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Abstract: We propose a new family from Burr XII distribution, calledT-Burr family of distributions based on theT-R{Y}
framework. For this family, we consider the quantile functions of three well-known distributions, namely, Lomax, logistic and
Weibull, and further developed three sub-familiesT-Burr{Lomax}, T-Burr{Log-logistic} andT-Burr{Weibull}. Some mathematical
properties such as quantile function, mode, Shannon entropy, moments, and mean deviations, ofT-R{Y} family are obtained. One
special model, namely, Weibull-Burr{Lomax} from T-Burr{Lomax} family is considered and its properties are obtained. This model
is flexible and can produce the shapes of the density such as left-skewed, right-skewed, symmetrical, J, and reversed-J,and can have
constant, increasing and decreasing hazard rate shapes. The usefulness of this model is demonstrated through applications to censored
and complete data sets.

Keywords: Burr XII distribution, generalization, quantile function, T-X family, T-R{Y} family.

The Burr family of distributions (due to Burr, 1942) is a well-recognized family that contains twelve different
functional forms. Among these forms, the Burr XII (or simplyBurr) model is very popular and has wide applications in
the fields of reliability, actuarial science, forestry, ecotoxiology, and survival analysis, among others.

The art of generalizing distributions is an old practice in which location, scale, shape, or inequality parameter(s) are
inducted to the parent (or baseline) distributions. The induction of parameter(s) increases flexibility in terms of tail
properties, and also improves goodness-of-fit of the proposed distribution. The modern parameter induction technique
suggests inducting shape parameter(s) into the cumulativedistribution function (CDF) or survival function (SF) of the
baseline distribution. Azzalini (1985), Marshall and Olkin (1997), Gupta et al. (1998), and Zografos and Balakrishnan
(2009) first started single shape parameter induction to thebaseline distribution. Later, two- and three- parameters
induction was proposed by Eugene et al. (2002), Cordeiro andde-Castro (2011), and Alexander et al. (2012) by
introducing beta-G, Kumaraswamy-G, and McDonald-G classes, which have received wide recognition in statistical
literature. In their approach, the properties of two distributions are mixed together for better exploration of the skewness
and tail properties, and to enhance the goodness-of-fit of the distribution.

A rather more generalized approach of parameter induction was pioneered by Alzaatreh et al. (2013), by defining the
transformed-transformer(T-X)technique. Letr(t) be the probability density function (PDF) of a random variableT ∈ [a,b]
for −∞ ≤ a< b< ∞, and letF(x) be the CDF of a random variableX such that the transformationW(·) : [0,1]−→ [a,b]
satisfies the following conditions: (i)W(·) is differentiable and monotonically non-decreasing, and(ii) W(0) → a and
W(1)→ b.

Alzaatreh et al. (2013) defined the CDF of theT-X family of distributions as

G(x) =
∫ W[F(x)]

a
r(t)dt. (1)
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If T ∈ (0,∞), then,X is a continuous random variable andW[F(x)] =− log[1−F(x)]. Then, the PDF corresponds to
Eq. (1) is given by

g(x) =
f (x)

1−F(x)
r
(

− log
[

1−F(x)
]

)

= hf (x) r
(

H f (x)
)

, (2)

wherehf (x) =
f (x)

1−F(x) andH f (x) =− log[1−F(x)] are the hazard and cumulative hazard rate functions corresponding to

any baseline PDFf (x), respectively.
Aljarrah et al. (2014) proposed the functionW(F(x)) as the quantile function of a random variableY and defined

theT-R{Y} family. Alzaatreh et al. (2014), Alzaatreh et al. (2015), and Almheidat et al. (2015) proposed and studiedT-
normal{Y}, T-Gamma{Y}, andT-Weibull{Y} families of distributions, respectively. The beauty of this approach is that it
allows us to study the simultaneous effect of the parameters(mostly shape parameters) of the three models at a time, and
in this way, most of the data characteristics are captured. This method allow us to enhance the flexibility of the proposed
model and provide better goodness-of-fits.

In this article, our objective is to propose theT-Burr family of distributions by using theT-R{Y} approach pioneered
by Aljarrah et al. (2014).

