
Progr. Fract. Differ. Appl.3, No. 4, 255-270 (2017) 255

Progress in Fractional Differentiation and Applications
An International Journal

http://dx.doi.org/10.18576/pfda/030402

Derivation of the Fractional Dodson Equation and
Beyond: Transient Diffusion With a Non-Singular
Memory and Exponentially Fading-Out Diffusivity⋆

Jordan Hristov∗

Department of Chemical Engineering, University of Chemical Technology and Metallurgy,Sofia, Bulgaria.

Received: 11 Jul. 2016, Revised: 24 Nov. 2016, Accepted: 29 Nov. 2016
Published online: 1 Oct. 2017

Abstract: Starting from the Cattaneo constitutive relation with exponential kernel applied to mass diffusion the derivation of anew
form the diffusion equation with a relaxation term expressed through the Caputo-Fabrizio time-fractional operator (derivative) has been
developed. The developed equation reduces to the fractional Dodson equation for large relaxation times correspondingto low fractional
order of the Caputo-Fabrizio derivative. The approach separates large time effects resulting in the classical Dodson equation with
exponentially decaying in time diffusivity and the short time relaxation process modeled by Caputo-Fabrizio time fractional derivative.
The solution developed allows seeing a new physical background of the Caputo-Fabrizio time-fractional operator (derivative) and
to demonstrate a new interpretation of the Dodson equation incorporating fading memory effects. Moreover a new model with two
memories corresponding to large and short time relation effects has been conceived. Defining the diffusion process parameters then the
fractional order of the Caputo-Fabrizio time fractional derivative can be determined in a straightforward manner as a function of the
Deborah number calculated as a ratio of the relaxation time to the characteristic diffusion time of the process.
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1 Introduction

1.1 Dodson Diffusion Equation: Physical Background and Original Derivation

The Dodson diffusion equation (1) was derived as result of diffusion of species in minerals [1,2] in an analysis of the
cooling history in geochronological systems where the diffusion coefficient depends on temperature in accordance with
the Arrhenius equation (2) , namely

∂C(x, t)
∂ t

= D(T)
∂ 2C(x, t)

∂x2 , (1)

D = D0exp

(

−
E

RT

)

. (2)

In general, the solid diffusion process are thermally activated [3,4]. The diffusion coefficient represents the diffusion
process at infinitely high temperatures. In (2) the absolute temperature isT , R is the universal gas constant andE is the
activation energy of the diffusion process. In accordance to Dodson [1] due to the very strong dependence of the diffusion
coefficient, the transitional temperature range can be expected to be reasonably short. Moreover, Dodson used the fact that
over a limited range of temperature the cooling history in geochronological systems can be conveniently be approximated

⋆ This article is dedicated to 50th anniversary of the classical Caputo derivative and to the 2nd anniversary of the seminal article of
Caputo and Fabrizio published inProgress in Fractional Differentiation and Applications, No 1, 2015

∗ Corresponding author e-mail:jordan.hristov@mail.bg

c© 2017 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/pfda/030402


256 J. Hristov : Derivation of Fractional Dodson’s Equation andBeyond

by a linear increase in time [1,2,3,4,5,6]. The exponential decrease in diffusion coefficient is conventionally described in
terms of time constant which is the time taken forD(t) to reduce by a factor ofe. Then, following Dodson [1] we have

D = D0exp

(

−
E

RT0
−

t
τ

)

= D(0)e−
t
τ , (3)

whereD0 andT0 are the values of the diffusion coefficient and the temperature att = 0 . From the definition (3), which
actually is a definition ofτ, that is

d
dt

(

E
RT

)

=
1
τ
=

−RT2

E dT
dt

. (4)

Avoiding the long and cumbersome expressions of the Dodsonsanalysis [1,2] and related studies [3,4,5,6,7] the diffusion
model (1) was expressed as

∂C(x, t)
∂ t

= D(0)e
−t
τ

∂ 2c(x, t)
∂x2 , (5)

or equivalently

∂C(x, t)
∂ t

= D(0)e−β t ∂ 2c(x, t)
∂x2 . (6)

