J. Stat. Appl. Pro. Let5, No. 1, 7-12 (2018) %N S\ 7

Journal of Statistics Applications & Probability Letters
An International Journal

http://dx.doi.org/10.18576/jsapl/050102

Characterization for Generalized Power Function
Distribution Using Recurrence Relations Based on
General Progressively Type-ll Right Censored Order
Statistics

A. Sadek*, Marwa M. Mohie EI-Din? and A. M. Sharawy?

1 Department of Mathematics, Faculty of Science (Men), AkéAzUniversity, Nasr City (11884), Cairo, Egypt.
2 Department of Mathematics, Faculty of Engineering, EgypfRussian University, Cairo, Egypt.

Received: 25 Jul. 2017, Revised: 20 Dec. 2017, Accepted:e25 2017
Published online: 1 Jan. 2018

Abstract: In this article, we establish recurrence relations for kinand product moments for the generalized power function
distribution. Moreover we use the relation between the @dly density function and distribution function and veence relations
to characterize the generalized power function distrdsuiased on general progressively Type-Il right censorddratatistics.
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1 Introduction

In failure data analysis, it is common that some individuzdsinot be observed for the full failure times. general
progressively Type-Il right censored order statistics TBRCOS) is a useful and more general scheme in which a
specific fraction of individuals at risk may be removed frohe tstudy at each of several ordered failure times.
Progressively censored samples have been consideredgantiears, by Davis and Feldstein (1979), Balakrishnan et al.
(2001), and Guilbaud (2001). This scheme of censoring wasrgéized by Balakrishnan and Sandhu (1996) as follows:
attimeXy = 0, nunits are placed on test; the fikstailure times Xy, ..., Xg, are not observed; at timég + 0, whereX;
is theith ordered failure time (i=k+1,..., m—1), R units are removed from the test randomly, so prior to the
(i + 1)™ failure there aren = n — — i — Yi—k+1Rj units on test; finally, at the time of thef" failure, X, the
experiment is terminated, i.e., the remainiRg units are removed from the test. TRgs, m andr are prespecified
integers which must satisfy the conditionstk <m<n, 0<R <n_3 for i=k+1,..., m—21withn,=n—kand
Rn=Nm_1—1
If the failure times are based on an absolutely continuostsidiition function (cdfF with probability density function
(pdf) f, the joint probability density function of the general pregsively Type Il censored failure times
Xy 1mns - - - Xmmen » IS given by
K m
ka+1:m:3na---axm:m:3n (Xk+1v e 7Xm) :K(n,m—l) [F (Xk+1a 6)] |_| f (XI ) 6) [1_ F (Xi, e)]a y Rkl <XKy2<- -+ < Xm, (1)
i=k+1

where,

n! m it .
K(n,m—l) = k! (n—k—l)! j:urzn_iz +1R|_J+1 .
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Aggrawala and Balakrishnan (1996) derived recurrencdioela for single and product moments of progressively
Type-Il right censored order statistics from exponenBaketo and power function distributions and their trund¢étems.
Imtiyaz et al. (2015) derived translation, contraction dildtion of dual generalized order statistics. Mohie Eh[2t al.
(2017a,b) derived characterization for Gompertz and tifi@éure rate distributions using recurrence relationsiafjle
and product moments based on general progressively Tyjghticensored order statistics.

In this paper, we shall introduce recurrence relations gmsingle and product moments based on GPTIIRCOS.
Characterization for generalized power function distidou (GPFD) using recurrence relations are obtained.

Letxéﬁmﬁk%“&") <o < X\Rer1Rer2e-Rn) ho them—k ordered observed failure times in a sample of ¢ize k) under

general progressively Type-Il right censoring scheme ftioenGPFD with pdf is given by (see Imtiyaz et al. (2015))

f(x):ax“‘l[l—(mjtl)x"]ﬁmi, m>-1 a>0, 0§x<(m+1)%, )
and cdf is given by
1
F(x)=1—[1— (m+1)x%]m1. ©)

It may be noted that fron2] and @) the relation between pdf and cdf is given by,
[1—(Mm+1)x7] f (x) = ax* L1 F (x)]. 4
For any continuous distribution, we shall denoteitAsingle moment based on GPTIIRCOS in view of Ef).4s
0] [
pRe Rz Rt _ Nﬁnk#mz,...ﬂn)}'
=Ky [[ - XalF (% 2)]F (es2) [L = F () 02 (5)
0<Xje 1< o <Xm< %
f (Xier2) [1— F (%iee2)] 2 f () [1— F ()] RmdXiepa - . dXen,

and thet™ and ™" product moments as

(6)
[1—F (Xe2)] R f (e2) [1— F (ier2) ]2 f (3m) [1— F (X)) FmdXies s - . dXi.

