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1 Introduction

The field of fractional calculus has a significant role in was disciplines such as engineering, biomechanics,
electrochemical, etcl]2,3,4,5,6]. Many real physical systems can be modeled more accurhieliyactional order
differential equations. Optimal control problem genegraédldefined as a function minimization over an admissibleo$et
control and state functions subject to dynamic constraintthe state and control input. The Fractional Optimal Gantr
Problem (FOCP) is an optimal control problem, in which thefgrenance index or the differential equation governing
the dynamic of the system or both contain at least one fragtiorder derivative term.

One of the efficient methods for solving the classic nonlirgdimal control problem is measure theory, see &,8,[
9,10,11,12,13,14,15]. In the present research measure theory approach is exddadsolving nonlinear FOCPs.

The most famous fractional derivatives that are applied égearchers are Riemann-Liouville, Caputo and
Grunwald-Letnikov. These fractional derivatives do retisfy most properties of classical calculus, such as proale,
chain rule, and Leibniz rule. Khalil et al. (2014) introddca new well-behaved definition of derivative called
conformable derivative to overcome these drawbacks. Téusdefinition is theoretically easier and more adaptive with
the conventional derivative propertiesg[17,18,19,20,21,22,23]. So this new concept motivated the authors to use
conformable derivatives in solving FOCPs.

In order to solve such problems, first a fractional positiveasure is defined, then measure theoretical method
proposed in10] is developed. In Section 2, we give some preliminaries.dnt®n 3, the classical FOCP is embedded
into a new space (a space of measures). Then new form of théRO&n infinite dimensional linear programming
problem (LPP) in Section 4. At the final stage, this LPP is appnated by a finite dimensional linear programming
problem, where the optimal pair of state and control can hadoby the solution of this finite dimensional LPP.
Numerical examples are given in Section 5. In Section 6 welcole our work.
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2 Preliminaries
Letw= f(t) (t > 0) be a real valued, continuous function amd> 0 be a given real number. Consider the following

definitions: (see6]).
Definition 2.1 The Riemann-Liouville fractional integral of ordarof the functionf, is defined as

1 t
I"ft:—/t—r“‘lfrdr, t>0,
olf 11) = g5 J, €= D (@)
wherel™ (.) denotes the gamma function. As a property for the Riemawomiliile fractional integration we have
folfft) =ol?PEt), a,p>0.

Definition 2.2 The fractional derivative of (t) in the Riemann-Liouville sense is defined as follows

1 d"
r(n—a) (d)n

Definition 2.3 The fractional derivative of (t) in the Caputo sense is defined as follows

t
RDY () — [/ (t—1)"1f(r)dr], n—l<a<nneN.
0

1 t Ca-1 dn
SD{’f(t):m/o(t—r)” a (dr)nf(r)dr, n—l<a<nneN.
Definition 2.4 Let f : [0,00) — R, then the conformable fractional derivativefdt) is defined as follows ([€]).

 f(tetla) — f(t
Taf(t):m)( 8) (t)

O<a<1t>0. Q)

We write sometimeg?(t) for T, f(t) to denote conformable fractional derivative of orderalso if T, f (t) exists, then
we sayf is a-differentiable.

Leta € (0,1) andf, g be a-differentiable fort > 0, then the following properties can be resulted from Dééini2.4.
( see P] for more details).

Ty (af +bg) = aTy (f) +bTs(g) abeR 2
Ta(tp)—ptp “  peRr (3)
Ta(A) = A is a constant number 4)
Ta(fg)— fTa(g)+gTa(f>, (5)
Toa (f)— 1T,
g
Moreover, in the case thdtis a differentiable function, one can prove that
df
1-a
Taf(t) =t )
As a special case for certain trigonometric functions, tilewing formulas can be easily obtained.
Ty(sinat) = at' %cosat,a € R, (8)
Ty(cosat) = —at' “sinat,aec R 9)

Definition 2.5 Let f : (0,t) — R be a continuous function ara € (0,1), the conformable-fractional integral of the
function f is defined as follows:

12 (t) = 129 1) :/t 191§ (1)dr, a> 0. (10)
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Theorem 2.6Let f : [0,00] — R be aa-differentiable function. Leg be a function defined in the range bfand also
differentiable, then we have the following rule:

Ta(fog) = (Ta f)(g)-(Tag)-gail (11)