A random variableX is said to have a two-parameter Burr XII distribution if its CDF and PDF are, respectively, given
by

Πc,k(x) = 1− (1+ xc)−k (3)

and
πc,k(x) = ckxc−1 (1+ xc)−(k+1) , x> 0, (4)

wherec > 0 andk > 0 are both shape parameters. Henceforth, a random variable having PDF (4) is denoted byX ∼

Burr(c,k). The closed-form of the Burr CDF and SF ensure that the properties of the Burr distribution can be explored
easily for censored and non-censored cases. In literature,some generalizations of the Burr distribution are reportedviz.
the beta-Burr XII distribution by Paranaiba et al. (2011), the Marshall-Olkin extended Burr XII distribution by Al-Saiari
et al. (2014), the Kumaraswamy-Burr XII distribution by Paranaiba et al. (2013), the McDonald-Burr XII distribution by
Gomes et al. (2015), odd Burr III by Jamal et al. (2017), and generalized Burr-G by Nasir et al. (2017).

The paper is outlined as follows: In Section 2, we define the generalized family of Burr distribution and three associated
generalized families from it viz.T-Burr{Lomax}, T-Burr{Log-logistic}, andT-Burr{Weibull}. In Section 3, we give
some general properties of theT-Burr{Y} family of distributions including the modes, moments, Shannon entropy, and
mean deviations. In Section 4, three special sub-models, namely, Gamma-Burr{log-logistic}, Dagum-Burr{Weibull}, and
Weibull-Burr{Lomax} are considered. Some properties of Weibull-Burr{Lomax} are discussed in detail. In Section 5,
a simulation study is performed to assess the performance ofthe method of maximum likelihood estimation (MML) of
Weibull-Burr{Lomax} distribution. In Section 6, two applications of the Weibull-Burr{Lomax} are presented for real-life
data sets. In Section 7, we conclude the paper.

1 The proposed family

Let T, R, andY be three random variables with their CDFFT(x) = P(T ≤ x), FR(x) = P(R≤ x), andFY(x) = P(Y ≤ x).
The quantile functions of these three CDFs areQT(u), QR(u), and QY(u), where the quantile function is defined as
QZ(u) = inf{z : FZ(z)≥ u}, 0< u< 1. The densities ofT, R, andY are denoted byfT(x), fR(x), and fY(x), respectively.
We assume the random variablesT ∈ (a,b) andY ∈ (c,d), for −∞ ≤ a < b ≤ ∞ and−∞ ≤ c < d ≤ ∞. Aljarrah et al.
(2014) (see also Alzaatreh et al., 2014) presented the CDF oftheT-R{Y} family as follows:

FX(x) =
∫ QY(FR(x))

a
fT(t)dt = FT

(

QY
(

FR(x)
)

)

. (5)

The PDF and HRF that correspond to Eq. (5) are, respectively, given by

fX(x) = fR(x)×
fT
(

QY
(

FR(x)
)

)

fY
(

QY
(

FR(x)
)

)

and

hX(x) = hR(x)×
hT

(

QY
(

FR(x)
)

)

hY

(

QY
(

FR(x)
)

) .
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Table 1: Quantile functions for differentY distributions.
S.No Y QY(u)

1. Lomax β
[

(1−u)−
1
α −1

]

2. Weibull
[

−α−1 ln(1−u)
]

1
β

3. Log-Logistic α
[

u−1−1
]− 1

β

Let the random variableR follow the Burr distribution given in Eq. (3), then Eq. (5) gives the CDF ofT-Burr{Y}
family as

FX(x) =
∫ QY(1−(1+xc)−k)

a
fT(t)dt = FT(QY(1− (1+ xc)−k)). (6)

The PDF corresponding to Eq. (6) is given by

fX(x) = ckxc−1 (1+ xc)−k−1
fT
(

QY(1− (1+ xc)−k)
)

fY
(

QY(1− (1+ xc)−k)
) ,

which can be written as

fX(x) = burr(c,k)
fT (QY(Burr(c,k)))
fY (QY(Burr(c,k)))

, (7)

where burr(c,k) and Burr(c,k) are the PDF and CDF of the Burr random variable, respectively. Henceforth, the family of
distributions given in Eq. (7) is called theT-Burr{Y} family and is denoted byT-Burr{Y}. The PDF in Eq. (7) is clearly
a generalization of Burr distribution.