1.2 Dodson Diffusion Equation: Original Solution Approach

The original Dodson approach (ref.[1]- Appendix A) is to solve (5) in its dimensionless form

∂
∂θ

(

C
C0

)

=−
τD(0)

a2 e−θ ∂ 2

∂x2

(

C
C0

)

, (7)

with initial concentrationC0 and dimensionless timeθ = t/τ, and a length scalea of the area where the diffusion takes

place. Dodson used a new variableq=
(

1−eλ τθ
−

C
C0

)

, whereλ depends on the geometry of the system, and denoting

M = τD(0)/a2 transformed (7) to

∂q
∂θ

= Me−θ ∂ 2q
∂x2 , (8)

with a second change of variables asqs = 1−e−λ τθ and initial conditionsq= 0 att = 0 . Then, Dodson used a common
approach in solving diffusion equation with a time-dependent coefficient (see the book of Crank [8] by introducing a
variableu by a integral transform, namelyu=

∫ t
0 D(z)dz[8], which allowed to reduce (8) to

∂q
∂u

=
∂ 2q
∂x2 ,qs = 1−

(

1−
u
M

)λ τ
. (9)

In this context, forθ = 0 we getu= 0, but atθ −→ ∞, and consequentlyu−→ M . The solution of (9) was developed
on basis of the result of [9] (see page 104, eq.3). We will avoid the repeating of the cumbersome expressions of this
solution, due the practical inconvenience of the result (see (10) as example) to use in the post-solution analysis as well as,
because this solution is out of the scope of the present article. For a plane sheet it is, for instance

q= 2
∞

∑
i=1

(−1)i+1cos(i −1/2)πx
(i −1/2)π

(

1−
Γ (λ τ +1)

[(i −1/2)2π2M]
λ τ

)

. (10)

To complete this section, in chapter 7 of the book of Crank [8], the fist example (example 7.1, page. 104) is the case
of the Dodson equation, briefly mentioned that the transforms of variables used by Dodson leads to (9).
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1.3 Dodson Diffusion Equation: Integral-Balance Solution

Here the finite penetration depth conceptδ (t) is assumed and corresponding to finite flux speed (6). The finite diffusion
speed is the basic concept of the method of Goodman [10,11,12,13] which, in fact is a simple mass balance over the
diffusion layer with a depthδ (with boundary conditionsC(δ , t) = ∂C(δ , t)/∂x= 0), namely

∫ δ

0

∂C(x, t)
∂ t

dx=
∫ δ

0
D(t)

∂ 2C(c, t)
∂x2 dx=⇒

d
dt

∫ δ

0
C(x, t)dx=−D(t)

∂C(0, t)
∂x

,D(t) = D0e−β t ,β = 1/τ. (11)

The last version of (11) comes from application of the Leibniz rule. The diffusion layer depthδ (t) should be
determined through the solution. Assuming an approximate profile as a function ofx/δ we may apply the boundary
conditions at the frontδ [10,11,12,13].

The transformationu= 1−e−β t leads to∂C/∂ t = (∂C/∂u) (∂u/∂ t)
(

βe−β t
)

which allows expressing (6) in the form

∂C(x, t)
∂u

=
D0

β
∂ 2C(x,u(t))

∂x2 . (12)

Then the integral-balance equation [10,11,12,13,14] is

d
dt

∫ δ

0
C(x,u(t))dx=−

D0

β
∂C(0,u(t))

∂x
. (13)

The approximate profile is assumed as a parabolic oneCa(x,u(t)) = Cs(1− x/δ )n [12,13], where the exponentn is
unspecified. For the sake simplicity of the present analysiswe assume the Dirichlet problem (Cs = 1). Thus, replacement
of C(x, t) by Ca in (13) yields [15]

1
n+1

dδ
dt

= D0
n
δ
=⇒ δ 2 =

D0

β
u[2n(n+1)]. (14)

