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Abstract: In this article, we study the analytical solution of time-fractional Navier-Stokes equation based on the combination of natural
transform (NTM) and homotopy perturbation method (HPM). The analytical scheme gives a series solutions which converges rapidly
within few iterations. The efficiency and simplicity of the scheme is clearly demonstrated, and the solutions obtained are compared
with the solutions of the existing techniques.
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1 Introduction

In recent years, fractional calculus applications are widely applied in many areas of engineering and physical science
processes [1,2,3,4,5,6,7,8,9,10]. Recently, partial differential equations with fractional order derivative are successfully
applied to many mathematical models in mathematical biology, aerodynamics, control theory, fluid mechanic, analytical
chemistry and so on. Fractional partial differential equations has been solved using many analytical and numerical
methods such as homotopy analysis method [11], Adomian decomposition method [12,13,14,15,16,17,18], homotopy
perturbation method [19,20,21,22,23,24,25,26], generalized differential transform method [27,1,2,3,28], Laplace
decomposition method [29,30], natural homotopy perturbation method [31,32,33,34,35], natural decomposition method
[36,37], fractional variational iteration method [38,39], to mentioned few. Navier-Stokes equations which describe the
motion of viscous fluid was first named after George Gabriel Stokes and Claude-Louis Navier. Those equations are used
to model flow in pipe, air flow around a wing, weather, oceans current, and so on. It is also applied in the design of cars,
air craft, power stations, and in the study of magnetohydrodynamics if coupled with Max-wells equations. The standard
Navier-Stokes equations with time fractional derivative written in operator form as [30,40]:

Dα
t v(r, t) = Q+η

(

D2
r v+

1
r

Drv

)

, 0< α ≤ 1, (1)

where the parameterα describes the order of the time fractional derivatives. Thespecial case of Eq. (1) whenα = 1
reduces to the standard Navier-Stokes equation of the form:

Dtv(r, t) = Q+η
(

D2
r v+

1
r

Drv

)

, 0< α ≤ 1, (2)

whereQ= ∂ p∗
ρ∂ t , t is the time,η is the kinematics viscosity,p∗ is the pressure, andρ is the density.

The current development in fractional calculus have given impetus to research on fractional partial differential equations
which deals with derivatives and integrals of arbitrary orders. We recall that J. H. He firstly proposed a semi-analytical
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technique called the homotopy perturbation technique, which is a coupling of classical perturbation technique and
homotopy a concept in topology. Homotopy perturbation technique gained a considerable popularity due to its high
accuracy and simplicity, and the crucial aspect of the homotopy perturbation technique is employment of the He’s
polynomials for computing the nonlinear terms [22]. Golmankhaneh et al. discussed the comparison of analytical
solution of nonlinear Navier-Stokes equations, Sturm-Liouville and Burgers and using iterative methods [41]. Recently,
Xu et al. studied the numerical solution of the space fractional Navier-Stokes equations by replacing Laplacian operator
in Navier-Stokes equations by Riesz fractional derivatives [42]. Rashidi and Shahmohamadi discussed the analytical
study of three-dimensional viscous flow near an infinite rotating disk using the variational iteration method (VIM), and
the Padè approximant [43].
In this paper, we apply the natural transform method (NTM) and the homotopy perturbation method (HPM) called
natural homotopy perturbation method (NHPM) to solved time-fractional Navier-Stokes equation with initial condition.
The proposed analytical scheme is applied directly to time-fractional Navier-Stokes equation without taking any
restrictive assumptions, discretization of variables, linearization, or transformation. It reduces the computational
difficulties, avoids round off errors, and required a small computational size. The natural homotopy perturbation method
is successfully applied to time-fractional Navier-Stokesequations, and the results obtained are in excellent agreement
with the results of the existing methods.

The outline of the paper is as follows. In Section 2, we reviewbasic definitions of fractional calculus and natural
transform. In Section 3, we provide a basic analysis of the natural homotopy perturbation method, to show its efficiency
and high accuracy. The results of the application of the proposed method are given in Section 4. The work is concluded in
Section 5.

2 Fractional Calculus and Natural Transform

Definition 1. The natural transform of the functionv(t)≥ 0 is defined over the set of functions,

A=

{

v(t) : ∃ M, τ1, τ2 > 0, |v(t)|< Me
|t|
τ j , i f t ∈ (−1) j × [0,∞)

}

,

by the following integral [44,45,46]:

N
+ [v(t)] =V(s,u) =

1
u

∫ ∞

0
e
−st
u v(t)dt; s > 0, u> 0. (3)

Definition 2. A function f (t), t > 0 is said to be in the spaceCn
α , n∈ N ∪{0}, if f (n) ∈ Cα .

Definition 3. A real function f (t), t > 0 is said to be in the spaceCα , α ∈ R if there exist a real numberp (> α) such
that f (t) = t p f1(t) where f1(t) ∈ C[0,∞). ClearlyCα ⊂ Cβ if β ≤ α.

Definition 4. The left sided Riemann-Liouville fractional integral operator of orderα ≥ 0, of a functionf (t) ∈ Cµ , and
µ ≥−1 is defined as [30].

