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Abstract: In this article, we study a new discrete model which is obtained by compounding discrete Pareto distribution 

with Kumaraswamy distribution. We shall first study some basic distributional and moment properties of the new 

distribution. Structural properties of the distribution such as its unimodality, hazard rate behavior and index of dispersion 

are also discussed. Finally, real data sets are analyzed to investigate the suitability of the proposed distribution in modeling 

count. 
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1 Introduction 

Statistical distributions play a prominent role in various 

fields like social sciences, medical sciences etc. 

Researchers obtainplethora of distribution for the sake of 

analyzing complex data from various fields. Lot of well 

known techniques are getting employed to serve the 

purpose of constructing new probability distributions. 

Some well known techniques like discretization [2,3,16], 

transmutation [5] and Compounding methodologies 

received utmost attention from researchers from past 

decade. Compound distribution arises when all or some 

parameters of a distribution known as parent distribution 

vary according to some probability distribution called the 

compounding distribution, for instance negative binomial 

distribution can be obtained from Poisson distribution 

when its parameter   follows gamma distribution. If the 

parent distribution is discrete then resultant compound 

distribution will also be discrete and if the parent 

distribution is continuous then resultant compound 

distribution will also be continuous i,e. the support of the 

original (parent) distribution  determines the support of 

compound distributions. In several research papers it has 

been found that compound distributions are very flexible 

and can be used efficiently to model different types of data 

sets. With this in mind many compound probability 

distributions have been constructed. Sankaran [1] 

introduced a compound of Poisson distribution with that of 

Lindley distribution for modeling count data. Zamani and 

Ismail [4] also constructed a new compound distribution by 

compounding negative binomial with one parameter 

Lindley distribution that provides good fit for count data 

where the probability at zero has a large value. Adil and 

Jan [15] constructed a new compound distribution as 

compound of size biased Geeta distribution with 

generalized beta distribution. Recently, Para and Jan [6] 

constructed compound of discrete inverse Weibull 

distribution with Minimax distribution as a new discrete 

model with applications in medical sciences.  

In this paper we propose a new count data model by 

compounding two parameter discrete Pareto distribution 

with Kumaraswamy distribution, as there is a need to find 

more plausible discrete probability models or survival 

models in medical science and other fields, to fit to various 

discrete data sets. It is well known in general that a 

compound model is more flexible than the ordinary model 

and it is preferred by many data analysts in analyzing 

statistical data. Moreover, it presents beautiful 

mathematical exercises and broadened the scope of the 

concerned model being compounded. 

 

2 Material and Methods 

 
A discrete analogue of the continuous Pareto distribution 
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was introduced by Krishna and Punder [6], and is defined 

by the probability mass function (pmf): 
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There are various types of life time models such as 

exponential, Pareto and Gamma that are used in reliability 

and life testing. Jones [7] studied two-parameter 

distribution on (0,1) which he has called the Kumaraswamy 

distribution, Kumaraswamy ),(   ,where its two shape 

parameters   and   are positive. It has many of the same 

properties as the beta distribution
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If we put ,1  the equation (3) reduces to Uniform 

distribution. 

Where 0,  are shape parameters. The raw moments of 

Kumaraswamy distribution (KD) are given by 
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Kumaraswamy distribution is not very popular among 

statisticians because researchers have not analyzed and 

investigated it systematically in much detail.  

Kumaraswamy distribution is similar to the Beta 

distribution but unlike beta distribution it has a closed form 

of cumulative distribution function which makes it very 

simple to deal with. For more detailed properties one can 

see references [7, 8]

 
3 Definition of Proposed Model                                                                                                           
 

If ~|qX DPD  q  where q is itself a random variable 

following Kumaraswamy distribution KD   , , then 

determining the distribution that results from marginalizing 

over q will be known as a compound of discrete Pareto 

distribution with that of Kumaraswamy distribution, which 

is denoted by DPKD   , . It may be noted that proposed 

model will be a discrete since the parent distribution DPD 

is discrete. 

Theorem 3.1: The probability mass function of a 

compound of DPD )(q  with KD ),(   is given by 
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 Where ,......2,1,0x     and    0,   

Proof: Using the definition (3), the pmf of a compound of 

DPD  q  with KD ),(  can be obtained as 
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Where ,...2,1,0x  and 0,  . From here a random 

variable X  following a compound of DPD with KD will 

be symbolized by DPKD   , . 