Now, turning to the original variable, the depth of the diffusion layerδ (t) is

δ =

√

D0

β

√

(

1−e−β t
)

[2n(n+1)]. (15)

The ratio(D0/β ) has a dimension of[m2]. However, the function
(

1−e−β t
)

is dimensionless and it is growing in time
saturating rapidly to 1 when 1/eβ t

−→ 0 becomes negligible, i.e.t −→ ∞. In this moment the diffusion layer depth attains
it maximumδ ≡

√

D0/β = const., because the diffusion process stops. At this moment, we stop the analysis of the integer
-order model of Dodson and will focus the attention on an attempt to derive this equation from an alternative point of view
using basic constitutive equations relating the mass flux tothe memory integral of the concentration gradient. The results
just commented will allow us to define properly the relaxation (damping function).

1.4 Some Critical Remarks

The Dodson equation excludes the case when relaxation process does not exist. Precisely, ifτ = 0(β → ∞) , then the
diffusion coefficient should attain its maximum valueD0 , but in the formD0exp(−τ/t) = D0exp(−β t) for τ → 0 we
haveD(t)→ 0 , so there is no diffusion at the beginning when the conditions are the extremely favorable for the diffusion
process to take place. The problem just raised will be commented further in this work when the fractional version of the
Dodson equation will be developed.

1.5 Aim

The present article focuses on a principle problem regarding the derivation of the Dodson equation (6) starting from basic
constitutive equation in contrast to the approach used in the original work [1], where the exponential function and the
relaxation time to the diffusion coefficient are addedad hocto the diffusion equation. The first and the most important
issue in the following analysis is the problem that the modelof Dodson is truly parabolic equation with infinite unphysical
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speed of the flux and no relaxation is taken into account. For the sake of clarity, do not misunderstand this standpoint with
the fact that original Dodsons equation defines the relationtime . The second problem at issue is to develop a new form
of the Dodson equation in terms of time-fractional derivatives of Caputo-Fabrizio type, which are more general than the
original one and its development is based on basic constitutive equations; and reducing to the integer order model when
the relaxation of the flux is not taken into account. The studyresults in two models:

Single-memory model. This is a model with a single relaxation time which can be easily derived from the flux
constitutive equation of Cattaneo [16]. The model simply demonstrates how the original Dodson equation could be
developed starting from a basic flux-gradient relationshipand applying the mass balance law.

Two-memories model. This is a model based on a definition of a new composite relaxation function accounting
simultaneouslylong-timeandshort-timerelaxation processes.

The article is organized as follows. Section 2 provides the necessary mathematical background regarding the
Cattaneo constitutive equation (section 2.1.) and how on its base its is possible to derive the Caputo-Fabrizio
time-fractional derivative. The basic properties of the Caputo-Fabrizio time-fractional derivative are presented in section
2.2. Section 3 presents the derivations of the two models with memory which are generalization of the Dodson equation.
Especially section 3.3. demonstrates how the fractional order should be related to the Deborah number. Section 4
summarizes the results, compares them to the diffusion equation of Caputo and Fabrizio (see (64)) and previously
developed models with different constitutive equations about the flux relaxation.

2 Preliminaries

2.1 The Cattaneo Constitutive Diffusion Equation and the Outcomes

Diffusion phenomena of mass, are generally described as a consequence of the mass conservation law by the relationship

∂C
∂ t

=−
∂ j
∂x

. (16)

The assumption that the mass fluxj(x, t) is proportional to the concentration gradientj(x, t) =−D0∂C(x, t)/∂x in fact is
a definition of the diffusivityD0. Then, applying (16) we get the ordinary diffusion equation (the Fick law) (17),

∂C
∂ t

= D0
∂ 2C
∂x2 . (17)

The principle drawback of the model (17) is the infinite speed of propagation of the flux which is unphysical.
A relaxation function related to a finite speed of diffusion (heat conduction) in solids was conceived by Cattaneo [16]

as a generalization of the Fourier law by a linear superposition of the heat flux and its time derivative related to its history
[17,18]. Hence, the flux obeys the constitutive equation [16] involving a memory integral.