Many generalizations of the Burr distributions can be considered as members ofT-Burr{Y} family. When
T ∼ Beta(a,b) andY ∼ Uniform(0,1), theT-Burr{Y} reduces to the beta-Burr XII distribution (Paranaiba et al., 2011).
When T ∼ Kumaraswamy(a,b) and Y ∼ uniform(0,1), the T-Burr{Y} reduces to the Kumaraswamy-Burr XII
distribution (Paranaiba et al., 2013). WhenT ∼ McDonald(α,β ,γ) andY ∼ Uniform(0,1), theT-Burr{Y} reduces to the
McDonald Burr XII distribution (Gomes et al., 2015). Table 1gives three quantile functions of popular distributions,
which will be used to generateT-Burr{Y} sub-families in the following subsections.

Table1 gives the quantile functions of well-known distributions.We can generate different generalized Burr families
of T-Burr{Y} by using these quantile functions to Eq. (7).

Remark.If X follows theT-Burr{Y} family of distributions given by (6), then we have the following:

(i) X
d
=

{

[

1−FY(T)
]− 1

k −1

}

1
c
.

(ii) QX(u) =

{

[

1−FY
(

QT(u)
)]−

1
k −1

}

1
c
.

(iii) if Y
d
= Burr(c,k), thenX

d
= T.

1.1 T-Burr{Lomax} family of distributions

By using,QY, the quantile function of the Lomax distribution in Table 1,theFX(x) in Eq. (7) can be written as

FX(x) = FT

{

β
{

(1+ xc)
k
α −1

}}

. (8)

Whenα = 1, the CDF in Eq. (8) becomes

FX(x) = FT

{

β
{

(1+ xc)k−1
}}

. (9)

The PDF corresponding to Eq. (9) is given by

fX(x) = β burr(c,−k) fT
{

β
{

(1+ xc)k−1
}}

,

whereburr(c,−k) = ckxc−1(1+xc)k−1
.
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1.2 T-Burr{Log-Logistic} family of distributions

By using,QY, the quantile function of the Log-logistic distribution inTable 1, theFX(x) in Eq. (7) is given by

FX(x) = FT

{

α
[

(1+ xc)k−1
]

1
β
}

. (10)

The PDF corresponding to Eq. (10) is given by

fX(x) =
α
β

burr(c,k)
[

(1+ xc)k−1
]

1
β −1

fT

{

α
[

(1+ xc)k−1
]

1
β
}

.

Whenβ = 1, then theT-Burr{log-logistic} distribution reduces toT-Burr{Lomax} distribution.

1.3 T-Burr{Weibull} family of distributions

By using,QY, the quantile function of the Weibull distribution in Table1, theFX(x) in Eq. (7) is given by

FX(x) = FT

{

[

k
α

ln(1+ xc)

]
1
β
}

. (11)

Whenα = 1 the CDF in (11) becomes

FX(x) = FT

{

[k ln(1+ xc)]
1
β
}

. (12)

The PDF corresponding to Eq. (12) is given by

fX(x) =
ckxc−1

β (1+ xc)
[k ln(1+ xc)]

1
β −1

fT
{

[k ln(1+ xc)]
1
β
}

. (13)

2 Some properties of the T-Burr{Y} family of distributions

In this section, some general properties of theT-Burr {Y} family of distributions are provided including the modes,
moments, Shannon entropy, and mean deviations.

2.1 Mode

The mode(s) ofT-Burr{Y} family can be obtained by finding the solution to the equation:

x= (c−1)

[

c(k+1)xc−1

1+ xc −Ψ
[

Q′
Y [ fB(x)]

]

−Ψ { fT [QY [ fB(x)]]}

]

, (14)

whereΨ ( f ) = f ′/ f . The result in (14) can be proved by setting the derivative of the PDF in Eq. (7) equal to zero.

2.2 Moments

On the basis of Remark 1 (i), we have the rth moment ofT-Burr{Y} is

E(Xr) = E

[

{1−FY(T)}
− 1

k −1
]

r
c
.

