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Abstract: This paper focuses on the solution of a three level large scale quadratic integer programming problem (TLLSQIPP) where
there are some or all of rough coefficients in the objective function and that has block angular structure of the constraints. An algorithm
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its effectiveness. Finally, a numerical illustrative example is given to clarify the main results developed in this paper.
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1 Introduction

Rough set theory has been demonstrated to be a proficient mathematical tool to incomplete knowledge. Pawlak [1]
has defined a new methodology in rough set. In this methodology, any ambiguous concept is developed by lower
approximations, upper approximations and the boundary region of a set.

Interval programming based on the interval analysis has been created as a helpful and basic method to deal with
classificatory analysis of ambiguous concepts; the rough interval is used to deal with partially vague or poorly
characterized parameters [2].

Interval method has two features. First, the results are in type of intervals. Second, the interval method doesn’t ignore
any part of solution region. Thus, the interval method givesus solution with high precision [3].

Multi-level programming (MLP) problem is a sequence of multiple optimization problems in which the constraint area
of one is decided by the solution of other decision makers. The sequence of the play is very important and the decision of
the upper-level limitations affects the decision of the lower-levels [4,5,6,7].

In large scale programming (LSP) problem, distributing thechoice space among several planning subunits. These
sub-units connect through a set of common constraints involving the choice variables of all the divisions. The remaining
constraints can be allocated to each subunit, with each constraint including only the choice variable of a single subunit
[8].

Quadratic programming (QP) is one of the most well-known models used in decision-making and in optimization
problems. QP problem goes for minimizing (maximizing) a quadratic objective function subject to a set of linear
constraints. If the coefficients of the objective function are exactly known crisp value, then these models can be solvedby
traditional algorithms, else interval method can be used toconvert rough nature to crisp [9].

Integer programming (IP) problems are optimization problems that minimize or maximize the objective function in
the limits of equality or inequality constraints and integer variables. More widely application of integer programming can
be used to appropriately describe the decision problems on the management and effective use of resources in engineering
technology, business administration and numerous other areas [10].
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Rough set theory, introduced by Pawlak [11], presented ambiguity, not by means of membership, but utilizing a
boundary region of a set. The theory of rough set defined the approximation of a discretionary subset of a universe by two
determinable or detectable subsets called lower and upper approximations.

Kryskiewice [12] utilized a rough set theory to incomplete has discovered many interesting applications. Tsumoto [13]
utilized the idea of lower and upper approximation in rough sets theory, knowledge covered up in information systems
may be unwound and developed in the form of decision rules.

Pal [14] see that the rough set approach seems to be of major significance to psychological sciences, particularly in the
fields of machine learning, decision analysis and expert systems. Xu et al. [15] transformed from random rough nature into
equivalent crisp model and introduced interactive method to get decision maker satisfying solution, using a random rough
simulation technique which can act with random rough objective functions and constraints, grouping with the genetic
algorithm.

Lu et al. [16] introduced the concept of rough interval to express dual uncertain information of many parameters
and the related solution method presented to solve rough interval fuzzy linear programming (LP) problems. Alolyan [17]
tackled LP problems with fuzzy parameters in the objective function and the constraints based on preference relations
between explored intervals.

Lin [18] tackled constrained optimization problems using geneticalgorithm with the rough set theory, which is known
as the rough penalty genetic algorithm (RPGA), with the intend to adequately accomplish powerful solutions and to
resolve constrained optimization problems.

Jana et al. [19] handled fuzzy rough multi-item economic production quantity (EPQ) model and developed constant
demand. Infinite production rate has adaptability and dependability consideration in production process, demand
dependent unit production cost and shortages under the limitations on capacity region, by geometric programming (GP)
technique tackled the problem.

Saad et al. [20] presented an algorithm for solving a three-level quadratic programming, where some or all of its
coefficients in the objective function are rough intervals.Omran et al. [21] presented an algorithm for solving a three level
fractional programming problem with rough coefficient in constraints.

Ma et al. [10] proposed a new branch and bound algorithm through a series of improvements on the traditional branch
and bound algorithm, which can be used to solve integer quadratic programming problems effectively and efficiently.
This algorithm employed a new linear relaxation and bound method and a rectangular deep bisection method. At the same
time, a rectangular reduction strategy is used to improve the approximation degree and speed up the convergence of the
algorithm.