j(x, t) =−

∫ t

−∞
R(x, t)∇C(x, t − s)ds. (18)

Setting the lower terminal of the memory integral in (18) at zero we get a more convenient, from engineering point view,
expression of the constitutive equation, namely

j(x, t) =−

∫ t

0
R(x, t)∇C(x, t − s)ds. (19)

If R(x, t) is assumed as the Dirac deltaδD(s) function such that
∫ t

0 δD(s)ds= 1 this immediately leads to the classical
Fick (Fourier) equation (17) sincethere is no damping effect in the flux propagation. However, for a homogeneous medium
R(x, t) depends only the time and can be represented by a stretched-exponential kernel [16] where the relaxation timeτ is
finite, i.e.τ = const. Then, the mass balance (16) results in the Cattaneo equations [16]

∂C(x, t)
∂ t

=−
∂
∂x

(

−
D0

τ

∫ t

0
exp

(

−
t − s

τ

)

∂C(x, t)
∂x

ds

)

. (20)

For τ −→ 0 the limit of the Cattaneo equation (20) reduces to the Fick law. If a first order approximation, withrespect to
τ [19] is developed (21) we get a first order differential equation (22)

j(x, t + τ) =−D0
∂C(x, t)

∂c
, j(x, t + τ)≈ j(x, t)+ τ

∂ j(x, t)
∂x

, (21)
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1
τ

j(x, t)+
∂ j(x, t)

∂ t
=−

D0

τ
∂C(x, t)

∂x
. (22)

The integration of (22) leads to (20), which can be presented in two equivalent forms

∂C(x, t)
∂ t

=
D0

τ

∫ t

0
exp

(

−
t − s

τ

)

∂ 2C(x,s)
∂x2 ds, (23)

∂C(x, t)
∂ t

= βD0

∫ t

0
exp(−β (t − s))

∂ 2C(x,s)
∂x2 ds,β =

1
τ
. (24)

At this end, we have to stress the attention on the memory integrals in (23)and (24) in order to relate them to
time-fractional derivatives with non-singular kernels, precisely the time-fractional Caputo-Fabrizio (operator)derivative
presented next.

2.2 Time-Fractional (Operator) Derivative of Caputo-Fabrizio

Caputo and Fabrizio [20] suggested a time-fractional (operator) derivative with an exponential kernel defined as

CFDα
t =

M(α)

1−α

∫ t

0
exp

(

−
α(t − s)
1−α

)

d f(t)
dt

ds=
1

1−α

∫ t

0
exp

(

−
α(t − s)
1−α

)

d f(t)
dt

ds. (25)

With the operator (25) if we have constant (f (t) =C= const.) then as in the classical Caputo derivative [21] we have
CFDα

t f (t) = 0. In [3] an alternative definition of time-fractional (operator) derivative (25) was suggested, namely

CFDα
t =

α
(1−α)2

∫ t

a0

(

f (t)− fa0(s)
)

exp

(

−
α

1−α

)

ds, t > 0. (26)

The Laplace transform ofCFDα
t f (t) with a0 = 0 given withp variable is [20]

LT [CFDα
t f (t)] =

pLT [ f (t)− f (0)]
p+α(1− p)

. (27)

Both the applications and the properties of the Caputo-Fabrizio time-fractional operator25 are intensively
investigated and for about two years after [20,22] numerous articles have been published, among them: mass-spring
damped systems [23], fractional electric circuit [23,24], the Keller-Segel model [25], groundwater flow [26], mechanics
and heat transfer of non-Newtonian fluids [27], long wave equations [28] pure mathematical studies [29,30,31] and
provoking new computational techniques [32,33], and innovations in creation of fractional derivatives with
Mittag-Leffler kernels [34,35].

