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Abstract: In this paper, we solve the eigen solutions to some nonlinearspinor equations, and compute several functions reflectingtheir
characteristics. The numerical results show that, the nonlinear spinor equation has only finite meaningful eigen solutions, which have
positive discrete mass spectra and anomalous magnetic moment. The weird properties of the nonlinear spinors might be closely related
with the elementary particles and their interactions, so some deeper investigations on them are significant.
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1 Introduction

Since Dirac established relativistic quantum mechanics,
many scientists such as H. Weyl, W. Heisenberg, have
attempted to associate the elementary particles with the
eigenstates of the nonlinear spinor equation[1,2,3,4,5,6].
In 1951, R. Finkelsten solved some rigorous solutions of
the nonlinear spinor equation by numerical simulation,
and pointed out that the corresponding particles have
quantized mass spectra[7,8]. The theoretical proof about
the existence of solitons was investigated in [9,10,11,12,
13,14]. The symmetries and many conditional exact
solutions of the nonlinear spinor equations are collected
in [15].

In recent years, the nonlinear spinor models for dark
energy and dark matter may give an explanation for the
accelerating expansion of the universe. Some researches
get a number of interesting results[16,17,18,19,20,21,
22]. In this paper, we define some functions which reflect
the properties of eigen solutions to the nonlinear spinor
equations, and compute the typical values, then extract
some important information from the data. Some previous
works are given in[23,24].

At first, we introduce some notations and conventions.
Denote the Minkowski metric by
ηµν = diag(1,−1,−1,−1), Pauli matrices by

σ = (σ j ) =

{(

0 1
1 0

)

,

(

0 −i
i 0

)

,

(

1 0
0 −1

)}

. (1.1)

Define 4×4 Hermitian matrices as follows

α µ =

{(

I 0
0 I

)

,

(

0 σ
σ 0

)}

, γ =

(

I 0
0 −I

)

, β =

(

0 −iI
iI 0

)

, (1.2)

where µ ∈ {0,1,2,3}, x0 = ct and αµ = γ0γµ . In this
paper, we adopt the Hermitian matrices (1.2) instead of
Dirac matricesγµ for the convenience of calculation. For
Dirac’s bispinorφ , the quadratic forms ofφ are defined
by

α̌µ = φ+αµ φ , γ̌ = φ+γφ , β̌ = φ+β φ , (1.3)
where the superscript ‘+’ stands for the transposed
conjugation. By the definition (1.3) we haveα̌µ = φ†γµφ
etc., whereφ† = φ+γ0 is the Dirac conjugation[25]. α̌µ is
a contra-variant 4-vector,̌γ a true scalar andβ̌ a
pseudo-scalar. they are not independent due to Pauli-Fierz
identities[26,27], such asα̌µ α̌µ = γ̌2+ β̌ 2.

In general, the Lagrangian of the nonlinear bispinorφ
with a vector potentialAµ and scalarG is given by[28]

L = φ+αµ(h̄i∂µ −eAµ)φ − µγ̌ +V(γ̌ , β̌ )− sγ̌G

−
1
2

∂µ Aν∂ µAν −
1
2
(∂µ G∂ µG−b2G2). (1.4)

In this paper, we only consider the caseV =V(γ̌)> 0 is a
concave function satisfying
V ′(γ̌)γ̌ >V(γ̌), (for γ̌ > 0). (1.5)
The corresponding dynamical equation is given by
αµ(h̄i∂µ −eAµ)φ = (µc+ sG−V′)γφ , (1.6)

∂α ∂ αAµ = eα̌µ
, (1.7)

(∂α ∂ α +b2)G = sγ̌. (1.8)
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The Hamiltonian form of (1.6) is given by

h̄i∂tφ = Ĥφ , Ĥ = c[eA0+α · p̂+(µc+ sG−V′)γ].(1.9)

wherep̂= −h̄i∇−eA is the momentum operator. For the
angular momentum operator

Ĵ = r× p̂+
1
2

h̄γ, γk = diag(σk,σk), (1.10)

the eigenfunctions of̂J3 =−h̄i∂ϕ + 1
2h̄γ3 are given by

Ĵ3φ j = j3h̄φ j , φ j = (u1,u2eϕ i
, iv1, iv2eϕ i)Tejϕ i

, (1.11)

where the index ‘T’ stands for transpose,
j3 = j + 1

2, j ∈ {0,±1,±2, · · ·}. For all the
eigenfunctions,Ĵ3 is commutative with the nonlinear
Hamiltonian operator like the linear case, so the solutions
of (1.9) take the following form,