This paper is organized as follows: Section 2 formulates themodel of a three level large scale quadratic integer
programming problem with rough interval coefficients in theobjective function. The theories used to transform rough
interval to crisp model are obtained in section 3. Section 4 discusses Taylor’s series transformation. Section 5 presents
a decomposition algorithm for a three level large scale linear programming problems and constraint method. Section
6 involves the concepts of Frank and Wolfe algorithm. An algorithm followed by a flowchart for solving the proposed
problem is suggested in Section 7 and Section 8. In addition,a numerical example is provided in Section 9 to clarify the
results. Finally, conclusion and future works are reportedin Section 10.

2 Problem Formulation and Solution Concept

A three level large scale quadratic integer programming problem with rough interval coefficients in the objective
function (TLLSQIPPRIC) may be formulated as follows:
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Wherex7, ...,xm solves

Subject to
x ∈ G =

{

x ∈ Rm×n |Ax ≤ b,x ≥ 0
}

. (4)

Where

G = {a01x1+ a02x2 + a0mxm ≤ b0,

d1x1 ≤ b1,

d2x2 ≤ b2,

dmxm ≤ bm,

x1, . . . ,xm ≥ 0and integer}.

In the above Problem (1)-(4), x j ∈ Rn
,( j = 1,2, ...,m)be a real vector variables,
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are m × m matrix of rough interval coefficients of the objective

function for the three levels,G is the large scale linear constraint set where,b = (b0, ...,bm)
T is (m + 1) vector,

A = m×mn is the coefficients constraints matrix, anda01, ...,a0m,d1, ...,dm are constants.

ThereforeFi : Rm → R ,(i = 1,2,3) be the first level, the second level, and the third level objective function,

respectively. Moreover, FLDM hasx1,x2 indicating the first decision level integer choice, SLDM andTLDM havex3,x4
andx5,x6 indicating the second and the third decision level integer choice, respectively.

To tackle Problem (1)-(4) and to deal with rough nature usingthe interval method to transform the rough coefficients in

the objective functions into crisp number presented in Section 3.

3 The Equivalent Crisp Model for TLLSQIPPRIC

To solve the large scale quadratic integer programming problem, where there are some or all of rough coefficients in the
objective function, directly using the problem base form without transformation is very complex. Valuable studies have
been introduced in the area of the large scale quadratic programming [9], which relied on indirect methods by dealing
with linear programs derived from the original programmingproblems, whose the solutions will be approximated to the
solution of the original problems without accuracy. Currently, the challenging task for academic research is to solve the
quadratic programming problems using direct method to demonstrate the effectiveness of the indirect methods.

Conversion of the proposed problem into upper and lower approximation is usually a hard work for many cases, but
transformation process needs the following definitions to be known:
Definition 1. [3]
Rough Interval (RI) can be considered as a qualitative valuefrom vague concept defined on a variablex in R.
Definition 2. [3]
The qualitative valueA is called a rough interval when one can assign two closed intervalsA∗ andA∗ on R to it where
A∗ ⊆ A∗

.

Definition 3. [3]
A∗ andA∗ are called the lower approximation interval (LAI) and the upper approximation interval (UAI) ofA, respectively.
Further,A is denoted byA = (A∗ andA∗ ).
Definition 4. [3]
Consider all of the corresponding linear programming with interval coefficients (LPIC) and LP of Problem (1)-(4):

1.The interval
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3.The optimal solution of each corresponding LPIC of Problem (1)-(4) which its optimal value belongs to
[

FL
∗ ,F

U
∗

]

(
[

F∗L
,F∗U

]

) is called a completely satisfactory (rather) solution of Problem (1)-(4).

Now, the equivalent problem of the first level by using interval method [3] can obtained by getting the surely optimal
range of Problem (1) and (4) by solving two large scale quadratic integer programming(LSQIP) as Follows [3]:
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While the possibly optimal range of Problem (1) and (4) can obtain by solving two LSQIPs as follows [3]:
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After using interval method [3] to convert Problem (1) and (4) for the first level from rough nature to crisp that resulted
in four LSQIP problems. These steps will be repeated for second and third level, so the problem of TLLSQIPPRIC
(1)-(4) converted into twelve LSQIP with four problems at each level. Then each level has his\her own optimal solution
using Taylor’s series and decomposition algorithm together with constraint method.