In most of the articles published in the last 2 years after [20,22], the common approach is:a just simple change
(replacement) of the integer-order time-derivative in theexisting models by a time-fractional counterparts[23,25,26,28,
33]. This is a formalistic fractionalization, since the appearance of time-fractional derivativeshould come from
constitutive laws related to real physical processes with relaxations. In cases of time-fractional derivatives of
Riemann-Liouville or Caputo type the formalistic fractionalization is assumed as a rule in purely mathematical articles
and this approach was seriously criticized in [37] (Chapter 7). Now, turning on the Caputo-Fabrizio time-fractional
derivative, it was demonstrated in [38] that starting from the Cattaneo constitutive equation [16] and using Jeffrey’s
kernel [39] the Caputo-Fabrizio time-fractional derivative appearsnaturally in the transient heat conduction (diffusion)
equation, but this does not affect the integer-order time derivative. The same approach was used to develop a model with
space-memory in the steady state heat conduction [40]. The analysis and the consequent derivation of the diffusion
equations in this article are not based on the formalistic fractionalization approach and begin from constitutive equations
related to the flux relaxation.
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3 Towards the Dodson Equation with Non-Singular Memory

3.1 A Model with a Single Memory

Now, we define the Cattaneo equation as a diffusional flux constitutive equation. For the sake of simplicity, let us consider
a virgin medium subjected to a mass load atx= 0 , that is the following initial and boundary conditions take place

C(x,0) =C(0,0) =C(∞, t) =Cx(x,0) =Cxx(x,0) = 0,C(0, t) = 0. (28)

Now we focus on eq.(24) and denoteF(x, t) = ∂ 2C(x, t)/∂x2 for the sake of simplicity in calculations. Then, from
(28) we haveF(x,0) = ∂ 2C(x,0)/∂x2 = 0.

Integrating by parts of the diffusion term of eq. (24) we get (in details)

β
∫ t

0
e−β (t−s)F(x,s)ds=

[

e−β (t−s)F(x, t)
]s=t

s=0
+β

∫ t

0
e−β (t−s) [F(x, t)−F(x,s)]ds. (29)

Finally ,

β
∫ t

0
e−β (t−s)F(x,s)ds=

(

1−e−β t
)

F(x, t)+β
∫ t

0
e−β (t−s) [F(x, t)−F(x,s)]ds. (30)

It noteworthy that if the lower terminal of the memory integral is−∞, as in the original Cattaneo concept (see eq.(4), then
the first term in (12) is

[

e−β tF(x, t)
]s=t

s=0 = 0 and the exponential terms of (30) will be lost. Hence, one again, it is more
realistic to use the second form of the Cattaneo constitutive equation presented by eq. (23) or eq.(24). In terms of the
original variableC(x, t) we may present (30) as

β
∫ t

0
e−β (t−s) ∂ 2C(x,s)

∂x2 ds=
(

1−e−β (t)
) ∂ 2C(x, t)

∂x2 +β
∫ t

0
e−β (t−s)

(

∂ 2C(x, t)
∂x2 −

∂ 2C(x,s)
∂x2

)

ds. (31)

The second term in the right-hand side of (31) matches the definition of the Caputo-Fabrizio fractional derivative presented
by eq.(26). As it was demonstrated in [38] that this term can be considered as apro-Caputo(non-normalized) derivative
denoted aspcD

β
t with a lower terminal at 0. In terms ofC(x, t) we may express two equivalent forms ofPCDβ

t , following
[20] , namely

PCDβ
t

(

∂ 2C(x, t)
∂x2

)

= β
∫ t

0
e
−β(t−s)

(

∂ 2C(x, t)
∂x2 −

∂ 2C(x,s)
∂x2

)

ds, (32)

PCDβ
t

(

∂ 2C(x, t)
∂x2

)

= β
∫ t

0
e
−β(t−s) d

dt

(

∂ 2C(x,s)
∂x2

)

ds. (33)

Since the rate constantβ ∈ (0,∞) controls the exponential kernel, thenPCDβ
t can be arranged in the form defined by (25)

with a fractional orderα . From this concept it follows that forα ∈ [0,1] =⇒ 1/β ∈ [0,∞]. Consequently, the following
relationships are valid [20,22]