Proof : (see [L7)).
Theorem 2.7Let f be aa- differentiable function fot > a,(a> 0) and O< a < 1, then

13T, f (1) = f(t) — f(a). (12)

Proof.: Sincef is a- differentiable function, byX0) and (7) we have

(t1—a)? T, f(1)dr = /t(r— a)? (1 —a)l"’df(r)dr = f(t)— f(a).

t
a _
IaTaf(t) _/ a dr

a

Now, we recall that by the Riesz representation theorEdr2], for a functionf € C[0, 1], there exists a Borel measure
Ug such that

1
ua(f):/ lf(ndr, O<a<l, (13)
0

wherep, is a positive and linear measure.

3 Problem Statement

Consider the following nonlinear FOCP:

min  1(x(.),u(.)) = [; fo(t,x(t),u(t))dt (14)

subject to
X7 (t) = g(t,x(t),u(t)), (t,x(t),u(t)) € Q, (15)
X(to) =X, x(t) =x, (16)

where O< o < 1. Let the trajectory (state(t) and the control function(t) be vectors irR" andR™, respectively, and let
t be a real non-negative number. Now consider:

(1)J=[to,ts] with to < t¢. This is the time interval in which the FOCP will evolve.

(ii)A bounded, closed, pathwise-connectedfsit R". The trajectory(t) is constrained to stay iAfort € J.
(iii)A bounded, closed subdgtin R™. The control functions are taken valuedln
(ivVQ =Jx AxU,andg: Q — R", is a continuous function.

without loss of generality] is considered a3 = [0, 1].
Definition 3.1 A pair p = (x(.),u(.)), is said to be admissible for the probledb)- (16) if for all t € J the trajectory
functionx(t) € A is absolutely continuous and the control functigh) € U is Lebesgue measurable, also the constrains
of problem (L5)- (16) are satisfied.

We denote by the set of admissible pairs. If we fiqgf = (x*(.),u*(.)) € W such that minimizes the performance
criterion (L4), thenp* is called as optimal solution.

Now, we use an embedding process into a space of measurast, latfthis stage an admissible pai (x(.),u(.)) can
be considered as something else, that is, a transformatiohe established between the admissible pairs and sonre othe
entities, and show that this transformation is an injegtamre-one mapping, but the new problem is a linear programmin
(LP) problem. So one can use all the benefits of solving LPIprobin the following paragraphs this embedding process
is described precisely.

Suppose thap = (x(.),u(.)) is an admissible pair for the problerh)- (16) andB is an open ball iR™+! containing
Jx A. Let ¢ € C%(B), whereCY(B) is the space of all real-valued continuousty differentiable functions o in the
sense of conformable fractional derivative, such that s dierivative is also bounded. Since monomial functiors ar
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dense in the space 6F (B),(see Theorem 2.1 fronif] and Weierstrass theorem i24]), thus monomials depended on
variableg and (or)x, can be considered as functiopsDefineg? by

F(t,X(1)) = 9% (1, X(1))
0% 0% 0%
~ (ana " (awa ()
0% 0%

@ T OO
[ OO Y
0% 0%

= (a0 * (g 90XO- U0 @

where the right hand side o17) can be obtained by applyind 1) and replacing (t) by g(t,x(t),u(t)). One needs to
remember thap = [x(.),u(.)] is an admissible pair. Now, by using respectively equat{@fsand (7), we have

la(99) = Jg 19 1%(1,X(1))dT = Jg 91 (1,x(7)) dT s
= et ea XD o) p(0) = ag. 1)

Let consider special spad® (J°), which is the space of all real-valued-differentiable functiong?(t) on J° in the
sense of conformable fractional derivative with compagipgut in J° = (0, 1), that is¥(0) = W(1) = 0. The functions
W(t) € DY(J°) are formally considered as

Y(t) =sin(2mrt) , r=12,..
Y(t) =1—cos(2mrt) , r=12,..
Define

Wit x(t),u(t)) = Ta (X ¥(1))
=Xj(t) TaW(t) +gj(t,x,u)¥(t), i=12,..,n

where the right side ofl9) can be obtained by applying equatid) and replacindly (xj) by gj(t,x(t),u(t)). Since,¥
has compact support iif = (0,1), one can get:

(19)

lo(WIEXO:U() = 3 19 (LX), u(D)dT = [o 19T (¥(0)) dr
= fgre et g dr (20)
= Jo d(xj¥(t))dt = ¥(1) - w(0) = 0.
j=12..n