2 Recurrence Relations of Single and Product Moments

In this section, we introduce the recurrence relationsifigle and product moments based on GPTIIRCOS.
In the next theorem we introduce the recurrence relatiosifaggle moments based on GPTIIRCOS.

Theorem 1Fork+2<r<m-1, m<n and i>0,

R +1) R )
—(m+ 1)t = a (Fit . ) it Fon

a (Rk+1’Rk+27"'va—27(Rf71+Rl+1),R,,+11,“1Rm)<i+a) @)
m“r—l:m—l:n

u(Rkﬂ,RHz,...,erL(Rf+Rr+1+1>,Rr+z,...,Rm>““’>
(i—I—G) r:m-1.n .

(R 1-Rcs 20 R) )
mn

—(N—Rg1——R_1—-r+1)

+(N—Rei——R—r)

Proof.From Eq. @) and Eq. b), we get

0) (i+a)
IJr(:E”lk:Jrr]LRHZWWRm) . (m+ 1) “r('ﬁquLRm) _
a K(n,m—l)//m/ [F (% )]Y (%1, Xr41) o %
0 Xy 1< <K <K 1 < <K< (8)

F i) [L=F ey )]t (2) [L = F (6 )) ¥ (Xe) [L= F (x2)]R2 0
f (Xm) [1— F (Xm)] "X 10Xs 2. . %1021 . .. OXi,
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where )
Valeaa)= [ L= () o ©
X

r—1

Now, integrating by parts gives

X F (N X911 F (x4 )R+ 1
Y1 (X1, % 11) = Xrig (17 F ()] 11— F (x-1)] +<R+

i+a i+a ) /X:m X0 (%) [1—F (x)]¥dx  (10)

Now substituting for the resultant expressionYefx; _1,%1) from Eqg. (L0) in Eq. @) and simplifying, yields Eq.
().

This completes the proof.
In the next two theorems, we shall introduce recurrenceioelafor product moments based on GPTIIRCOS.

Theorem 2For k+1<r<s<m-1, m<nandi,j>0,

CR)T L R (+a.) R+1\ R (i+a.)
dh T — (e 1) S :a<i+a) A
Rt Rr_2:(Re_1+Re+1),Rrs1,Ry) T
—(N=Rea——Ro1—r+1) (|+a)ur( PSP 1) (11)

+(N—Rep1——R—T)

I Rk+117 ,Tr 1(RAR1+1) R 9, Re) 10D
(|+ ) r.s m n °

Proof.Similarly as proved in theorem 1.

Theorem 3For k+1<r<s<m-1, m<nandi,j>0,

r(gknﬁ-%’""Rm)(i’.) (m+1) r('gknﬁ%‘""R’“>(lHa)= (RS+1) (RkJrl‘_'_’an)(i,Ha)
s o
(i,j+a)
Ret15-Rs-2,(Rs_1+Rs+1),Rsi1,....Rm
—(N—Rg1—-—Rs1—s+1) [ Gt a) urs_ﬁlm_lnz R ) ] (12)
a s , 1),Rs:2,..., (i,j+a)
+(n_Rk+1—"'—Rs—S)[(J+ )ursﬂllm R 1 (Rt R+ o2 ) ]

Proof.Similarly as proved in theorem 1.

3 The Characterization

In this section we introduce the characterization of GPFIDguthe relation between pdf and cdf and using recurrence
relations for single and product moments based on GPTIIRCOS
In the next theorem we introduce the characterization o&@RE&D using relation between pdf and cdf.

Theorem 4Let X be a continuous random variable with pdf f(e), cdf F (e) and survival function [1— F(e)]. Then X
GPFD iff
[1— (M4 D)X f (x) = ax? L [1-F (x)]. (13)

Proof.Necessity:From Eq. @) and Eq. 8) we can easily obtain Eq18).
Sufficiency: Suppose thaX is a continuous random variable with pfife) and cdfF (e). Suppose, also, that E4.3)
is true. Then we have:

—d[1-F(x)] ax?—1

1-F(x)  1—(m+1)x2

On integrating, we get
(m+1)In|]1—F (x)| =In|]1— (m+ 1)x*| +C,

whereC is an arbitrary constant.
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Now, since[1—F (0)] = 1, then putting« = 0 in this equation, we g& = 0.
Therefore,
1
F(X)=1—[1—(m+1)x9]mT .
That is the distribution function of GPFD. This completes foof.

In the next theorem, we introduce the characterization ef&rFD using recurrence relation for single moments
based on GPTIIRCOS.