4 Taylor’s Series Approach [9]

To solve LSQIP problem using decomposition algorithm very complex problem, Taylor series can overcome this problem
by obtaining polynomial objective functions which are equivalent to quadratic objective functions.

Hi(x)∼= Fi(x
∗
j )+

m

∑
j=1

(x j − x∗j)
∂ fi(x∗j )

∂x j
,(i = 1,2,3). (9)

So the equivalent large scale linear integer programming (LSLIP) problem can be written as:

Max Hi (x) ,(i = 1,2,3), (10)

Subject to
x ∈ G.

5 A Decomposition Algorithm for Three Level Large Scale Linear Integer Programming
(TLLSLIP) Problem

To solve the TLLSLIP problem based on the decomposition algorithm [9] and constraint method. The FLDM gets the
optimal solution using decomposition algorithm by breaking the large scale problem into n-sub problems that can be
solved directly. Then by inserting the FLDM decision variable to the SLDM for him/her to seek the optimal solution
using decomposition method. Finally, the TLDM does the sameaction till he/she obtains the optimal solution of his
problem.

6 Frank and Wolfe algorithm [22]

This method deals with the following problem in which all constraints are linear:

Max Z = f (X) , (11)
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Subject to
AX ≤ b,X ≥ 0.

Let X kbe the feasible trial point at iterationk.the objective functionf (X)can be expanded in the neighborhood of
X kusing Taylor series. This gives

f (X)∼= f
(

X k
)

+ ∂ f
(

X k
)(

X −X k
)

=
(

f
(

X k
)

− ∂ f
(

X k
)

X k
)

+ ∂ f
(

X k
)

X . (12)

The procedure calls for determining a feasible pointX = X∗ such thatf (X) is maximized subject to the linear constraints
of the problem. Becausef (X k)− ∂ f (X k)X k is a constant, the problem for determiningX∗ reduces for solving the linear
program:

Max wk(X) = ∂ f (X k)X , (13)

Subject to
AX ≤ b,X ≥ 0.

Given wk is constructed from the gradient off (X) at X k, an improved solution point can be secured if and only if
wk (X∗)≻ wk

(

X k
)

. From Taylor expansion, the condition does not thatf (X∗)≻ f
(

X k
)

unlessX∗ is in the neighborhood
of X k. However, givenwk (X∗) ≻ wk

(

X k
)

, there must exist a pointX k+1 on the line segment
(

X k
,X∗

)

such that
f
(

X k+1
)

≻ f
(

X k
)

. The objective is to determineX k+1. Define

X k+1 = (1− r)X k + rX∗ = X k + r
(

X∗−X k
)

,0≺ r ≤ 1. (14)

This means thatX k+1 is a linear combination ofX k andX∗. BecauseX k andX∗ are two feasible point in a convex solution
space,X k+1 is also feasible. The parameterr represents the step size.
The pointX k+1 is determined such thatf (X) is maximized. BecauseX k+1 is a function of r only,X k+1 is determined by
maximizing

h(r) = f
(

X k + r
(

X∗−X k
))

. (15)

The procedure is repeated until, at thekth iteration,wk (X∗)≤wk
(

X k
)

at this point , no further improvements are possible,
and process terminates withX k as the best solution point.

7 An Algorithm for Solving TLLSQIPPRIC

A solution algorithm to solve TLLSQIPPRIC is described in a series of steps. This algorithm uses interval method [3] to
convert the interval rough parameters into real numbers to overcome the complexity nature of the proposed problem and
uses the constraint method of the three level optimization to facility the large scale nature. Inserting the variables value of
every higher level decision maker to his lower level decision maker break the difficulty faces the problem.

The suggested algorithm can be summarized in the following manner.

Step 1.The FLDM converts Problem (1) and (4) into Problems (5)-(8) by using interval method [3], which resulted in
four LSQIP problems.

Step 2.Apply Taylor’s series approach to obtain polynomial objective function in Formula (9), which results in four
LSLIP problems.

