥

∥

∥

∥

∥

IνCα
S,i(t)−

N

∑
j=0

(

i

∑
k=0

ξi, j,k

)

C(α)
S, j (t)

∥

∥

∥

∥

∥

, i = 0, ...,N, (24)

≤
i

∑
k=0

∣

∣

∣

∣

∣

Γ (α + 1
2)Γ (i+ k+2α)

Γ (k+α + 1
2)Γ (2α)(i− k)!Γ (ν + k+1)

∣

∣

∣

∣

∣

(

Gram(tk+ν ,C(α)
S,0 (t),C

(α)
S,1 (t), . . . ,C

(α)
S,N (t))

Gram(C(α)
S,0 (t),C

(α)
S,1 (t), . . . ,C

(α)
S,N (t))

) 1
2

(25)

The following theorem illustrates that with increasing thenumber of Gegenbauer polynomials the error tend to zero.

Theorem (3):
Assume that functiony(t) ∈ L2[0,1] is estimated bygN(t) as follows

gN(t) = µ0C
α
S,0(t)+ µ1C

α
S,1(t)+ . . .+ µNCα

S,N(t),

where

µi =

∫ 1

0
Cα

S,i(t)y(t)dt, i = 0, . . . ,N.
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Consider

sN(y) =
∫ 1

0
[y(t)− gN(t)]

2 dt,

then we have
lim

N→∞
sN(y) = 0.

For the proof see Ref.[32].

5 Application of SGOM of Fractional Integration for FOCPs

In this section, we use SGOM of integration to solve problem (1) with the dynamic constraint (2) as in the following.

5.1 Shifted Gegenbauer approximation

Firstly, approximatingDνx(t) by SGPs,C(α)
S, j (t), as

Dνx(t)≃ XT φ(t), (26)

whereX is an unknown coefficients matrix which takes the form














x̃0
x̃1
.

.

.

x̃N















By using (6),we have

IνDν x(t) = x(t)−
m−1

∑
i=0

x(i)(0+)
t i

i!
, (27)

From Eq.(14) together with Eq.(26), we get
IνDν x(t)≃ XT Pνφ(t), (28)

From Eq.(28) and Eq. (27), we obtain

x(t)≃ XT Pνφ(t)+
m−1

∑
i=0

x(i)(0)
t i

i!
, (29)

Using the Eqs. (26)- (29), the dynamic constraint (2) takes the form

XT φ(t) = g

(

t,XT Pνφ(t)+
m−1

∑
i=0

x(i)(0)
t i

i!

)

+ b(t)u(t),

u(t) =
1

b(t)

(

XT φ(t)− g

(

t,XT Pνφ(t)+
m−1

∑
i=0

x(i)(0)
t i

i!

))

. (30)

By using the Eqs. (29) and (30), the performance index (1) takes the form

JN [x̃0, x̃1, . . . , x̃N ] =

∫ t

0
f

(

t,XT Pνφ(t)+
m−1

∑
i=0

x(i)(0)
t i

i!
,

1
b(t)

(

XT φ(t)− g

(

t,XT Pνφ(t)+
m−1

∑
i=0

x(i)(0)
t i

i!

)))

dt (31)
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5.2 Gegenbauer-Gauss quadrature

Secondly, the integral in Eq. (31) is more difficult to compute, so the Gegenbauer- Gauss quadrature formula is used for
approximating it as:

JN [x̃0, x̃1, . . . , x̃N ] =
N

∑
j=0

ϖ̃ (α)
j f (t̃(α)

j ),0≤ j ≤ N (32)

wheret̃(α)
j are the zeros of Gegenbauer- Gauss quadrature in the interval (0,1), and

ϖ̃ (α)
j =

(

L
2

)(2α)

ϖ (α)
j ,

is the Christoffel numbers, whereϖ (α)
j is obtained from the relation

(ϖ (α)
j )−1 =

N

∑
k=0

(λ (α)
k )−1(C(α)

k (t(α)
j ))2

,

whereλ (α)
k calculated from the Eq. (7).

The necessary optimality conditions of Eq. (32) are attained by applying RRM as

∂JN

∂ x̃0
=

∂JN

∂ x̃1
= . . .=

∂JN

∂ x̃N
= 0, (33)

By using Newton iterative method, this system of AEs can be solved for the unknown coefficients of the vector X.