1
β

=
1−α

α
∈ [0,∞],α =

1
1+1/β

∈ [0,1],
α

(1−α)2 =
β

(1−α)
. (34)

From the definition (25) [20,22] we get

∂CFDα
t

(

∂ 2C(c, t)
∂x2

)

=
N(σ)

σ PC
Dt

(

∂ 2C(x, t)
∂x2

)

= β
M(α)

(1−α)

∫ t

0
e
−β(t−s) d

dt

(

∂ 2C(x,s)
∂x2

)

ds, (35)

or equivalently

CFDα
t

(

∂ 2C(c, t)
∂x2

)

=
N(σ)

σ PC
Dt

(

∂ 2C(x, t)
∂x2

)

=
α

1−α
M(α)

(1−α)

∫ t

0
e
−β(t−s) d

dt

(

∂ 2C(x,s)
∂x2

)

ds. (36)

with ((1−α)/α)N(σ) = M(α)/(1 − α) and σ = 1/β ; N(σ) and M(α) are normalizing functions [20,22].
Consequently, we get

CFDα
t

(

∂ 2C(c, t)
∂x2

)

=
M(α)

(1−α)

∫ t

0
e
−β(t−s) d

dt

(

∂ 2C(x,s)
∂x2

)

ds. (37)
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By help of the definition (26) (see the normalizing functionα/(1−α)2 ), consideringM(α) = 1 as in [1,2] and mainly
using the results (31) and (36) we may write the diffusion term of (24) in the form

β
∫ t

0
e−β (t−s) ∂C(x,s)

∂x2 ds= D0

(

1−e−β t
)

(

∂ 2C(x, t)
∂x2

)

+D0(1−α)
1

1−α

∫ t

t
e−

−α
1−α (t−s) d

dt

(

∂ 2C(x,s)
∂x2

)

ds. (38)

Finally, the new form of equation (24) is

∂C(x, t)
∂ t

= D0

(

1−e−β t
) ∂ 2C(x, t)

∂x2 +D0(1−α)CFDα
t

(

∂ 2C(x, t)
∂x2

)

. (39)

For t = 0 when practically no relaxation exists(τ ≈ 0⇒ β → ∞) we getD0(1−e−β t)≈ D0 and the diffusion coefficient

has a maximal valueD0 . Further,D0(1−e−β t) can be re-arranged asD0e−β t
(

1−e−β t

e−β t

)

. However, ifβ t << 1 we may

approximate the exponential term as a series 1− β t + ((β t)2/2) +O((β t)3). Using only the first two terms we have

e−β t
≈ 1−β t and consequently the term

(

1−e−β t

e−β t

)

approximates asβ t/(1+β t)≈ O(1) . Hence, with the assumption

β t = t/τ << 1 we get
∂C(x, t)

∂ t
≈ D0e−β t ∂ 2C(x, t)

∂x2 +D0(1−α)CFDα
t

(

∂ 2C(x, t)
∂x2

)

. (40)

The first term in the right-hand side of (40) matches the diffusion term of the Dodson equation. Forα = 1, formally we get
the Dodson equation (6). However, this statement should be regarded in view of the fact that whenβ → ∞ we haveα → 1
andτ → 0 . Therefore, from the results developed to this point the Dodson equation is an approximation corresponding
to situations whenβ t = t/τ << 1 andα → 1 . Decreasing inα, that physically means increasing in the damping effect
to the mass flux propagation, the weight of the last term in (39) increases, but the approximation which allowed to obtain
(40) is not valid yet.

3.2 A Model with Two Memories

3.2.1 Conjecture

Here we conceive a diffusional flux equationja =
∫ t

0 Ra(t,τ0,τs)
∂C(x,s)

∂x dswith a composite memory kernel presented by
the following constitutive relationship

Ra(t) = e−β0(t−s)
(

1−e−βs(t−s)
)

= e−β0(t−s)
−e−(β0+βs)(t−s). (41)

Ra(t) is a product of alarge-time exponential kernel e−β0(t−s) and ashort-time fading function
(

1−e−βs(t−s)
)

.