As a special case of choosing functionals on sgac®valsh functions are introduced as follows which are depand
only on the variablé¢:

1, te|(s—1)/L,s/L
o {0 te (5= 1)/ 1)
whereL € Nands=1,---,L. For these functions we have
la(8s) = Jg 10 265(T)dT = [Ty 19 dr = LE  (GDLE _ pg, (22)

Now remember the classical fractional optimal control peab (FOCP) 4)-(16). Many difficulties may arise in
solving this FOCP. The set of admissible palvsmay be empty; the functional measuring performarie® (nay not
achieve its minimum even if the s& is nonempty. The necessary conditions for optimality isalear. To overcome
these difficulties we attempt to change the problem and denghe admissible pag= (x(.),u(.)) as some new objective.
Let f € C9(Q), the following mapping is considered:

Ap: f— Alr“‘lf(r,x(r),u(r))dr, pew, (23)
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where this mapping defines a positive linear functionaC8iQ), that identify each admissible pgirby Ap. Now each
linear positive functional\, onC%(Q), can be represented by a positive Borel measyreuch that

Ap(F) :/Olr"*lf(r,x(r),u(r))dr = va (f),

(see P, 11]). Using these concepts, we can put the FOCH-(16) in its definite form. The positive linear functiona,
will be replaced by representing Borel measugethus by considering the cost functional, we seek a minimginneasure
v € MT(Q) (the space of all positive measures@hwhich defined by the functional

| :vg — va(fg) (24)

where
Va(f§) = va(t* fo),

defined over the set of positive Borel measuresqnvhich satisfy

Va(¢9) =A@, p € C?(B),
Ve(W) =0, WeDI(0), ji=1,2,...,n (25)
Vc{(es) :AQS, S= 1, ,L.

So we choose the nonclassical problex){(25) to replace the classical probleit¥-(16). One may conside2¢)-(25)
as a linear programming problem. We examine this problemdamext section.

4 Linear Programming

The set of all positive Borel measures@fsatisfying @4)-(25) is defined af). If one consider the spadd™ (Q) with
theweak* —topology, it can be seen fromlp] thatQ is compact. In the sense of this topology, the function& — R
defined by 24) is a linear and continuous functional on the compac€s¢hus attains its minimum oQ.

The linear programming (LP) problen24)-(25) consisting in minimizingvy (f§) on the set of measured of
M™(Q) described byZ5) is an infinite-dimensional LP, the underlying spadé& (Q) is not finite-dimensional and the
number of constraints2f) is not finite. So the LP probler@f)-(25) is an infinite-dimensional linear programming
problem. In this section we are going to approximate thisiitdidimensional LP by a finite-dimensional.

Let the set{@;i = 1,2,---} be countable set of functions whose linear combinationsiaifermly dense irC®(B),
remember that the functio8!,j = 1,2,...,nand6s,s=1,...,L defined respectively inl®) and @1), are special cases
of the first functionsp,i = 1,2,---.

Theorem 4.1.Consider the LP problem of minimizing, (f;) over the seQ(M1,M,L) of measures iM* (Q) satisfying

VG((RQ.):A(AJi:]-a"'aMla
Va(wkj)zoa k:]-a"'aM27j:17"'7n (26)
Va(es):Aes, S= 1, ,L.

If M1 — o0, My — o0 andL — oo then
Vo, mpy (fo) — Vag(fo)

Proof : (see [L3)).
The first stage of the approximation scheme has been suabigssimpleted. We have limited the number of constraints
in the original linear program, but the underlying sp&@i;,My,L) is not finite-dimensional. In fact now we have a
semi-infinite dimensional LP problem. It is possible, thoutp develop a finite dimensional LP whose solution can be
used to construct the optimal pait = (x*(.),u*(.)).

Suppose = (t,x,u) € Q. A unitary atomic measur&(z) € M*(Q), which is supported by the singleton get, can
be characterized by

52f =12, fec@), zeQ.