Fig.1(a) to fig.1(c) provides a pmf plot of the proposed 

model DPKD   ,;x  for different values of 

parameters.The Cumulative distribution function of the 

DPKD   ,
 
is given by
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3.1 Random Data Generation from Discrete 

Pareto Kumaraswamy Distributions 

For simulating random sample data of size n,  nxxx ,....,, 21  

of the discrete Pareto and Kumaraswamy random variable 

X with pmf 
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and a cdf F(x), where k may be finite or infinite can be 

described as 

Step1: Generate a random number u from uniform 

distribution U(0,1). 

Step2: Generate random number ix  based on 

 

In order to generate n random numbers from Discrete 

ParetoKumaraswamy distribution, nxxx ,....,, 21 , repeat step 

1 to step 2 n times. 
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4 Nested Distributions  
 

In this particular section we show that the proposed model 

can be nested to different models under specific parameter 

setting.  

Proposition 4.1: If   ,~ DPKDX then by setting 

1  we obtain a compound of DPD distribution with 

uniform distribution. 

Proof: For 1  in KD reduces to Uniform (0,1) 

distribution, therefore a compound DPD with uniform 

distribution is followed from (5) by simply putting       

1   in it. 

 
Fig 1. pmf plot of Discrete Pareto Kumaraswamy distribution 
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DPUD  

For       0,...,2,1,0  x     

Which is probability mass function of a compound of DPD 

with uniform distribution 

5 Reliability Measures of Compound Discrete 

Pareto Kumaraswamy Distribution 

If   ,~ DPMDX , then the various reliability 

measures of a random variable X are given by 

5.1 Survival Function. 
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5.2 Rate of Failure Function 
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5.3 Second Rate of Failure Function 
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6 Statistical Properties of Pareto 

Kumaraswamy Distribution

 
6.1 Moments 
 

The r th moment of the Compound discrete Pareto 

Kumaraswamy distribution is given as 
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6.2 Moment Generating of   ,DPMD  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 Parameter Estimation 

In this section the estimation of parameters of 

  ,,;xDPKD  model will be discussed method of 

moments and maximum likelihood estimation 

7.1 Moments Method of Estimation 

In order estimate three unknown parameters of 

  ,;xDPKD  model by the method of moments, we 

need to equate first three sample moments with their 

corresponding population moments. 
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Where i  is the ith sample moment and im  is the ith 

corresponding population moment and the solution for ̂

and ̂  may be obtained by solving above equations 

simultaneously through numerical methods. 

 

7.2 Maximum Likelihood Method of Estimation 
 

The estimation of parameters of   ,;xDPKD model via 

maximum likelihood estimation method requires the log 

likelihood function of   ,;xDPKD
  

 

 

The moment generating function of the Compound discrete ParetoKumaraswamy distribution is 
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First four moments of the proposed model are given by 
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These two derivative equations cannot be solved 

analytically, therefore ̂  and ̂ will be obtained by 

maximizing the log likelihood function numerically using 

Newton-Raphson method which is a powerful technique for 

solving equations iteratively and numerically. 

8 Application of DPKD (Discrete Pareto 

Kumaraswamy Distribution) 

In this section, we present a real data set to examine the fit 

of the proposed model. MLE based on the likelihood Eqs. 

(10) and (11) was used to obtain the parameter estimates of 

the proposed distribution, although it is also possible to 

perform a direct search of the maximum likelihood function 

to obtain the maximum likelihood estimators. This can be 

done using appropriate software such as R Studio statistical 

software. In this section an attempt has been made to fit to 

data relating to automobile claims as given in table 1 

(Automobile claims frequencies data in Willmot [10]), using 

discrete Pareto Kumaraswamy distribution (DPKD) in 

comparison with some compound discrete models like, 

Poisson Akasha distribution (PAD) [9], Poisson Lindley 

distribution (PLD) [12] , Poisson Sujatha distribution (PSD) 

[11] and other classical discrete models. 

The p-value of Pearson’s Chi-square statistic is 0.375 for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

discrete Pareto Kumaraswamy distribution and  <0.01for 

Poisson, discrete Rayleigh, Poisson Lindley, Poisson 

Akasha, and Poisson Sujatha distributions, respectively (see  

Table 3). 