Step 3.Use the decomposition algorithm [9] to solve the four LSLIP problems by breaking the large scaleproblem into
n-sub problems that can be solved directly, then the optimalsolution is reached.

Step 4.If the solution of the problem is integer optimal solution, go to Step 6, otherwise, go to Step 5.

Step 5.Using branch and bound method [10] to find integer optimal solution.
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Step 6. If the SLDM obtains his optimal solution, then go to Step 8, otherwise
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U
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]

,
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xL
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U
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]

,

[

xL
2,x

U
2

]

must be assigned to the SLDM constraints.

Step 7.The SLDM converts Problem (2) and (4) into Problems (5)-(8) by using interval method [3], go to Step 2.

Step 8. If the TLDM obtains his optimal solution, then go to Step 10, otherwise
[
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U
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]
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U
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]

,

[
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[
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]
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U
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]

must be assigned to the TLDM constraints.

Step 9.The TLDM converts Problem (3) and (4) into Problem (5)-(8) byusing interval method [3], go to Step 2.

Step10. Set the optimal solution of the TLDM
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[
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[
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3
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[
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[
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4
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,

[
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U
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,

[

xL
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U
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]

,

[

xL
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U
5

]

,

[

xL
6,x

U
6

]

,

[

xL
6,x

U
6

]

as the compromised solution of the TLLSQIPPRIC, then stop.

8 A Flowchart for Solving TLLSQIPPRIC

A flowchart to explain the suggested algorithm is described as follows:

Fig. 1: flowchart to Explain The Suggested Algorithm.

Remark1. For TLLSQIPPRIC, the Lingo package is suggested asa basic solution tool.
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9 Numerical Example

To demonstrate the solution method for TLLSQIPPRIC in the objective, let us consider the following numerical
example:

[FLDM]
Max
x1,x2

F1 (x) = Max
x1,x2

4([4,6], [3,7])x1− x2
1+4([2,4], [1,4])x2− x2

2+2x4+ x5+ x6,

Where x3,x4,x5,x6 solves
[SLDM]

Max
x3,x4

F2(x) = Max
x3,x4

x2
1+3x2+6([2,4], [1,6])x3− x2

3+([0,3], [0,4])x4+ x6,

Where x5,x6 solves
[TLDM]

Max
x5,x6

F3 (x) = Max
x5,x6

6x1+([1,2], [1,3])x2+4([3,4], [2,5])x5− x2
5+2([5,7], [4,8])x6− x2

6,

Subject to
x1+ x2+ x3+ x4+ x5+ x6 ≤ 50,
2x1+ x2 ≤ 40,
5x3+ x4 ≤ 12,
x5+ x6 ≤ 20,
x5+5x6 ≤ 80,
x1,x2,x3,x4,x5,x6 ≥ 0,x1,x2,x3,x4,x5,x6 ≥ 0,and integers.

FLDM problem using Taylor’s series and decomposition algorithms

The equivalent problem of the first level programming problem with rough coefficients in objective function by using
interval method can be written as:-

Table 1: The Equivalent Problem of The FLDM using Interval Method.
Upper Lower

P1:Max12x1 −x2
1+4x2−x2

2+2x4+x5+x6
Subject to
x1+x2+x3+x4+x5+x6 ≤ 50,
2x1+x2 ≤ 40,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x1,x2,x3,x4,x5,x6 ≥ 0.

P3:Max16x1−x2
1+8x2−x2

2+2x4+x5+x6
Subject to
x1+x2+x3+x4+x5+x6 ≤ 50,
2x1+x2 ≤ 40,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x1,x2,x3,x4,x5,x6 ≥ 0.

P2:Max28x1 −x2
1+16x2−x2

2+2x4+x5+x6
Subject to
x1+x2+x3+x4+x5+x6 ≤ 50,
2x1+x2 ≤ 40,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x1,x2,x3,x4,x5,x6 ≥ 0.