Using generalized binomial theorem, we have(x+ y)r = ∑∞
j=0

(

r
j

)

xr− j y j (|x|> |y|), we obtain

E(Xr) =
∞

∑
j=0

(

r
c
j

)

(−1) j
E{1−FY(T)}

−
(r− j)

k . (15)
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The expression (15) leads to the rth moments ofT-Burr{Lomax}, T-Burr{Log-logistic}, and T-Burr{Weibull}
distributions as follows:

E(Xr) =
∞

∑
j=0

(

r
c
j

)

(−1) j
E

{

(

1+
T
β

)
1
k (r− j)

}

, (16)

E(Xr) =
∞

∑
j=0

(

r
c
j

)

(−1) j E







(

1+

(

T
β

)β
)

1
k (r− j)







(17)

and

E(Xr) =
∞

∑
j=0

(

r
c
j

)

(−1) j
E

{

exp

[

1
k
(r − j)Tβ

]}

. (18)

2.3 Shannon entropy

The entropy of a random variableX is a measure of the variation of uncertainty. Entropy has many applications in the
fields such as physics, chemistry, engineering, and economics among others. The Shannon entropy of a continuous random
variable was introduced by Shannon in 1948.

From Theorem 2 of Aljarrah et al. (2014), the Shannon entropyof T-Burr {Y} is given by

ηx = ηT +E(log fY(T))+E
(

logQ′
Burr [FY(T)]

)

, (19)

whereQ′
Burr =

1
ck

[

(1−λ )−
1
k −1

]
1−c

c
(1−λ )−

k+1
k for all λ ε (0,1) is the derivative of the quantile function of the Burr

distribution.
From Eq. (19), the Shannon entropy forT-Burr{Lomax}, T-Burr{Log-logistic}, andT-Burr{Weibull distributions,

respectively, is given by

ηx = ηT + log

(

1
β ck

)

+(1− c)E(logX)+

(

1+
1
k

)

E

[

log

(

1+
T
β

)]

, (20)

ηx = (2−β )ηT + log

(

β
αβ ck

)

+(1− c)E(logX)+

(

1
k
−1

)

E

[

log

(

1+

(

T
α

)β
)]

(21)

and

ηx = (2−β )ηT + log

(

β
ck

)

+
1
k
E

(

Tβ
)

+(1− c)E(logX) . (22)

2.4 Mean deviation

The mean deviations from the mean and median are defined as

δ1 = 2µF(µ)−2Ic(µ); δ2 = µ −2Ic(µ), (23)

whereFX is given by Eq. (6). The meanµ can be obtained from (15) with r = 1. The median can be obtained from Remark
1(ii) after replacing u with 0.5. The first incomplete momentIc(s) is obtained as

Ic(s) =
∫ s

0
x fX(x)dx=

∫ QY(FR(s))

0
QR(FY(w)) fT (w)dw. (24)

On the basis of the result Eq. (24), the three first incomplete moments forT-Burr{Lomax}, T-Burr{Log-logistic}, and
T-Burr{Weibull} families of distributions can be calculated as follows:

Ic(s) =
∞

∑
j=0

(

1
c
j

)

(−1) j
∫ β [(1+sc)k−1]

0

(

1+
t
β

) 1
k (1− j)

fT(t)dt,
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Ic(s) =
∞

∑
j=0

(

1
c
j

)

(−1) j
∫ α [(1+sc)k−1]

1
β

0

{

1+

(

t
β

)
1
β
}

1
k (1− j)

fT(t)dt,

and

Ic(s) =
∞

∑
j=0

(

1
c
j

)

(−1) j
∫ [k ln(1+sc)]

1
β

0
exp

[

Tβ (1− j)
k

]

fT(t)dt.

3 Special Sub-Models

In this section, we consider some different distributions for T random variable to generate some new models. We consider
three special sub-models, namely, Gamma-Burr{log-logistic}, Dagum-Burr{Weibull} and Weibull-Burr{Lomax}. We
develop some properties of the Weibull-Burr{Lomax} model as an illustration.