φ j = (u1,u2eϕ i
, iv1, iv2eϕ i)T exp( jϕ i −

mc2

h̄
it ), (1.12)

where uk,vk(k = 1,2) are real functions of(r,θ ). The
normalizing condition becomes

2π
∫ ∞

0
r2dr

∫ π

0
sinθdθ (u2

1+u2
2+ v2

1+ v2
2) = 1. (1.13)

2 Properties of the dark nonlinear spinor

The simplest case of (1.9) is dark spinor described by the
following dynamical equation,

h̄i∂tφ = Ĥφ , Ĥ = c[α · p̂+(µc−wγ̌)γ]. (2.1)

Different from the linear case, the nonlinear spinor
equation generally has continuous spectra if the
restriction of (1.13) is absent, so the normalizing
condition becomes quantizing condition for nonlinear
spinors, and the nonlinear coupling coefficientw is
meaningful only if the solution satisfies the normalizing
condition (1.13).

The eigen solutions to (2.1) with spin j3 = ± 1
2 can be

solved rigorously as follows


















φe↑ = (g,0, i f cosθ , i f sinθeϕ i )T exp(−i mc2

h̄ t), for (P = 1, j3 =
1
2 )

φe↓ = (0,g, i f sinθe−ϕ i ,−i f cosθ)T exp(−i mc2

h̄ t), for (P = 1, j3 =− 1
2 )

φo↑ = ( f cosθ , f sinθeϕ i , ig,0)T exp(−i mc2

h̄ t), for (P =−1, j3 =
1
2 )

φo↓ = ( f sinθe−ϕ i ,− f cosθ ,0, ig)T exp(−i mc2

h̄ t), for (P =−1, j3 =− 1
2 )

(2.2)

where P = 1 corresponds to even parity, andP = −1
corresponds to odd parity. For the above eigenfunctions,
we have

γ̌ = P(g2− f 2), 4π
∫ ∞

0
(g2+ f 2)r2dr = 1. (2.3)

The radial equation of even parity satisfies
{ d

dr g=− 1
h̄c[(µ +m)c2−wc(g2− f 2)] f ,

d
dr f =− 1

h̄c[(µ −m)c2−wc(g2− f 2)]g− 2
r f .

(2.4)

For the odd parity, we have
{

d
dr g=− 1

h̄c[(µ −m)c2+wc(g2− f 2)] f ,
d
dr f =− 1

h̄c[(µ +m)c2+wc(g2− f 2)]g− 2
r f .

(2.5)

The initial data of (2.4) and (2.5) satisfy f (0) = 0, g(0)>
0. For (2.4) and (2.5), we have positive mass 0< m< µ if
and only ifw> 0[23].

Making transformation

a =

√

µ +m
µ −m

, r0 =
h̄

c
√

µ2 −m2
=

(a2+1)h̄
2aµc

, ρ =
r
r0
, (2.6)

u =

√

w(a2+1)
2aµc

g, v=−

√

w(a2+1)
2aµc

f . (2.7)

wherea is equivalent to the spectrum,r0 takes the unit of
length. (2.4) and (2.5) can be rewritten in a dimensionless
form. For (2.4) we have
{

u′ = (a−u2+ v2)v, u(0) = u0 > 0,
v′ = (1

a −u2+ v2)u− 2
ρ v, v(0) = 0, (2.8)

where prime stands forddρ . For (2.5) we have

{

u′ = (1
a +u2− v2)v, u(0) = u0 > 0,

v′ = (a+u2− v2)u− 2
ρ v, v(0) = 0, (2.9)

The normalizing condition (2.3) becomes

(

a+a−1)2
∫ ∞

0
(u2+ v2)ρ2dρ = S2 ≡

wµ2c2

π h̄3 , (2.10)

whereS is a dimensionless constant to be determined.
The computation shows that, for any givena > 1,

there exists a sequence of initial data
0 < u(0)1 < u(0)2 < · · · , such that (2.4) and (2.5) have
eigen solutions. The theoretical analysis proves that there
are infinite eigen solutions for eacha[11]. In [23] we have
shown three families of eigen solutions with even parity
and the first family of eigen functions with odd parity.