Now consider the following important theorem ( s&€]).
Theorem 4.2.The optimal measure in the s@{My, My, L) at which the functionaby — v4(f3) attains its minimum

has the form
Mi1+Ma+L

= Y %8F) (27)
k=1
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where the coefficients; > 0 andz; € Q are unknowns fok=1,--- ;M1 +My+L.
Thus by using?7), the LP probleni4)-(25) changes to the following nonlinear programming problem:

Min 52 ag f5(%) (28)
subject to
gl”"z“ PEZ)=4@ i=12..,M
1+M2+Lakwh(z;;) 0 h=12..M,j=12..n 29
KA1+M2+L _ ( )
SeMettarayz) =A6s  s=1,2,...,L
ak>o k=1,2,...M;+Ma+L
wherez; € Q.

Let w = {z,---,zv} be a countable approximately dense subsetQofA measurev* € M*(Q) as a good
approximation fow}, can be found such that

z

vt =% o 0(z), (30)

Py
[l
et

where the coefficients; are the same as in the optimal measejyén (27), andz € w,.k=1,2,...,N. (see f]).

By selectingz;;i = 1, ..., N for sufficiently largeN in w and considering30), then the nonlinear optimization problem
(28)-(29) can be approximated by the following LP problem:

Min z’J\‘:laj* fg(zj) (31)
subject to
hla,cq( j) = Atn i=1,2,...,M
1a kH( ) k:1,2,...,M2
e —a  s—12.L (32)

a>0

By the solution of the finite dimensional linear programmgmgblem @1)-(32) one can find the coefficients’ (j=

1,---,N), and using the method described 8}, the piecewise-constant optimal control functiaii.) can be obtained.
Finally from the following fractional dynamical system

{Xa (t) = g(tvx(;)vg*(g))v te [07 1] (33)

the optimal trajectory functior®(.) can be obtained.

5 Numerical Examples

In this section we solve some numerical examples by applyirgented method in sections 3 and 4. After obtaining the
optimal piecewise control functiaui (.), we used Matlab Software to solve fractional order diff¢éisdrequation 83). In
these examples the objective valliégor a = 1 and the optimal control functions(.) for some values ofr are shown.
Also by varying the values af we obtain different trajectory functiong(.). These examples demonstrate the efficiency
of measure theory technique for solving linear and nonliR€2CPs.

Example 1

Consider the following fractional optimal control probl¢see P9)):

1
Min| = 1/2/O (&(t) + U3(t)d(b),
(34)
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subject to

X (t) = —x(t) + u(t),
x(0) =1,
O<a<l

LetA=10,1],U = [-0.5,0.5], we have chosell; = 4,M, =0,L = 10.

By using presented method, the objective valuedos 1 is found ad* = 0.1943. The obtained piecewise continuous
control functions forr = 0.8,0.9, 1 are shown respectively in Figures 1-3. In Figures 4, thie $tenctionsx(.) are shown
fora =0.8,0.9,1.

Plot of u as a function of time

0 0.2 0.4 0.6 0.8 1
Time

Fig. 1. Approximate solution ofi(.) for o = 0.8 in Example 1.

Plot of u as a function of time

0.2 0.4 0.6 08 1

Fig. 2. Approximate solution ofi(.) for = 0.9 in Example 1.

Example 2

Consider the following FOCP (se&()):

Min| = /lez(t)d(t),
(35)
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Plot of u as a function of time

u(®

0.2 0.4 0.6 0.8 1
Time

Fig 3. Approximate solution ofi(.) for a = 1 in Example 1.

plot of x as a function of time

i i i i ]
0 0.2 0.4 0.6 0.8 1
time

Fig. 4. Approximate solution ok(.) for a = 0.8,0.9,1 in Example 1.

subject to
X9 (t) = u(t),
x(0) =0,x(1) = 0.5,
O<a <l

LetA=0,1],U = [0,1], we have chosell; =2,M, =8,L = 10.
The value of the objective function for = 1 is found ag* = 0.0359. In Figures 5 and 6 the optimal control functign)
for a = 1 and trajectory functions(.) for a = 0.8,0.9, 1 are shown, respectively.

Example 3

Consider a two-dimensional nonlinear FOCP as follows (36p:[

1
Min| = /o (x1(t)2 +%2(t)2)d(t),
(36)
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Plot of u as a function of time
T

0.5

u(t)

05 i i i i
0 0.2 0.4 0.6 0.8 1
Time

Fig. 5. Approximate solution ofi(.) for o = 1 in Example 2 .