3.1 Gamma-Burr{Log-logistic} distribution

If T follow the Gamma random variable with parametersa and b having CDFF(t) = γ (a, t)/Γ (a) , t > 0, where
γ(a,x) =

∫ x
0 xa−1e−xdx (the lower gamma function). Then from Eq. (11), the CDF of Gamma-Burr{Log-Logistic} is

given as

FX(x) = P

(

a,α [Burr(c,−k)]
1
β
)

, (25)

where Burr(c,−k) = (1+ xc)k−1 andP(a,x) = γ(a,x)
Γ (a) .

Settingα = 1, the CDF in Eq. (25) becomes

FX(x) = P

(

a, [Burr(c,−k)]
1
β
)

. (26)

The PDF corresponding to Eq. (26) is given by

fX(x) =
burr(c,k)
Γ (a)baβ

(Burr(c,−k))
a−β

β exp

[

1
b

(

(Burr(c,−k))
1
β
)

]

.

If a=1 then, the Gamma-Burr{Log-Logistic} reduces to Exponential-Burr{Log-Logistic}.

(a) (b)

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

x

pd
f

c = 2  k = 0.5  a = 2  b = 2.2  β = 0.4
c = 0.5  k = 0.3  a = 2  b = 0.2  β = 2
c = 2.5  k = 0.5  a = 1.5  b = 0.8  β = 1.5
c = 1.5  k = 0.5  a = 2  b = 0.5  β = 0.5

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

x

hr
f

c = 2  k = 0.5  a = 2  b = 2.2  β = 0.4
c = 0.5  k = 0.3  a = 2  b = 0.2  β = 2
c = 1.5  k = 0.3  a = 1.5  b = 0.8  β = 1.2
c = 1.5  k = 0.5  a = 2  b = 0.8  β = 0.6

Fig. 1: Plots of PDF and HRF of Exponential-Burr{Log-logistic} distribution.

The plots in Fig. (1) give (a) reversed J, symmetrical, and left-skewed densityshapes, and (b) decreasing, increasing,
and upside-down bathtub hazard rate shapes.
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3.2 Dagum-Burr{Weibull} distribution

Let T follow the Dagum distribution with parametersa andb, FT(t) = [1+ t−a]
−b

, t > 0. Then, the CDF of Dagum-
Burr{Lomax} is as follows:

FX(x) =
[

1+[k ln(1+ xc)]
− a

β
]−b

. (27)

Settinga= 1, the CDF in Eq. (27) becomes

FX(x) =
[

1+[k ln(1+ xc)]
− 1

β
]−b

. (28)

The PDF corresponding to Eq. (28) is given by

fX(x) =
ckbxc−1

β (1+ xc)

[

1+[k ln(1+ xc)]
− 1

β
]−b−1

[k ln(1+ xc)]
1
β −1

. (29)

(a) (b)

0 1 2 3 4

0.
0
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5

1.
0

1.
5

x
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f

b = 5.7  β = 2  c = 2  k = 4
b = 0.2  β = 2  c = 0.8  k = 3
b = 2.5  β = 2  c = 3  k = 2.5
b = 1.5  β = 0.6  c = 2  k = 1.1

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8
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b = 5.7  β = 2  c = 2  k = 3
b = 2  β = 2  c = 0.8  k = 3
b = 5  β = 3  c = 2  k = 4
b = 0.5  β = 3  c = 0.3  k = 8
b = 5  β = 0.5  c = 3  k = 0.8

Fig. 2: Plots of PDF and HRF of Dagum-Burr{Weibull} distribution.

The plots in Fig. (2) give (a) reversed J and left-skewed shapes density shapes,and (b) decreasing and upside-down
bathtub hazard rate shapes.

3.3 Weibull-Burr{Lomax} distribution

Let T follow the Weibull distribution with parametersa andb FT(t) = 1−e−atb. Then, the CDF of Weibull-Burr{Lomax}
is as follows:

FX(x) = 1−exp

[

−aβ
({

(1+ xc)
k
α −1

})b
]

. (30)

Settingβ = 1 andα = 1, the CDF in Eq. (30) becomes

FX(x) = 1−exp

[

−a
({

(1+ xc)k−1
})b

]

. (31)

The PDF corresponding to Eq. (31) is given by

fX(x) = ckabxc−1(1+ xc)k−1
{

(1+ xc)k−1
}b−1

× exp

[

−a
{

(1+ xc)k−1
}b
]

. (32)
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(a) (b)
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Fig. 3: Plots of PDF and HRF of Weibull-Burr{Lomax} distribution.