To describe the properties of the eigen solutions, we
define the following dimensionless functions, which are
continuous functions of spectruma for the same family
solutions.

1.The dimensionless normy(a)

y≡
1
2

lg

(

(a+a−1)2
∫ ∞

0
(u2+ v2)ρ2dρ

)

. (2.11)

For the same family of eigen solution,y is a continuous
function ofa. By (2.10), the normalizing condition is
equivalent to the equationy= lgS.

2.The dimensionless energyE (a) in the Nöther’s sense,

E ≡
1

µc2

(

mc2+
1
2

wc
∫ ∞

0
γ̌2 ·4πr2dr

)

=
a2−1
a2+1

+
a

a2+1

∫ ∞
0 (u2− v2)2ρ2dρ
∫ ∞

0 (u2+ v2)ρ2dρ
. (2.12)

3.The mean diameter of an eigen solutiond(a)

d ≡
2
λ

∫

r|φ |2d3x
∫

|φ |2d3x
=

a2+1
a

∫ ∞
0 (u2+ v2)ρ3dρ
∫ ∞

0 (u2+ v2)ρ2dρ
, (2.13)

whereλ = h̄
µc is a universal Compton wave length for

all solutions.
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4.The total dimensionless inner pressureP(a)

P ≡
1

3µc2

(

mc2−

∫ ∞

0
(µc2γ̌ +

1
2

wcγ̌2) ·4πr2dr

)

=
1
3

(

a2−1
a2+1

−

∫ ∞
0 (u2−v2)ρ2dρ
∫ ∞

0 (u2+v2)ρ2dρ
−

a
a2+1

∫ ∞
0 (u2−v2)2ρ2dρ
∫ ∞

0 (u2+v2)ρ2dρ

)

. (2.14)

The physical meanings ofy(a), E (a) and d(a) are
evident. The inner pressureP(a) is defined from general
relativity. For the nonlinear spinor (2.1) in curved
space-time with diagonal metric, we have energy
momentum tensor[16]

Tµν =
1
2

ℜ〈φ+(ρ µ i∂ ν +ρν i∂ µ)φ〉+(V ′γ̌ −V)gµν
.(2.15)

For static spinor, we have

P=
1
3
(T0

0 −Tµ
µ ) =

1
3
(m|φ |2− µγ̌ −

1
2

wγ̌2). (2.16)

The dimensionless form of the total inner pressure of the
spinor becomes (2.14).

The curves of the dimensionless functions defined
above are shown in Fig.1 and Fig.2. In Fig.1, the
normalizing condition y ≡ lgS = 0.918 and
y ≡ lgS = 0.647 are derived from the anomalous
magnetic moment(AMM) of an electron according to
different definition of mass, as computed in the next
section. A rough computation was once given in [24].
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Fig. 1: The norm functiony(a), dimensionless energyE =
E

µc2 and mean diameterd(a) of a spinor. Only the solutions

corresponding to the intersectiony(a) = lgS are meaningful in
physics

For an electron, we haveµ=̇me= 9.11×10−21kg, h̄=
1.055×10−34J.s,c= 2.998×108m/s. By (2.10) andS=
8.277, we can estimate the value

w=
π h̄3S2

µ2c2 =̇3.385×10−57(Jsm2). (2.17)

In this case, the nonlinear spinor equation has only two
valid eigen solutions corresponding toa = 1.95 anda =

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

4

5

Dimensionless Spectra lg(a)