The constitutive equation (41) suggests thatτ0 >> τs and consequently we haveβ0 << βs. Thusβ0 corresponds
to large-time relaxation processes, whileβs accounts the short time relaxation mechanism. Moreover, the constitutive
relation β = β0 + βs means that the large-time and short-time relaxations occursimultaneously and overlap. Hence,
β = 1/τ = 1/τ0+1/τs and thereforeτ = τ0τs/(τ0+τs). When the time-scale of the diffusion process is order of magnitude
of τs, taking into account thatτs << τ0, the approximation islimt−→τsτ = τs andβ ≈ βs, that isβ = β0+βs ≈ βs when
only short-time relaxation has to be accounted for. Alternatively, when the time-scale of the process is comparable toτ0

then limt−→τ0τ = τ0 andβ = β0. In other words, for short times the term
(

1−e−βs(t−s)
)

dominates sincee−β0(t−s) has

little effect due to the fact thatβ0 << βs. For large times we have
(

1−e−βs(t−s)
)

−→ 1 and onlye−β0(t−s) remains as a

memory function.

3.2.2 Approximation of the Memory Integral

Now, following the conjecture, the approximation of the memory integral with the composite damping function is

(β0+βs)

∫ t

0

(

e−β0(t−s)
−e−(β0+βs)(t−s)

)

F(x,s)ds≈ β0

∫ t

0
e−β0(t−s)F(x,s)ds−βs

∫ t

0
e−βs(t−s)F(x,s)ds. (42)
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whereF(x, t) = ∂ 2C(x, t)/∂x2

Therefore, we have two distinguished memory integrals. Further, we will repeat the technique of integration by parts
in the right-hand side of (42) as it was done to the single-memory model, but now, to each memory integral separately.
Now, recall that from the conjectureβs >> β0 and consequently the factor of the first term in the right-hand side of (41)
can be approximated ase−β0t

≈ e−β0t
−e−βst becausee−β0t >> e−βst . After these final adjustments and approximations

the new time-fractional equation with two memories, and skipping the huge expressions (that could be easily performed
by the readers) we get

∂C
∂ t

= D0 [P(x, t,α)−Q(x, t,α)] . (43)

Where the diffusion term in (43) has two components

P(x, t,α) =
(

1−e−β t
) ∂ 2C(x, t)

∂x2 +(1−α0)CFDα0
t

[

∂ 2C(x, t)
∂x2

]

, (44)

Q(x, t,α) =
(

1−e−β t
) ∂ 2C(x, t)

∂x2 +(1−αs)CFDαs
t

[

∂ 2C(x, t)
∂x2

]

. (45)

Hence, the complete form of (43) is

∂C(x, t)
∂ t

= D0

[(

1−e−β0t
)

+(1−α0)CFDα0
t

] ∂ 2C(x, t)
∂x2 −D0

[(

1−e−βst
)

+(1−αs)CFDαs
t

] ∂ 2C(x, t)
∂x2 . (46)

For β0t << βst and certainly, whenβ0t << 1 the first term in (46) reduces toD0e−β0t as it was demonstrated with
(40).

When the short time relaxation (damping effect) is neglected, that is whenαs = 1, we get the model with a single
memory. Besides, when the relaxations in the mass flux are generally neglected, that is whenα0 = αs = 1 , we obtain
the classical integer-order Dodson equation (6) with fading diffusion coefficient. This does not contradict the fact that the
terme−β0t remains and this point will be especially discussed when thevalues of the fractional orders have to be specified.

The negative sign of the short-time memory term simply meansthat short-time relations effects, if they exist, accelerate
the total diffusion process. To be exact, let see the construction of the two-memory relaxation kernel and its logical origin.
The short time relaxation is modeled by the diminishing function

1−e−
(t−s)

τs = 1−e−βst . (47)

In fact, this is the fading time-dependent function of the penetration depthδ (t) (see eq. (15) and the related comments).
The function (47) appears in the non-linear transformu =

∫ t
0 e−β tdt =

(

1−e−β t
)

/β used by Dodson [1] (see also the
book of Crank [8]). It rapidly grows from zero to unity forβ t ≈ 10 (see Fig. 1).