Iα f (t) =

{

1
Γ (α)

∫ t
0(t − τ)α−1 f (τ)dτ, α > 0, t > 0,

f (t), α = 0.
(4)

For the Riemann-Liouville fractional integral, we have:

Iα ty =
Γ (y+1)

Γ (y+α +1)
tα+y

. (5)

Definition 5.The Natural transformN+ [Iαv(t)] of the Riemann-Liouville fractional integral is defined as:

N
+ [Iαv(t)] =

sα

uα V(s,u). (6)

Definition 6. The fractional derivative of the functionf (t) in Caputo sense fractional derivativef , f ∈ Cn
−1 , n∈ N∪{0},

is defined as [47,48].

Dα
t f (t) =

{

In−α
[

∂ n f (t)
∂ tn

]

, n−1< α < n, nε N,

∂ n f (t)
∂ tn , α = n.

(7)
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Note that [14,15]:

(i) Iα
t f (t) = 1

Γ (α)

∫ t
0

f (t)
(t−s)1−α dt, µ > 0 t > 0,

(ii) Dα
t f (x, t) = In−α

t

[

∂ n f (t)
∂ tn

]

,n−1< α ≤ n.

Definition 7. The Caputo fractional derivative of natural transform is defined as [31,32]:

N
+ [Dα

t v(t)] =
sα

uα V(s,u)−
n−1

∑
k=0

sα−(k+1)

uα−k v(k)(0+), (8)

n−1≤ α < 1.

3 Mathematical Presentation of the Analytical Scheme

The basic analysis of the natural homotopy perturbation method is clearly illustrated, to show its efficiency and high
accuracy by considering the general time-fractional Navier-Stokes equation of the form:

Dα
t v(r, t) = Q+η

(

vrr +
1
r

vr

)

, 0< α < 1, (9)

with the initial condition
v(r,0) = f (r), (10)

whereQ = ∂ p∗
ρ∂ t , t is the time, p∗ is the pressure,ρ is the density,η is the kinematics viscosity, andDα

t = ∂ α

∂ tα is the
Caputo fractional derivative.

Operating the natural transform in Eq. (9), we get:

V(r,s,u) =
f (r)
s

+
Q

sα+1 +
uα

sα N
+

[

ηvrr +η
1
r

vr

]

. (11)

Computing the inverse natural transform of Eq. (11), we get:

v(r, t) = G(r, t)+N
−1
[

uα

sα N
+

[

ηvrr +η
1
r

vr

]]

. (12)

Based on homotopy perturbation method, we get:

v(r, t) =
∞

∑
n=0

pnvn(r, t). (13)

Substituting Eq.(13) into Eq.(12), we get:

∞

∑
n=0

pnvn(r, t) = G(r, t)+ p

(

N
−1

[

uα

sα N
+

[

η
∞

∑
n=0

pnvnrr +
η
r

∞

∑
n=0

pnvnr

]])

. (14)

Equating the coefficients of like powers of p in Eq. (14), we get the following results:

p0 : v0(r, t) = G(r, t),

p1 : v1(r, t) = N
−1
[

uα

sα N
+

[

ηv0rr +η
1
r

v0r

]]

,
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p2 : v2(r, t) = N
−1
[

uα

sα N
+

[

ηv1rr +η
1
r

v1r

]]

,

p3 : v3(r, t) = N
−1
[

uα

sα N
+

[

ηv2rr +η
1
r

v2r

]]

...,

and so on.
Thus, the analytical solutions of Eq. (9)-(10) is given by:

v(r, t) = lim
N→∞

N

∑
n=0

vn(r, t). (15)

4 Solved Applications

Applications of the analytical scheme to time-fractional Navier-Stokes equation is clearly presented in this section.

Example 1Consider the following time-fractional Navier-Stokes equation of the form:

Dα
t v(r, t) = Q+ vrr +

1
r

vr , 0< α < 1, (16)

with initial condition
v(r,0) = 1− r2

. (17)

Computing the natural transform in Eq. (16), we get:

V(r,s,u) =
1− r2

s
+

Q
sα+1 +

uα

sα N
+

[

vrr +
1
r

vr

]

. (18)

Operating the inverse natural transform on both sides of Eq.(18), we get:

v(r, t) = 1− r2+
Qtα

Γ (α +1)
+N

−1
[

uα

sα N
+

[

vrr +
1
r

vr

]]

. (19)

Based on homotopy perturbation scheme, we get:

v(r, t) =
∞

∑
n=0

pnvn(r, t). (20)

Substituting Eq. (20) into Eq. (19), we get:

∞

∑
n=0

pnvn(r, t) = 1− r2+
Qtα

Γ (α +1)
+ p

(

N
−1

[

uα

sα N
+

[

∞

∑
n=0

pnvnrr +
1
r

∞

∑
n=0

pnvnr

]])

. (21)

Equating the coefficients of like powers of p in Eq. (21), we get the following results:

p0 : v0(r, t) = 1− r2+
Qtα

Γ (α +1)
,

p1 : v1(r, t) = N
−1
[

uα

sα N
+

[

v0rr +
1
r

v0r

]]