Theorem 5Let X be a continuous random variable with pdf f(e), cdf F (e) and survival function [1 —F(e)]. Let Xk;1:n
. < Xn:n bethe order statistics of arandomsample of size (n—Kk). Then X has GPFD iff, for k+2<r <m-1, m<n
and| >0,

(i4a) 1 i+a)
ul‘(:ﬁﬁk:?]l7Rk+27W7Rm) (m_|_ 1)H(Rk+l7 7Rm) =a <?r++a ) IJr(RkT_llv va)

—(N—Rea— -~ R +1)

O (RepRe 2R 2R +RAD)R 1,0 Rm)
[ra)Htmin - ¢

a (Rt 1R 20+ Re— 1, (Re+Rr+1+1) Rey 2,000 Re) )
(I T a)ur m-1:n .

+(N—Rep1——R—T)

Proof.Necessity:Theorem 1 proved the necessary part of this theorem.
Sufficiency: Suppose thaX is a continuous random variable with piife) and cdff (e). Assuming that equatiorig)
holds and from Eq.5), we get then we have:

(i+a)
Hr(%ﬁl""’%) =Knm-1) /// [F (4s0)] Y5 (% -1, %41) X
0<Xpp 1< <Kp -1 <Kp 1 <o <Xm<o0

1
F (er2) [L— F ()0 Om2) [ F (o n)F 3 (g) [ F (xes) ¥t (29)
f(xm)[1—F (xm)]Rmdka e dXe_10X% 11 - .. dX,
where
Xr 41 ita Re
Yo (X 1,%41) = /X XFE (%) [1— F (%)]R dx. (16)
r—1
Using, integrating by parts o (X,—1,%+1) and by substituting in Eql6), we get
0 (i+a) :
R i e [ 6
0<Xj 1< o <Xm< %
Ri+1 a7

[F ()] L= F 6] (era) [L— F (K)o f (xr1)
[1—F (%_1)]% 2 (1) [1— F ()] ¥ f (xm) [1— F (X)) "™dXgep1 - . - X,

We get

Koms [ [ R F OO F O] F ) = F (e

F O 1) [L=F O6-0)] 2 (62) [L=F 06 12)] ¥ () [2— F ()57
[[1— (M+21)x7] f (%) — ox¢ 1~ F (%)]] dXcy1. .. dXm = O.

Using Muntz-Szasz theorem, [See, Hwang and Lin [6]], we get
[1—(M+1)x]f (%) = axd 11— F (x)].
Using Theorem 4, we get the distribution function
F(X)=1—[1— (m+1)xa]mr,

This completes the proof.
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In the next two theorems, we introduce the characterizatiothe GPFD using recurrence relation for product
moments based on GPTIIRCOS.

Theorem 6Let X be a continuous random variable with pdf f(e), cdf F (e) and survival function [1— F(e)]. Let X 1:n
<... < Xnn bethe order statistics of a random sample of size (n— k). Then X has GPFD iff, for k+1 <r <s<m-—1,
m<nandi,j >0,

R0 R ) R +1 Ryt
i e S (B

(- Raa— R D) | e

a (Rk+lv~~~er27(Rf1+RI+1)1R'(+11"'1Rm)(i+a7j):| (18)

+(N—R1——Re—T)

u(RkT,...,?FL(R,+Rr+1+1>,Rr+z,...,Rm><‘“’~”
(i+a) rs—1m-1n .

Proof.Similarly as proved in theorem 5.

Theorem 7Let X be a continuous random variable with pdf f(e), cdf F (e) and survival function [1— F(e)]. Let Xk 1:n
< ... < Xnn be the order statistics of a random sample of size (n — k). Then X has GPFD iff, for k+1 <r <s<m-—1,
m<nandi,j >0,

..... oh) Ry i) R+ 1 Ry
S ey - o (B ) i

—(N—Rg1——Rs1—-5+1)

(Rk+11"'1R5727(R571+RS+1)7RS+1,,,,1Rm)<i'j+a)
(j+a) rs-1m-1n (19)

O (Ret1oRs 1.(RetRsi1+1).Resz....Ry) M)
(J _’_a)“r,sfl:mfl:n :

+(N—Re1— —Rs—9)

Proof.Similarly as proved in theorem 5.

4 Conclusions

Above investigations demonstrated that using the aboatioak, we can obtain all the single and product momentd of al
GPTIIRCOS for all sample sizes and all censoring schemesimple recursive way. Since recurrence relations reduce
the amount of direct computation and hence the time, cosladmmair. Therefore the relations under consideration may be
useful in computing the moments of any order of GPTIIRCO®f@PFD.
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