P4:Max24x1−x2
1+16x2−x2

2+2x4+x5+x6
Subject to
x1+x2+x3+x4+x5+x6 ≤ 50,
2x1+x2 ≤ 40,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x1,x2,x3,x4,x5,x6 ≥ 0.
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Then, the objective functions of the FLDM in Table (1) are transformed by using 1st order Taylor polynomial series to
linear functions as follows:

Table 2: Transformation of The FLDM Objective Functions to Linear Functions.
Upper Lower

IFp1(0,20,0,10,10,0) =−290, then
P1:Max12x1 −36x2+2x4+x5+x6+400
Subject to
x ∈ G.

IFp3(0,21,0,5,10,0) =−253, then
P3:Max16x1−34x2+2x4+x5+x6+441
Subject to
x ∈ G.

IFp2(0,25,0,5,15,0) =−200, then
P2:Max28x1 −34x2+2x4+x5+x6+625
Subject to
x ∈ G.

IFp4(0,22,0,8,15,0) =−101, then
P4:Max24x1−28x2+2x4+x5+x6+484
Subject to
x ∈ G.

After that, apply the decomposition algorithm on the FLDM tosolve linear large scale integer programming problem
in Table (2) and get the following results:

Table 3: Results of Applying The decomposition Algorithm on Linear Functions of The FLDM.
Upper Lower

FL
1 = 682, where

(

xF
1 , xF

2 , xF
3 ,xF

4 , xF
5 , xF

6

)

= (20,0,0,12,18,0).
FL

1=803, where
(

xF
1 , xF

2 , xF
3 ,xF

4 , xF
5 , xF

6

)

= (20,0,0,12,18,0).

FU
1 =1227, where

(

xF
1 , xF

2 , xF
3 ,xF

4 , xF
5 , xF

6

)

=
(20,0,0,12,18,0).

FU
1 =1006, where

(

xF
1 , xF

2 , xF
3 ,xF

4 , xF
5 , xF

6

)

= (20,0,0,12,18,0).

SLDM problem using Taylor’s series and decomposition algorithms
Now setxF

1 = ([20,20], [20,20])=20 andxF
2 = ([0,0], [0,0]) = 0 to the SLDM constraints. Then, the equivalent problem

of the second level programming problem with rough intervalcoefficients in objective function by using interval method
can be written as:

Table 4: The Equivalent Problem of The SLDM using Interval Method.
Upper Lower

P1:Max6x3−x2
3+x6+400

Subject to
x3+x4+x5+x6 ≤ 30,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x3,x4,x5,x6 ≥ 0.

P3:Max12x3−x2
3+x6+400

Subject to
x3+x4+x5+x6 ≤ 30,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x3,x4,x5,x6 ≥ 0.

P2:Max36x3 −x2
3+4x4+x6+400

Subject to
x3+x4+x5+x6 ≤ 30,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x3,x4,x5,x6 ≥ 0.

P4:Max24x3−x2
3+3x4+x6+400

Subject to
x3+x4+x5+x6 ≤ 30,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x3,x4,x5,x6 ≥ 0.
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Then, do the same action on the SLDM and get the following results:

Table 5: Results of Applying The decomposition Algorithm on Linear Functions of The SLDM.
Upper Lower

FL
2 = 426.6, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2.4,0,0,16).

Apply branch and bound algorithm to get integer optimal
solution.

So,FL
2=425, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2,0,0,16).

FL
2=441, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2.4,0,0,16).

Apply branch and bound algorithm to get integer optimal
solution.

So, FL
2=437, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2,0,0,16).

FU
2 =503.4, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2.4,2,0,16).

Apply branch and bound algorithm to get integer optimal
solution.

So,F
U
2 =497, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2,2,0,16).

FU
2 =469.8, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2.4,0,0,16).

Apply branch and bound algorithm to get integer optimal
solution.

So, FU
2 =465, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2,2,0,16).

TLDM problem using Taylor’s series and decomposition algorithms
Now setxF

1 = ([20,20], [20,20]) = 20,xF
2 = ([0,0], [0,0]) = 0,xS

3 = ([2,2], [2,2]) = 2 andxF
4 = ([0,2], [0,2]) to the TLDM

constraints. Then, the equivalent problem of the third level programming problem with rough interval coefficients in
objective function by using interval method can be written as:

Table 6: The Equivalent Problem of The TLDM using Interval Method.
Upper Lower

P1:Max8x5−x2
5+8x6−x2

6+120
Subject to
x5+x6 ≤ 28,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x5,x6 ≥ 0.