 This reveals that Poisson,discrete Rayleigh, PLD, PAD and 

PSD distributions are not good fit at all, whereas discrete 

Pareto Kumaraswamy model being the significant model for 

automobile claim data. The null hypothesis that data come 

from discrete inverse Pareto Kumaraswamy distribution is 

accepted. 
We have compared discrete Pareto Kumaraswamy distribution 

with Poisson, discrete Rayleigh, Poisson Lindley, Poisson 

Akasha, and Poisson Sujatha distributions using the Akaike 

information criterion (AIC), given by Akaike [13] and the 

Bayesian information criterion (BIC), given by Schwarz [14] . 

Generic function calculating Akaike's ‘An Information Criterion’ 

for one or several fitted model objects for which a log-likelihood 

value can be obtained, according to the formula -2*log-likelihood 

+ k*npar, where npar represents the number of parameters in the 

fitted model, and k = 2 for the usual AIC, or k = log(n) (n being 

the number of observations) for the so called BIC or SBC 

(Schwarz's Bayesian criterion). From table 4, Comparing the fits 

using AIC and BIC criterion, it is obvious that AIC and BIC 

criterion favors discrete Pareto Kumaraswamy distribution in 

comparison with the Poisson, discrete Rayleigh, Poisson Lindley, 

Poisson Akasha, and Poisson Sujatha distributions, in the case of 

Counts of Automobile claim data. 
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The maximum likelihood estimate of  T ˆ,ˆ can be obtained by differentiating (9) with respect 

unknown parameters  and  respectively and then equating them to zero. 























































































 n

i x
B

x
B

x
B

x
B

n
X

1 1
)2log(

,1
)1log(

,

1
)2log(

,1
)1log(

,

),;(£




















                                          

(10) 

 























































































 n

i x
B

x
B

x
B

x
B

X
1 1

)2log(
,1

)1log(
,

1
)2log(

,1
)1log(

,

),,;(£


















                                                     

(11) 

 

 

 

 

Table 1. Automobile claim data studied by Willmot [7] 

Count 0 1 2 3 4 5 

Observed 3719 212 38 7 3 1 
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The ML estimates provided by the fitdistr procedure in R studio are given in the table 2. 

 

Table 2. Estimated parameters by ML method for fitted distributions for Counts of Automobile claim data studied 

by Willmot [10] 

Distribution 
parameter 

Estimates 

 

Model function 

Discrete Pareto 

Kumaraswamy 57.1
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Table 3. Table for goodness of fit for Counts of Automobile claim data (Willmot [7]). 

 

Observed DPKD Poisson DRayleigh PLD PAD PSD 

3719 3725.62 3667.00 3509.20 3678.71 3678.13 3678.71 

212 202.06 300.36 470.03 278.44 278.75 278.44 

38 35.09 12.30 0.78 21.11 21.34 21.11 

7 9.91 0.34 0.00 1.60 1.65 1.60 

3 3.67 0.01 0.00 0.12 0.13 0.12 

1 3.66 0.00 0.00 0.01 0.01 0.01 

P-values 0.375 <0.01 <0.01 0.0003 0.000001 0.000071 

 

 

http://www.naturalspublishing.com/Journals.asp


52                                                                                                             I. Wani et al.: Compound of Discrete Pareto and … 
 

 

 

© 2018 NSP 

Natural Sciences Publishing Cor. 
 

 

 

 

 

 

 

4 Conclusions 
 

In this paper, a new model is proposed by compounding 

discrete Pareto distribution (DPD) with Kumaraswamy 

distribution (KD) and it has been shown that proposed 

model can be nested to different compound distributions. 

Some important probabilistic properties and the problem of 

estimation of its parameters are studied. The proposed 

model is well competitive of some well known compound 

and classical discrete distributions. 
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Table 4. AIC, BIC and log likelihood values for fitted distributions 

Criterion DPKD Poisson D Rayleigh PLD PAD PSD 

Log likelihood Value -1128.03 -1194.9 -1535.85 -1154.92 -1154.13 -1154.61 

AIC 2260.058 2391.802 3073.705 2311.842 2310.258 2311.217 

BIC 2272.636 2398.091 3079.994 2318.131 2316.547 2317.506 

 