Whenk = 1, the distribution in (32) reduces to Weibull distribution with parametersa, b andc. The plots in Fig. (3)
give (a) reversed J, left-skewed, right-skewed, and symmetrical density shapes and (b) increasing, decreasing, upside-
down bathtub, and constant hazard rate shapes. The quantilefunction of Weibull-Burr{Lomax} can be obtained form
Remark 1(ii)

QX(u) =







(

1+

[

−
1
a

ln(1−u)

]
1
b
)

1
k

−1







1
c

.

The Weibull-Burr{Lomax} mode can be obtained form Equation (14).

d
dx

fT(x) =
c−1

x
+(k−1)

cxc−1

1+ xc +(b−1)ck
xc−1 (1+ xc)k−1

{(1+ xc)k−1}
−abck

({

(1+ xc)k−1
})b−1

(1+ xc)k−1xc−1.

The mode(s) will be the solution of the above equation.

Moments of Weibull-Burr{Lomax} can be obtained form Eq. (16) as

E(Xr) =
∞

∑
j=0

∞

∑
i=0

(−1) j
(

r
c
j

)(

r− j
k
i

)

[
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(
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i
b
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)

+Γ

(
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k − i

b
,a

)]

, (33)

whereγ (a,x) =
x
∫

0
ta−1e−t dt andΓ (a,x) =

∞
∫

x
ta−1e−t dt are the lower and upper incomplete gamma functions, respectively.

From Eq. (20), the Shannon entropy forX that follows the Weibull-Burr{Lomax} is given by

ηX = ηT − log(ck)+

(

1+ k
k

)

E(log(1+T))+ (1− c)E(logX) ,

whereηT = log(ab)+
(

1+ 1
b

)

ξ −a, ξ is the Euler gamma constant, and

E(log(1+T)) =
b−1

b
loga.exp(−a)−E I(−a)+

∞

∑
n=1

(−1)n+1a
n
b

n
Γ
(

−
n
b
+1,a

)

+
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∑
n=1

(−1)n

na
n
b

γ
(n

b
+1,a

)

(Aljarrah et al., 2015), whereE I(x) =
∫ x
−∞ t−1etdt is the exponential integral (Abramowitz and Stegun 1972),

E(logX) = limr→0
d
drE(X

r) andE(Xr) is given in (33).
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Estimation of the parameters: Let X1,X2, . . . ,Xn be a random sample from the Weibull-Burr{Lomax} distribution
defined in Eq. (32). Then the log-likelihood function is given by

ℓ(Θ) = n log(abck)+ (c−1)
n

∑
i=1

logxi +(k−1)
n

∑
i=1

log(1+ xc
i )

+ (b−1)
n

∑
i=1

log
{

(1+ xc
i )

k−1
}

−a
n

∑
i=1

{

(1+ xc
i )

k−1
}b

.

The score vector are as follows:
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n
a
−

n

∑
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{

(1+ xc
i )

k−1
}b

,
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n
b
+

n

∑
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log
{

(1+ xc
i )

k−1
}

−a
n

∑
i=1

{

(1+ xc
i )

k−1
}b

log
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(1+ xc
i )

k−1
}

,
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n
c
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n
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i logxi
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n

∑
i=1

[
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− ab
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+
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∑
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k log(1+ xc
i ).

SettingUb, Ua, Uk, andUc equal to zero and solving these equations simultaneously obtains the maximum likelihood
estimates (MLEs).

4 Simulation of Weibull-Burr{Lomax}

In this section, we perform a simulation study to assess the performance of maximum likelihood method used to estimate
parameters of the Weibull-Burr{Lomax} distribution. We consider simulations for sample sizes (n=100, 200, 500) by
using R-language. We simulate 1,000 samples for the true parameter values I:c=2 k=0.5a=1 b=1 and II:c=3 k=1.5a=1.5
b=0.5 to obtain average estimates (AEs), biases, and mean square errors (MSEs) of the parameters. These values are listed
in Table 2. The values of the biases and MSEs decrease as the sample size increases. The results of the Table 2 indicate
that the method of MLE performs well in estimating the model parameters of the proposed distribution.