P3:Max12x5−x2
5+10x6−x2

6+120
Subject to
x5+x6 ≤ 28,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x5,x6 ≥ 0.

P2:Max20x5 −x2
5+16x6−x2

6+120
Subject to
x5+x6 ≤ 26,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x5,x6 ≥ 0.

P4:Max16x5−x2
5+14x6−x2

6+120
Subject to
x5+x6 ≤ 26,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x5,x6 ≥ 0.

Then, do the same action on the TLDM and get the following results:

Table 7: Results of Applying The decomposition Algorithm on Linear Functions of The TLDM.
Upper Lower

FL
3 = 250, where

(

xT
5 , xT

6

)

= (20,0).
FL

3=337, where
(

xT
5 , xT

6

)

= (20,0).

FU
3 =506,where

(

xT
5 , xT

6

)

= (20,0).
FU

3 =426, where
(

xT
5 , xT

6

)

= (20,0).
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FLDM problem using frank and Wolfe algorithm combined with d ecomposition algorithm

apply Frank and Wolfe algorithm combined with decomposition algorithm on the FLDM to solve quadratic large scale
integer programming problem in Table (1) with direct steps and get the following results:

Table 8: Results of Applying Frank and Wolfe Algorithm Combined withDecomposition Algorithm on The FLDM.
Upper Lower

FL
1 = 84, where

(

xF
1 , xF

2 , xF
3 ,xF

4 , xF
5 , xF

6

)

= (6,2,0,12,10,10).
FL

1=124, where
(

xF
1 , xF

2 , xF
3 ,xF

4 , xF
5 , xF

6

)

= (8,4,0,12,10,10).

FU
1 =300.5, where

(

xF
1 , xF

2 , xF
3 ,xF

4 , xF
5 , xF

6

)

= (13.5,7.5,0,12,8.5,8.5).
Apply branch and bound algorithm to get integer optimal
solution.
So,FU

1 =300, where
(

xF
1 , xF

2 , xF
3 ,xF

4 , xF
5 , xF

6

)

= (13,7,0,12,8,10).

FU
1 =250.5, where

(

xF
1 , xF

2 , xF
3 ,xF

4 , xF
5 , xF

6

)

= (11.5,7.5,0,12,9.5,9.5).
Apply branch and bound algorithm to get integer optimal
solution.
So, FU

1 =250, where
(

xF
1 , xF

2 , xF
3 ,xF

4 , xF
5 , xF

6

)

= (11,7,0,12,9,11).

SLDM problem using frank and Wolfe algorithm combined with d ecomposition algorithm Now set
xF

1 = ([8,11]), [6,13]), andxF
2 = ([4,7]), [2,7]) to the SLDM constraints. Then, the equivalent problem of thesecond level

programming problem with rough interval coefficients in objective function by using interval method can be written as:

Table 9: The Equivalent Problem of The SLDM using Interval Method.
Upper Lower

P1:Max6x3−x2
3+x6+42

Subject to
x3+x4+x5+x6 ≤ 42,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x3,x4,x5,x6 ≥ 0.

P3:Max12x3−x2
3+x6+76

Subject to
x3+x4+x5+x6 ≤ 38,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x3,x4,x5,x6 ≥ 0.

P2:Max36x3 −x2
3+4x4+x6+190

Subject to
x3+x4+x5+x6 ≤ 30,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x3,x4,x5,x6 ≥ 0.

P4:Max24x3−x2
3+3x4+x6+142

Subject to
x3+x4+x5+x6 ≤ 32,
5x3+x4 ≤ 12,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x3,x4,x5,x6 ≥ 0.

After that, apply Frank and Wolfe algorithm combined with decomposition algorithm on the SLDM to solve quadratic
large scale integer programming problem in Table (9) with direct steps and get the following results:
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Table 10: Results of Applying Frank and Wolfe Algorithm Combined withDecomposition Algorithm on The SLDM.
Upper Lower

FL
2 = 66.64, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2.4,0,0,16).

Apply branch and bound algorithm to get integer optimal
solution.

So,FL
2=66, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2,0,0,16).

FL
2=115.04, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2.4,0,0,16).