D
im

en
si

on
le

ss
 E

 &
 P

P/(µ c2)*108

E/(µ c2)

a<3.67

P<0

a=45.7a=1.95

Fig. 2: The total energyE (a) and inner pressureP(a) of a dark
spinor
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Fig. 3: The radial distribution of the nonlinear dark spinors

45.7. The norm functiony(a) of all other families of eigen
solutions have no intersection points withy= 0.918.

The radial functions(G,F) of solutions with even
parity are shown in Fig.3, where

G(r) =
√

w
2µc

g=

√

a
a2+1

u, F(r) =−

√

w
2µc

f =

√

a
a2+1

v. (2.18)

The unit of the coordinater is the universal Compton wave
length h̄

µc. So the images of different solutions are visually
comparable in Fig.3.
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3 The nonlinear spinor with electromagnetic
interaction

The nonlinear spinor with self electromagnetic interaction
was researched by a few authors. In 1966, M. Wakano has
approximately analyzed the cases ofA0 dominance andA
dominance whenw = 0, and reached the following
conclusions[29]. In the case ofA dominance, the eigen
solutions or the solitons do not exist for the first order
approximation. In the case ofA0 dominance, the eigen
solutions exist but all with negative energy. In fact, the
negative mass is equivalent to change the sign ofA0,
which implies to transform the repulsive potential ofA0
into the absorbent one. M. Soler and A. F. Rañada
calculated the eigen solutions of (1.9) by omittingA. But
they neglected the normalizing condition and did not use
the true value ofe[30,31]. Besides, the eigen solutions
with Born-Infeld potential were studied in [32]. The
detailed non-relativistic approximation of the
many-spinors equations was given in [28]

In general, the coordinatesr and θ can not be
separable for nonlinear spinor with vector potential due to
the term A. However uk and vk can be conveniently
expressed by spherical harmonics, and the equations of
the radial functions can be derived via variation principle,
because the eigen solutions are the critical points of the
following energy functional

J = 2π
∫ ∞

0
r2dr

∫ π

0
sinθdθ(φ+Ĥφ +

1
2

wcγ2−
1
2

c∇Aµ ·∇Aµ −mc2α̌0)+mc2
.(3.1)

So the problem (1.9) can be changed into an ordinary
differential equation system which can be solved by
numerical computation.

In this paper, we only consider the eigen solutions with
1
2-spin and even parity, which is the only valid case for
a free electron. In the dimensionless form, we have the
magnitude for the fields

|A| ∼
α
a
|g|, |A0| ∼ α|g|, | f | ∼

1
a
|g|, α=̇

1
137

, (3.2)

where a is the dimensionless spectrum. Since the high
order terms are caused by the vector potential|A| ∼ α

a |g|,
for adequately largea, we only keep the first order
approximation for simplicity. Then we have

φ=̇(g,0, i f cosθ , i f sinθeϕ i)T exp(−i
mc2

h̄
t), (3.3)

whereg and f are real functions ofr with g(0) > 0. For
large spectruma = 49.12, the relative error of the
approximation is less than 10−4, so the approximation is
accurate enough to reveal the anomalous magnetic
moment of a spinor with electromagnetic field. The less
the value ofa, the large the error of approximation.

The quadratic forms ofφ are given by

α̌0 = g2 + f 2
, γ̌ = g2− f 2

, α̌ = 2g f sinθ(−sinϕ ,cosϕ ,0). (3.4)

Correspondingly we have

A0 = A0(r), A = A(r)sinθ(−sinϕ ,cosϕ ,0). (3.5)

Substituting (3.4), (3.5) into (3.1) we get the energy
functional

J =̇ 4πc
∫ ∞

0
r2dr

{

h̄[( f ′+
2
r

f )g−g′ f ]+(µ −m)cg2− (µ +m)c f2−
1
2

w(g2− f 2)2 +

e(g2+ f 2)A0−
4
3

eg fA+
1
2

A0(∂ 2
r +

2
r

∂r )A0−
1
3

A(∂ 2
r +

2
r

∂r −
2
r2 )A

}

+mc2 (3.6)

The approximation is only caused by the vector potential
A. By variation, we get a closed system of ordinary
differential equations






g′ =− 1
h̄ [(µ +m)c−eA0−w(g2− f 2)] f − 2

3h̄ eAg,
f ′ =− 1

h̄ [(µ −m)c+eA0−w(g2− f 2)]g+( 2
3h̄eA− 2

r ) f ,
A′′

0 +
2
r A′

0 =−e(g2+ f 2), A′′+ 2
r A′ − 2

r2
A=−2eg f.