5.3 Approximation of our problem

Here, the set of Gegenbauer polynomials,Cα
S,N(t) is used for a basis form the spaceD1[0,1] =

{

y(t) : y is continuously

differentiable on interval[0,1]
}

, with uniform norm
‖ y ‖=‖ y ‖∞ + ‖ ý ‖∞ . Let us considerMn = θ0Cα

S,0(t) + θ1Cα
S,1(t) + . . .+ θnCα

S,n(t), whereMn is the n-dimensional
subspace ofD1[0,1] and θ0,θ1, . . . ,θn are arbitrary real numbers. If we chooseθ0,θ1, ...,θn in such a way thatMn
minimizesJ, denoting the minimum byσn. Then, we should haveMn ⊂ Mn+1, this impliesσn ≥ σn+1.

Theorem (4):
Consider the functionalJ then limn→∞ σn = σ whereσ = infx∈D1[0,1] J.
(Check [33], [34] for the proof).

6 Illustrative Problems

Problem (1)
Consider the following FOCP [34]

Min.J =
1
2

∫ 1

0
(x2(t)+ u2(t))dt,

under the dynamic constraints

Dν x(t) =−x(t)+ u(t), 0≤ ν ≤ 1

x(0) = 1.

The exact solution of this problem atν = 1 is

x(t) = cosh(
√

2t)+β sinh(
√

2t),

u(t) = (1+
√

2β )cosh(
√

2t)+ (
√

2+β )sinh(
√

2t),

where

β =−cosh(
√

2)+
√

2sinh(
√

2)√
2cosh(

√
2)+ sinh(

√
2)
.
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Table 1: The absolute errors of the state variable x(t) for problem (1) at different values of N.
t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=8) Absolute errors (N=10)
0 1.25437×10−3 6.25467×10−6 6.26213×10−10 1.98861×10−9

0.1 3.30159×10−4 2.39179×10−6 1.22351×10−10 6.29444×10−10

0.2 4.86069×10−4 1.21248×10−6 3.57127×10−11 5.40695×10−10

0.3 7.78748×10−5 1.7249×10−6 1.11152×10−10 2.81709×10−10

0.4 3.34676×10−4 6.82411×10−7 1.53137×10−10 2.13957×10−10

0.5 4.57932×10−4 1.93055×10−6 6.82487×10−12 5.58041×10−10

0.6 2.30996×10−4 3.10922×10−7 1.46338×10−10 3.82721×10−10

0.7 2.02962×10−4 1.9004×10−6 1.17524×10−10 1.53133×10−10

0.8 5.2129×10−4 9.16645×10−7 2.17553×10−11 5.698×10−10

0.9 2.42861×10−4 2.49026×10−6 1.0693×10−10 7.5132×10−10

1 1.25411×10−3 6.25466×10−6 5.86238×10−10 2.68463×10−9

Table 2: The absolute errors of the control variable u(t) forproblem (1) at different values of N.
t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=8) Absolute errors (N=10)
0 3.77566×10−4 1.88239×10−6 3.27507×10−10 8.1688×10−11

0.1 1.09654×10−4 7.0819×10−7 6.36999×10−11 2.70723×10−11

0.2 1.42091×10−4 3.9987×10−7 1.83641×10−11 1.54725×10−11

0.3 8.61549×10−6 4.98381×10−7 5.90761×10−11 9.72683×10−12

0.4 1.13021×10−4 2.49281×10−7 8.13922×10−11 2.06191×10−11

0.5 1.3787×10−4 5.81012×10−7 3.49132×10−12 2.08388×10−11

0.6 5.73272×10−5 4.96686×10−8 7.88284×10−11 1.56014×10−11

0.7 7.57957×10−5 5.92684×10−7 6.40287×10−11 3.26667×10−11

0.8 1.60967×10−4 2.40909×10−7 1.19774×10−11 8.78833×10−11

0.9 6.26788×10−5 7.611×10−7 5.92166×10−11 1.10133×10−11

1 3.77513×10−4 1.88239×10−6 3.25376×10−10 1.70672×10−10

Fig. 1: The behavior ofx(t) for N = 5 and ν = 0.75,0.85,0.95,1, with the exact solution for problem (1)

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


188 H. F. Ahmed, M. B.Melad: A new approach for solving fractional...

Fig. 2: The behavior ofu(t) for N = 5 and ν = 0.75,0.85,0.95,1, with the exact solution for problem (1)

By applying our proposed technique to problem (1), the resultant numerical results for the state and the control
variables are displayed through Figures 1 and 2, respectively at ν = 0.75,0.85,0.95,1 with the exact solutions for N=5.
We noted that the obtained solutions cover the classical results when the value of the fractional order tends to unity. In
addition, as in Tables 1 and 2, the absolute errors of the state variable x(t) and the control variable u(t) for problem (1)are
calculated at different choices of N. It’s observed that theefficiency of our proposed method increases by increasing N.