Apply branch and bound algorithm to get integer optimal
solution.

So,FL
2=112, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2,0,0,16).

FU
2 =286.64, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2.4,0,0,16).

Apply branch and bound algorithm to get integer optimal
solution.

So,F
U
2 =282, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2,2,0,16).

FU
2 =209.84,where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2.4,0,0,16).

Apply branch and bound algorithm to get integer optimal
solution.

So, FU
2 =208, where

(

xS
3 ,x

S
4, xS

5 , xS
6

)

= (2,2,0,16).

TLDM problem using frank and Wolfe algorithm combined with d ecomposition algorithm
Now setxF

1 = ([8,11]), [6,13]),xF
2 = ([4,7], [2,7]),xS

3 = ([2,2], [2,2]) = 2andxF
4 = ([0,2], [0,2]) to the TLDM constraints.

Then, the equivalent problem of the third level programmingproblem with rough interval coefficients in objective function
by using interval method can be written as:

Table 11: The Equivalent Problem of The TLDM using Interval Method.
Upper Lower

P1:Max8x5−x2
5+8x6−x2

6+38
Subject to
x5+x6 ≤ 40,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x5,x6 ≥ 0.

P3:Max12x5−x2
5+10x6−x2

6+52
Subject to
x5+x6 ≤ 36,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x5,x6 ≥ 0.

P2:Max20x5 −x2
5+16x6−x2

6+99
Subject to
x5+x6 ≤ 26,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x5,x6 ≥ 0.

P4:Max16x5−x2
5+14x6−x2

6+80
Subject to
x5+x6 ≤ 28,
x5+x6 ≤ 20,
x5+5x6 ≤ 80,
x5,x6 ≥ 0.

After that, apply Frank and Wolfe algorithm combined with decomposition algorithm on the TLDM to solve quadratic
large scale integer programming problem in Table (11) with direct steps and get the following results:
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Table 12: Results of Applying Frank and Wolfe Algorithm Combined withDecomposition Algorithm on The TLDM.
Upper Lower

FL
3 = 70, where

(

xT
5 , xT

6

)

= (4,4).
FL

3=113, where
(

xT
5 , xT

6

)

= (6,5).

FU
3 =263, where

(

xT
5 , xT

6

)

= (10,8).
FU

3 =193, where
(

xT
5 , xT

6

)

= (8,7).

Finally, getting the following results

Level
The possibly The surely The possibly using The surely using

using Taylor using Taylor Frank and Wolfe Frank and Wolfe

FLDM [664,1209] [785, 988] [48, 280] [95,225]

SLDM [409,477] [421, 451] [54, 274] [101,199]

TLDM [250, 506] [337,426] [70, 263] [113,193]

The proposed algorithm produces an approximated, in accurate, but fast solutions. These solutions can be used in fields
such as agricultural decisions.

The Frank and Wolfe algorithm introduces accurate but slow solutions. These solutions can serve in fields such as medical
and financial decisions.

10 Conclusion and Future Points

This paper suggested an algorithm to solve TLLSQIPPRIC. Thesuggested algorithm has used interval method at each
level to define a crisp model, then all decision makers attempt to optimize their problems separately as a large scale
quadratic programming using Dantzig and Wolfe decomposition method and Taylor’s series together with constraint
method. Then, compared the proposed algorithm to Frank and Wolfe algorithm to demonstrate its effectiveness

The solution algorithm has a few features:

1.It combines interval method, Taylor’s series, decomposition algorithm, branch and bound and constraint method to
obtain a compromised solution for the TLLSQIPPRIC.

2.The results are in the form of intervals and the interval method doesn’t ignore any part of solution area.
3.It can be efficiently coded.

Finally, a numerical example was given to clarify the main results developed in this paper.

However, there are many other aspects, which should by explored and studied in the area of a large scale multi-level
optimization such as:

1.Large scale multi-level fractional programming problemwith rough interval parameters in the objective functions and
in the constraints and with integrality conditions.

2.Large scale multi-level fractional programming problemwith rough fuzzy number in the objective functions and in
the constraints and with integrality conditions.

3.Large scale multi-level quadratic programming problem with rough fuzzy number in the objective functions and in
the constraints and with integrality conditions.
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