(3.7)

Make transformation

r0 =
h̄

√

µ2 −m2c
, a=

√

µ +m
µ −m

, α =
e2

4π h̄
=

1
137.035999

, (3.8)

ρ =
r
r0
, u=

√

wr0

h̄
g, v= −

√

wr0

h̄
f , P=

er0
h̄

A0, Q=
2er0
3h̄

A, (3.9)

where P is dimensionless potential, which can not be
confused with the pressure defined in (2.14). Substituting
them into (3.7), we get the dimensionless form


















u′ = (a−P−u2+ v2)v−Qu,
v′ = (1

a +P−u2+ v2)u+(Q− 2
ρ )v,

P′′+ 2
ρ P′ =−α u2+v2

∫ ∞
0 (u2+v2)ρ2dρ ,

Q′′+ 2
ρ Q′− 2

ρ2 Q= 4α
3

uv
∫ ∞
0 (u2+v2)ρ2dρ ,

(3.10)

In (3.10) only a is a free parameter, which acts as the
spectrum similar to the dark case ofe = 0. The
normalizing condition is still (2.10). (3.10) is independent
on the undetermined coefficientw, but it becomes a global
problem. The natural boundary conditions are given by
{

u(0)> 0, v(0) = P′(0) = Q(0) = Q′(0) = 0,
u→ u∞e−ρ , v→ u∞

a e−ρ , P→ α
4πρ , Q→ Q∞

ρ2 , (ρ → ∞). (3.11)

The solutions of(P,Q) can be expressed as

P =
α

∫ ∞
0 (u2+v2)ρ2dρ

∫ ∞

ρ

1
ρ2

∫ ρ

0

[

u2(τ)+v2(τ)
]

τ2dτdρ, (3.12)

Q =
−4α

3ρ2
∫ ∞

0 (u2+v2)ρ2dρ

∫ ρ

0
ρ2

∫ ∞

ρ
u(τ)v(τ)dτdρ. (3.13)

We haveP > 0,Q > 0 for the meaningful solutions. The
solution of (3.12) and (3.13) can be soundly solved by
iterative algorithm.

The total energy of the system in Nöther’s sense is
given by

E = 2π
∫ ∞

0
r2dr

∫ π

0
sinθdθ(φ+Ĥφ +

1
2

wcγ2−
1
2

c∇Aµ ·∇Aµ ), (3.14)

Substituting (3.8), (3.9) into it, we get the dimensionless
form

E =
E

µc2 =
a2−1
a2+1

+
a

a2+1

∫ ∞
0 [(u2−v2)2−P(u2+v2)−2Quv]ρ2dρ

∫ ∞
0 (u2+v2)ρ2dρ

. (3.15)

The mass of a particle is a complex classical concept,
which depends on the method of measurement and the
context of theory. Using different definition of mass, we
will get different spectruma and constantS. In what
follows, we takeme and µ as the classical mass for
computation. To get the anomalous magnetic moment, we
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introduce an infinitesimal external magnetic field
Bext = (0,0,B) with

Aext =
1
2

B(−y,x,0) =
1
2

Brsinθ (−sinϕ ,cosϕ ,0). (3.16)

Adding Aext to (3.5) and substituting it into (3.6), we get
the increment of the energy

∆E = |
8π
3

ec
∫ ∞

0
g f r3dr|B≡ µzB, (3.17)

where µz is the magnetic moment of the spinor. The
dimensionless form is given by

µz =
2(a2+1)

3a
k|
∫ ∞
0 uvρ3dρ|

∫ ∞
0 (u2+v2)ρ2dρ

·µB, µB ≡
eh̄

2mk
, (3.18)

where the constantµB is the Bohr magneton,

k=

{

1 if mk = µ ,
E if mk = me.