=
−4tα

Γ (α +1)
,

c© 2018 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.4, No. 2, 123-131 (2018) /www.naturalspublishing.com/Journals.asp 127

p2 : v2(r, t) = N
−1
[

uα

sα N
+

[

v1rr +
1
r

v1r

]]

= 0,

p3 : v3(r, t) = N
−1
[

uα

sα N
+

[

v2rr +
1
r

v2r

]]

= 0,

...

and so on.
Thus, the analytical solutions of Eq.(16)-(17) is given by:

v(r, t) = lim
N→∞

N

∑
n=0

vn(r, t)

= v0(r, t)+ v1(r, t)+ v2(r, t)+ v3(r, t)+ · · ·

= 1− r2+
Qtα

Γ (α +1)
−

4tα

Γ (α +1)
+0+0+ · · ·

= 1− r2+
(Q−4)tα

Γ (α +1)
.

The solution of Eq.(16)-(17) in closed form is given by:

v(r, t) = lim
N→∞

N

∑
n=0

vn(r, t)

= v0(r, t)+ v1(r, t)+ v2(r, t)+ v3(r, t)+ · · ·

= 1− r2+(Q−4)t,

whenα = 1.

Fig. 1: 3D and 2D surfaces of the analytical solution of Eq (16)-(17) in the ranges−1< r < 1, and−2< t < 2, when
t = 2, α = 1, andQ= 5

The result is in complete agreement with [17,30,40].

Example 2Consider the following time-fractional Navier-Stokes equation of the form:

Dα
t v(r, t) = vrr +

1
r

vr , 0< α < 1, (22)

with initial condition
v(r,0) = r. (23)
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Fig. 2: 3D and 2D surfaces of the analytical solution of Eq (16)-(17) in the ranges−1< r < 1, and−2< t < 2, when
t = 2, α = 3.5, andQ= 5.

Operating the natural transform in Eq. (22), we get:

V(r,s,u) =
r
s
+

uα

sα N
+

[

vrr +
1
r

vr

]

. (24)

Computing the inverse natural transform on both sides of Eq.(24), we get:

v(r, t) = r +N
−1
[

uα

sα N
+

[

vrr +
1
r

vr

]]

. (25)

Based on the homotopy perturbation method, we get:

v(r, t) =
∞

∑
n=0

pnvn(r, t). (26)

Substituting Eq.(26) into Eq.(25), we get:

∞

∑
n=0

pnvn(r, t) = r + p

(

N
−1

[

uα

sα N
+

[

∞

∑
n=0

pnvnrr +
1
r

∞

∑
n=0

pnvnr

]])

. (27)

Equating the coefficients of like powers of p in Eq. (27), we get the following results:

p0 : v0(r, t) = r,

p1 : v1(r, t) = N
−1
[

uα

sα N
+

[

v0rr +
1
r

v0r

]]

=
1
r

tα

Γ (α +1)
,

p2 : v2(r, t) = N
−1
[

uα

sα N
+

[

v1rr +
1
r

v1r

]]

=
12

r3

t2α

Γ (2α +1)
,

p3 : v3(r, t) = N
−1
[

uα

sα N
+

[

v2rr +
1
r

v2r

]]

=
12×32

r5

t3α

Γ (3α +1)
,
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p4 : v4(r, t) = N
−1
[

uα

sα N
+

[

v3rr +
1
r

v3r

]]

=
12×32×52

r7

t4α

Γ (4α +1)
,

...

and so on.
Thus, the analytical solutions of Eq.(22)-(23) is given by:

v(r, t) = lim
N→∞

N

∑
n=0

vn(r, t)

= v0(r, t)+ v1(r, t)+ v2(r, t)+ v3(r, t)+ · · ·

= r +
1
r

tα

Γ (α +1)
+

12

r3

t2α

Γ (2α +1)
+

12×32

r5

t3α

Γ (3α +1)
+ · · ·

= r +
∞

∑
n=1

12×32×52 · · ·× (2n−3)2

r2n−1

tnα

Γ (nα +1)
.

The solution of Eq.(22)-(23) in closed form is given by:

v(r, t) = lim
N→∞

N

∑
n=0

vn(r, t)

= v0(r, t)+ v1(r, t)+ v2(r, t)+ v3(r, t)+ · · ·

= r +
∞

∑
n=1

12×32×52 · · ·× (2n−3)2

r2n−1

tn

n!
,

whenα = 1.

The result is in complete agreement with [17,30,40].

5 Conclusion

In this article, an analytical scheme called natural homotopy perturbation method (NHPM) is propose to solve
time-fractional Navier-Stokes equation. Based on the scheme, solution in closed form of the time-fractional
Navier-Stokes equation was successfully obtained within few iterations.The NHPM series solutions converges rapidly
with high accuracy. The fractional order derivatives are computed in Caputo sense. Obviously, the computational
simplicity of the analytical method shows that it can be use to study many problems in physical science and engineering.
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