Table 2: Estimated AEs, biases, and MSEs of the MLEs of parameters of Weibull-Burr{Lomax} distribution based on 1000 simulations
of with n=100, 200, and 500.

I II
n parameters A.E Bias MSE A.E Bias MSE

100 c 2.752 0.752 4.622 4.571 1.571 11.839
k 0.554 0.054 0.059 1.844 0.344 0.955
a 1.385 0.385 1.710 1.663 0.163 1.432
b 1.074 0.074 0.439 0.557 0.057 0.202

200 c 2.298 0.298 1.185 4.021 1.021 6.407
k 0.538 0.038 0.033 1.618 0.118 0.311
a 1.380 0.380 1.588 1.503 0.043 0.356
b 1.041 0.041 0.244 0.546 0.046 0.122

500 c 2.046 0.246 1.128 3.680 0.680 4.757
k 0.501 0.001 0.017 1.610 0.110 0.146
a 1.020 0.300 0.895 1.418 0.003 0.246
b 1.038 0.038 0.153 0.527 0.037 0.118

5 Application

This section provides two applications, one for complete (uncensored) data sets and the other for censored data sets to
show how the Weibull-Burr{Lomax} (for short, W-Bu{Lx}) distribution can be applied in practice. In these applications,
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the distribution parameters are estimated by using the maximum likelihood method. The Akaike information criterion
(AIC), Anderson-Darling (A∗), Cramer-von Mises (W∗), and Kolmogrov-Smirnov (K-S) statistics are obtained to compare
the fitted models. In general, a smaller value of the statistics corresponds to a better fit to the data. The plots of the fitted
PDFs and CDFs of some distributions are displayed for visualcomparison. The required computations are performed in
R-language.

5.1 Uncensored (or complete) data sets

In this subsection, we show that how W-Bu{Lx} distribution can be applied in practice for two complete (uncensored)
real data sets. We fit the W-Bu{Lx}, Kumaraswamy Burr (Kw-Bu), Beta Burr (B-Bu), Beta exponential (B-Exp), Burr,
and Weibull to this data set.

The data set of 50 observations, with a hole diameter and sheet thickness of 9 and 2 mm, respectively, is given in
Table 3. Hole diameter readings are taken on jobs with respect to one hole, selected, and fixed as per a predetermined
orientation. The data set is given by Dasgupta (2011).

Table 3: Data set 1
0.06 0.12 0.14 0.04 0.14 0.16 0.08 0.26 0.32 0.22
0.16 0.12 0.24 0.06 0.02 0.18 0.22 0.14 0.22 0.16
0.12 0.24 0.06 0.02 0.18 0.22 0.14 0.02 0.18 0.22
0.14 0.06 0.04 0.14 0.22 0.14 0.06 0.04 0.16 0.24
0.16 0.32 0.18 0.24 0.22 0.04 0.14 0.26 0.18 0.16

The summary statistics from the first data set are as follows:x̄= 0.152,s= 0.0061,γ1 = 0.0061, andγ2 = 2.301226,
whereγ1 andγ2 are the sample skewness and kurtosis, respectively.

Table 4: MLEs and their standard errors (in parentheses) for data set1.
Distribution a b c k α β
W-Bu{Lx} 0.565 0.807 1.663 19.342 - -

(0.82) (0.41) (1.11) (22.99)
Kw-Bu 0.227 11.522 8.340 - 39.720

(0.028) (3.658) (0.007) - (0.999) -
B-Bu 27.607 9.738 5.070 - 0.029 -

(87.432) (1.951) (10.925) - (0.032)
B-Exp 2.667 18.006 - - - 0.9321

0.5042 99.87 - - - 4.96
Burr - - 2.043 37.66 -

- - (0.231) - (14.540) -
Weibull 34.45 2.002 - - - -

(13.755) (0.235) - - - -

Table 5: The valueℓ, W*, A*, KS, P-value for data set 1.
Dist ℓ W* A* KS P-Value

W-Bu{Lx} 59.62026 0.1103664 0.6764127 0.1269 0.3969
Kw-Bu 57.88482 0.1976216 1.119699 0.1597 0.1558
B-Bu 54.90359 0.3194159 1.75434 0.2073 0.02716
B-Exp 54.62055 0.3224291 1.777851 0.2098 0.02455
Burr 57.10991 0.2166066 1.227761 0.1689 0.1153