(3.19)

By (3.18), we get the anomalous magnetic moment of
a particle

∆g≡
µz− µB

µB
=

2(a2+1)k|
∫ ∞

0 uvρ3dρ |
3a

∫ ∞
0 (u2+ v2)ρ2dρ

−1. (3.20)

The empirical value of the AMM of an electron is∆g =
0.001159652. The computational result shows nonlinear
potential can provide an explanation for AMM.

To compare with the dark spinor, we also define the
dimensionless norm by (2.11). The normalizing condition
(2.10) is equivalent to y = lgS. The dimensionless
functions(E ,∆g,y) are all continuous functions ofa for
the same family of solutions. Fig.4 shows how to
determine the spectruma by the empirical AMM.
Different definition of mass leads to different value ofa.
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Fig. 4: The anomalous magnetic moment of the system (3.10) vs.
the spectraa, the true value for an electron is∆g= 0.001159652
or lg(∆g) =−2.936
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In Fig.4, the trends of∆g shows that∆g is a decreasing
function of a, and∆g → 0 asa → ∞. By the empirical
data of∆g, we can compute the following undetermined
parameters, If takingmk = E µ , we have

a= 49.12, S= 8.277, w= 3.385×10−57Jsm2
, EV = 1.088keV, EA = 85eV (3.21)

If taking mk = µ , we have

a= 11.35, S= 4.434, w= 9.723×10−58Jsm2
, EV = 15.08keV, EA = 330eV (3.22)

Fig.5shows the realistic values of some parameters such as
the total energyE , the norm functiony(a). The constantsS
or w is determined by normalizing conditiony= lgS, and
then all other parameters can be computed. By Fig.5, we
learn that, the value ofa is larger than that of dark spinor,
namely, the electromagnetic interaction increases the rest
massmof a spinor.

Sinceα=̇ 1
137 is quite small, by (3.2) we learn that, if

a > 10, the electromagnetic field only have a little
influence on the eigen solution. Fig.6 shows the
comparison of the dimensionless fields whena= 49.12.

4 Discussion and conclusion

We have solved the particle-like eigen solutions to some
nonlinear spinor equations, and computed several
functions which reflect their characteristics. The
numerical results show that, the nonlinear spinor
equations have positive discrete mass spectra and
anomalous magnetic moment. These unusual properties
of spinor may have close relationship with the nature of
the elementary particles.

1.By P→ 0 and (2.14), for V = 1
2wγ̌2 we find

mc2 →

∫ ∞

0
(µc2γ̌ +

1
2

wcγ̌2) ·4πr2dr. (4.1)
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Fig. 6: The dimensionless radial functions,(u, v) correspond to
spinor fields.(P, Q) correspond to the dimensionless potentials.

More calculations show that such relation also holds
for other kind nonlinear potentialV(γ̌) satisfying
V ′γ̌ −V > 0, namely we always have|P| ≪ E. An
interesting problem is whether the error is just caused
by numerical approximation andP = 0 is a rigorous
relation generally valid for nonlinear spinors.

2.All dimensionless energyE (a) have a similar trend
E → 1(a → ∞). For large enougha, we always have
E → µc2.

3.For the nonlinear spinor equation with a scalar
interactive potential

α µ h̄i∂µ φ = (µc+sG−V ′)γφ , (∂α ∂ α +b2)G= λsγ̌, (4.2)

similar to (3.12) and (3.13), G can be expressed as

G(r) =
λs
r

∫ r

0
e−b(r−τ)dτ

∫ ∞

τ
γ̌(ξ )ξ e−b(ξ−τ)dξ , (4.3)

so the solution to (4.2) can be soundly solved by
iteration. For the AMM ∆g defined by (3.20),
computations show that we always have∆g ∼ 0
similar to the above cases with electromagnetic
interaction.

4.The energy functional of the nonlinear spinor system
(3.1) is indefinite, so the stability of the solutions is
different from that of the positive definite system.
There are some works on this problem[33,34,35].
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