Problem (2)
Consider the following FOCP [9,34]

Min.J =
1
2

∫ 1

0
(x2(t)+ u2(t))dt,

under the constraints

Dνx(t) = tx(t)+ u(t), 0≤ ν ≤ 1,

x(0) = 1.

Table 3: Approximate values of J at different values ofν and N=8 for problem (2)
ν Present method Method in [17] Method in [35]
1 0.484268 0.48426 0.48427
0.99 0.483463 0.48346 0.48347
0.90 0.475883 0.47588 0.47605
0.80 0.466978 0.46697 0.46722
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Fig. 3: The behavior ofx(t) for N = 3 and ν = 0.75,0.85,0.95,1 for problem (2)

Fig. 4: The behavior ofu(t) for N = 3 and ν = 0.75,0.85,0.95,1 for problem (2)

In Figures 3 and 4, the approximated results of the variablesx(t) andu(t) of problem (2) are plotted for different
values ofν. In Table 3, comparisons of our obtained results for the minimum values of J of problem (2) with different
values ofν at N=8 compared with results in [17] and [35] are tabulated. Obviously, our estimated results coincides with
the results in [17] and [35].
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Problem (3)
Consider the following FOCP [36]

Min.J =

∫ 1

0





(

x(t)− t2)2
+

(

u(t)+ t4− 20t
9
10

9Γ ( 9
10)

)2


dt,

subject to,

Dν x(t) = t2x(t)+ u(t), 1≤ ν ≤ 2,

x(0) = ẋ(0) = 0.

Table 4: Approximate values of J at various choices of N andν = 1.1 for problem (3)
N Present method Method in [36]
4 2.23277×10−6 4.76932×10−6

5 8.24619×10−7 1.47243×10−6

6 3.56358×10−7 5.37825×10−7

8 9.08978×10−8 1.06099×10−7

9 5.12433×10−8 5.44304×10−8

Fig. 5: The behavior ofx(t) for N = 3 and ν = 1.85,1.95,2 for problem (3)
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Fig. 6: The behavior ofu(t) for N = 3 and ν = 1.85,1.95,2 for problem (3)

Figures 5 and 6 depict the behaviorx(t) andu(t) of problem (3) atN = 3 andν = 1.85,1.95 and 2. Table 4 lists the
obtained results for the minimum values of J of problem (3) and the results in [36] for various choices of N. It is noted
that the obtained results by using the suggested technique have high accuracy in comparison with [36].

Problem (4)
Consider the following FOCS [37]

Min.J =
1
2

∫ 1

0
(x2

1(t)+ x2
2(t)+ u2(t))dt,

subject to

Dνx1(t) =−x1(t)+ x2(t)+ u(t),

Dνx2(t) =−2x2(t),

x1(0) = x2(0) = 1.

This problem has exact solution atν = 1 as

x1(t) = 0.018352e
√

2t +2.48165e−
√

2t − 3e−2t

2
,

x2(t) = e−2t
,

u(t) = 0.044305e
√

2t −1.0279322e−
√

2t +
e−2t

2
.
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Fig. 7: The behavior ofx1(t) for N = 8 and ν = 0.5,0.75,0.85,0.95,1, with the exact solution for problem (4)

Fig. 8: The behavior ofx2(t) for N = 8 and ν = 0.5,0.75,0.85,0.95,1, with the exact solution for problem (4)

Figures 7- 9 illustrate the behavior of state variablesx1(t),x2(t) and control variable u(t), respectively forN = 8 and
ν = 0.5,0.75,0.85,0.95 and 1 with the exact solutions. At Tables 5- 7, the absoluteerrors ofx1(t),x2(t) and u(t) for
problem (4) are calculated at different values of N. This problem was treated in Ref. [37] by a another technique. Our
estimated results, shown in Figures 7- 9 agree with the results established in [37]. But we obtained good estimates by
using at last 8 numbers of the SGP, whereas a number of approximations starting in 8 and increasing up to 128 are used in
Ref. [37]. So we can deduce that our numerical technique takes less computational steps or power than that of Ref. [37].
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Fig. 9: The behavior ofu(t) for N = 8 and ν = 0.5,0.75,0.85,0.95,1, with the exact solution for problem (4)