Weibull 57.30266 0.212311 1.203196 0.1691 0.1144
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From Table 5, we see that the W-Bu{Lx} model has the smallest values of theA*, W*, andK-Sstatistics among the
fitted B-Bu, Kw-Bu, B-Exp, Burr and Weibull distributions, thereby suggesting that the W-Bu{Lx} model provides the
best fit. Thus, the W-Bu{Lx} model could be chosen as the most adequate model to explore this data set. The histogram
of the first data set and the estimated PDFs and CDFs of the W-Bu{Lx} model and the competitive models are displayed
in Figure 4.

5.2 Censored data set

In this subsection, we fit the W-Bu{Lx} model to a censored data set. We use AIC and BIC statistics to compare the fits
of the W-Bu{Lx} with Kw-Bu and B-Bu distribution. The data below are remission times, in weeks, for a group of 30
patients with leukemia who received similar treatment, as quoted in Lawless (2003). Asterisks denote censoring times.

Consider a data setD = (x, r), wherex= (x1,x2, ...,xn)
T is the observed failure times, andr i = (r1, r2, ..., rn)

T are the
censored failure times. Ther i is equal to 1 if a failure is observed and 0 otherwise. Assume that the data are independently
and identically distributed and come from a distribution with PDF given by Eq. (32). Let Θ = (c,k,a,b)T denote the
vector of parameters. The likelihood ofΘ can be written as

ℓ(D;Θ) =
n

∏
i=1

[ f (xi ;Θ)]r i [1−F(xi ;Θ)]1−r i . (34)

Then, the log-likelihood is reduced as follows:

ℓ=
n

∑
i=1

r i

[

log(ckab)+ (c−1) logxi +(k−1) log(1+ xc
i )+ (b−1) log

{

(1+ xc)k−1
}

−a
{

(1+ xc)k−1
}b
]

+
n

∑
i=1

(1− r i)

[

−a
{

(1+ xc)k−1
}b
]

. (35)

The log-likelihood function can be maximized numerically to obtain the MLEs. Various routines are available for
numerical maximization ofℓ. We use the routineoptim in the R software.

Table 6: Data set 2
1 1 2 4 4 6 6 6 7
8 9 9 10 12 13 14 18 19
24 26 29 31* 42 45* 50* 57
60 71* 85* 91.

Table 7: Data set 2
Model Parameters MLE Standard error Log-Likelihood AIC BIC

W-Bu{Lx} c 1.2902 0.7573 -108.2892 224.5785 230.1832
k 0.0675 0.0600
a 9.2729 19.2363
b 1.9982 0.4593

Kw-Bu c 1.6530 0.3119 -111.7468 231.4935 237.0983
k 15.7654 14.8965
a 12.3872 9.3006
b 0.0051 0.0023

B-Bu c 0.2236 0.2691 -108.3125 224.6249 230.2297
k 2.9653 7.0795
a 0.6207 0.2738
b 26.4381 30.1542

We observed thatAIC andBIC statistics W-Bu{Lx} are lower than the Kw-Bu and B-Bu distributions.
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Fig. 4: Estimated PDFs and CDfs for data set 1.
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Fig. 5: Plots of estimated CDF for data set 2.

6 Conclusions and Results

Recently, statisticians and researchers have focused on developing flexible distributions to facilitate better modeling of
lifetime data. Consequently, a significant progress has been made toward the generalization of some well-known lifetime
models. In this context, we define theT-Burr{Y} class of distributions, and three new distributions
Gamma-Burr{Log-logistic}, Dagum-Burr{Weibull}, and Weibull-Burr{Lomax}, are introduced. We obtain explicit
expressions for their quantile functions, ordinary and central moments, mean deviations, and Shannon entropy. We also
presented two applications of the proposed family to real-life data sets (censored and complete) to illustrate the
usefulness of the new family.
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