0.9

2 aaqa
nonon
© "

0.8

0.7

0.6

0.5-

State

0.4

0.3

0.2-

0.1-

i i - i i
0 0.2 0.4 0.6 0.8 1
Time

Fig. 6. Approximate solution ok(.) for a = 0.8,0.9,1 in Example 2.

subject to

Xl (t) = Xz(t)7

X7 (t) = (108(t) + u(t)),
x1(0) = 0,x(1) = 0.1,
%2(0) = 0,%2(1) = 0.3,
O<a<l1

Let A=[0,1] x [0,1], U = [0,1], we have choseM; = 6, My = 8, L = 10. The objective value forr = 1 is found as
I* =0.0311. In Figures 7- 9, respectively we have shown the optimatrolu(.) for o = 1 and trajectory functions, (.)
andxy(.) fora =0.8,0.9,1.
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Plot of u as a function of time
15 T T T T

u(t)

0.5r 1

-05 L . . L
0 0.2 0.4 0.6 0.8 1

Time

Fig. 7. Approximate solution ofi(.) for a =1 in Example 3.

plot of x1 as a function of time

g 006
El

Fig. 8. Approximate solution ok (.) for a = 0.8,0.9,1 in Example 3.

plot of x2 as a function of time

0.9

2 aa
iono
P o ®

0.8

0.7

0.6

x2(t)

0.5

0.4

03f J/
02t ﬁ -

0.1r

time

Fig. 9. Approximate solution oky(.) for a = 0.8,0.9,1 in Example 3.
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Example 4

This example is linear time invariant fractional optimahtm| problem that can be found i2§] and stated as follows.
We are going to find the optimal pgi = (x*(.),u*(.)), which minimizes the quadratic performance index

1
=172 [ 0¢(0) +EO)d).

(37)
and satisfies:
X7 (t) = —x(t) +u(t),
x(0) =1,
X(1) = free,
O<a<l (38)

We examined the solution of this example for different valoéa. For this purposeq is taken between.Q and 1. We
need to mention that in this example, the final state is frethetransversality conditions are totally different. msider

this situation in linear programming proble®lj-(32), in the right-hand side of the firsfl; equations in32), where we
haveA@ = @(1) — @(0); i = 1,2,...M3, one needs to assungg(1)’s are also unknown variables. These variables must
be found from solving linear programming probleB1)-(32). As Example 1, we assumed= [0,1], U = [-0.5,0.5],

and we have chosevl; = 4, M, = 0, L = 10. The state functions for different valuesmfare shown in Figure 10. The
piecewise continuous control functions for soméa = 0.1, a = 0.3, a = 0.5) are shown respectively in Figures 11-13.
The state functions shown in Figure 10, compared by Figund26], show that the presented method, though simple and
straight forward, achieves good results.

Plot of x(t) as a function of time for different values of a=(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1
1

x(t)

time

Fig. 10. Approximate solution ok(.) in Example 4 for different values af (yellow: a = 0.1, blue:a = 0.2, greera= 0.3, reda =
0.4, dotted-bluea = 0.5, dashed-bluex = 0.6, solid-cyanor = 0.7, dashed-dotted-blue= 0.8, solid-blacka = 0.9, solid-
magentax = 1).
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Plot of u as a function of time

-0.051

-0.15¢

u()

-0.25¢

0 0.2 0.4 0.6 0.8 1
Time

Fig. 11 Approximate solution ofi(.) for a = 0.1 in Example 4.

Plot of u as a function of time
-0.05

—0.1F

u)
S
5

-0.351

—04}

-0.45 i i i i i
0 0.2 0.4 0.6 0.8 1

Time

Fig. 12. Approximate solution ofi(.) for a = 0.3 in Example 4.

Plot of u as a function of time
-0.05

-0.15

u()

-0.25

-0.3F

-0.351

-0.4 i i i i i
0 0.2 0.4 0.6 0.8 1

Time

Fig. 13 Approximate solution ofi(.) for a = 0.5 in Example 4.
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6 Conclusion

In this paper, a direct extension of measure theory apprtmsblve nonlinear fractional optimal control problems is
illustrated. By applying an embedding process and usingtbperties of positive Borel measure, functional analgsid
linear programming, we present a new and useful techniqusoleing FOCPs. The most important characteristic of the
proposed measure theory approach is its simplicity in dgaliith nonlinear FOCPs. Computer simulations for différen
examples show that the proposed method is easy, linear ssitifee-consuming.
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