Table 5: The absolute errors ofx1(t) for problem (4) at different values of N
t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=7) Absolute errors (N=8)
0 2.54299×10−3 4.00336×10−5 2.41907×10−7 1.49311×10−8

0.1 4.59984×10−4 1.21716×10−5 1.65758×10−8 3.89009×10−9

0.2 4.25396×10−4 1.31491×10−5 6.98381×10−8 3.84311×10−10

0.3 6.09729×10−4 1.66176×10−5 3.52928×10−8 6.76104×10−10

0.4 1.46752×10−3 1.8063×10−6 3.37502×10−8 5.84229×10−9

0.5 1.63318×10−3 4.72386×10−6 1.02771×10−7 1.79443×10−9

0.6 1.09888×10−3 6.54949×10−6 2.12302×10−8 1.22336×10−9

0.7 2.39567×10−4 2.00603×10−5 2.23335×10−8 5.37209×10−9

0.8 2.85639×10−4 1.2638×10−5 9.47197×10−8 2.56206×10−9

0.9 3.88259×10−4 8.68881×10−6 2.68914×10−8 3.33488×10−10

1 3.26993×10−3 4.7211×10−5 2.78275×10−7 1.28264×10−8

Table 6: The absolute errors ofx2(t) for problem (4) at different values of N
t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=7) Absolute errors (N=8)
0 2.77556×10−17 1.11022×10−16 2.60209×10−18 1.01481×10−16

0.1 4.13717×10−3 4.42703×10−5 1.52144×10−7 6.80051×10−9

0.2 3.9441×10−3 1.72479×10−5 9.02464×10−8 8.14885×10−9

0.3 2.20723×10−3 1.0479×10−5 1.54371×10−7 7.91399×10−9

0.4 6.333×10−4 2.1207×10−5 8.58013×10−8 2.19109×10−9

0.5 4.50871×10−5 2.49134×10−5 1.84447×10−8 4.34762×10−9

0.6 5.41637×10−4 1.23822×10−5 6.97336×10−8 5.89944×10−9

0.7 1.62945×10−3 2.28276×10−6 9.38397×10−8 4.64195×10−10

0.8 2.3299×10−3 2.57998×10−6 5.67684×10−9 1.98716×10−9

0.9 1.26715×10−3 2.09563×10−5 3.89227×10−8 3.69174×10−9

1 3.25981×10−3 3.20173×10−5 1.62211×10−7 1.24681×10−8
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Table 7: The absolute errors ofu(t) for problem (4) at different values of N
t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=7) Absolute errors (N=8)
0 1.22508×10−3 1.70068×10−5 9.90901×10−8 5.79697×10−9

0.1 1.60038×10−4 1.19007×10−6 2.01279×10−8 2.11329×10−9

0.2 7.66304×10−5 6.57099×10−6 3.47713×10−8 8.09481×10−10

0.3 3.4207×10−4 7.21889×10−6 3.4856×10−9 3.08876×10−10

0.4 5.76103×10−4 1.72718×10−6 1.64181×10−8 2.19585×10−9

0.5 5.97729×10−4 1.09956×10−6 3.67555×10−8 7.44108×10−10

0.6 3.84806×10−4 2.03656×10−6 6.8909×10−9 3.63189×10−10

0.7 4.41158×10−5 6.04497×10−6 1.06384×10−8 1.55692×10−9

0.9 7.02178×10−5 4.65966×10−6 1.10424×10−10 5.89212×10−10

1 8.5567×10−4 1.33851×10−5 8.0739×10−8 4.72284×10−9

7 Conclusion

We derived a new numerical mechanism to find approximate solutions of the FOCPs, based on the SGOM of the RL
fractional integral. The SGOM of fractional integration reduces the FOCP into an equivalent integral problem. The
properties of the SGPs together with the RRM are used to transform the equivalent functional integral equation problem
to an algebraic system, which is easily solved. The applicability, accuracy, and rapidity by using few terms of the SGPs
of the suggested mechanism are demonstrated by numerical applications, including first- and second-dimensional
FOCPs.
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