The expanded expression ofRa(t) can be approximated as (see eq.(41)

Ra(t) = e−β0(t−s)
−e−(β0+βs)(t−s)

≈ e−β0(t−s)
−e−βs(t−s). (48)

Hence, we have a counter-current action of the relaxation kernels, which means that the short-time kernel reduces the
damping effect of the effect of large-time kernel, thus accelerating the diffusion process; the same as it was commented
about eq. (41).

3.3 Fractional Order: How to Define It?

The definition of the fractional orderα if of primary importance since the models developed should be practically
implemented or at least to be used in numerical simulations.Hence, the reasonable question is: How to calculate the
fractional orderα if the process parameter such asD0 and the length scalea are known? We will start the answer with
the single-memory model as an instructive example.

The definition of the stretched exponentialexp[−β (t − s)] shows directly that the dimensions ofβ is [1/s] . However,
while the fractional orderα is dimensionless, the rate constantβ (α) = α/(1−α) has a dimensions of[1/s], or more
precisely the ratio(1−α)/α has a dimension of time. Now, the question is how this conflictcould be avoided? To
overcome the problem we define a time scale that can be defined by the initial conditions of the diffusion process. With
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Fig. 1: Short time relaxation kernel 1−e−β t as a function of the rate constantβ and the time t .

D0 and the length scalea (we use the same notation as Dodson [1]) of the area where the diffusion takes place the
characteristic diffusion time istD = a2/D0 and consequently the timet can be scaled as̄t = t/tD = D0t/a2. In fact the
dimensionless timet/tD is the Fourier numberFo= D0t/a2 defined through the initial diffusivityD0. Now we turn on the
stretched exponential which can be rescaled as

exp[−β0(t − s)] = exp

[

−
(t − s)

τ0

]

= exp

[

−

(

tD
τ0

)

(t̄ − s̄)

]

. (49)

Hence, from the definition of the fractional orderα0 we have

α0

1−α0
=

tD
τ0

=
1

0De
= β0tD =⇒ α0 =

1
1+ tD/τ0

, (50)

or equivalently

α0 =
1

1+(τ0D0/a2)
=

1
1+(D0/β0a2)

=
1

1+0 De
< 1. (51)

The ratioτ0/tD = τ0D0/a2 =0 De is the Deborah number for the macroscopic (large-time) diffusion relaxation process
defined by analogy with the non-Fickian diffusion in complexsystems [41,42] . Hence, with known values ofa,τ0, and
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D0 we will be able to define0De, and then to calculateα0 . When relaxation does not exist, that is forτ0 = 0 we have
0De= 0 andα0 = 1 .

Similarly, for the short-time relaxation function with known τs = 1/βs we may calculate the short-time Deborah
numbersDe= τs/tD and consequentlyαs = 1/(1+sDe).

The plots in Fig.2 demonstrate the functional relationshipα = α(De). It is obvious that the lovely value ofα = 0.5,
commonly used in numerical simulations, corresponds toDe= 1, that is when the relaxation time equals the characteristic
diffusional time of the systems, i.e. whenτ = a2/D0. The relationships (50) and (51) are quite informative from physical
point of view and may be constructive in interpretations of the phenomena behind the model. In addition, similar approach
relating the process parameters to the fractional order in case of steady-state heat diffusion (with a spatial memory of
Caputo-Fabrizio type) was developed in [40].

Further, we may present the short-time memory kernel as a function of the fractional orderα and the Fourier number.
This new presentation indicates that forα → 1 and short times, i.e. low Fourier numbersRa(short times) = 1−e−βs(t−s) =

1−e(−α/(1−α))Fo rapidly grows to 1 (see Fig.3a). The decrease in the value ofα hinders the increase ofRa(short times) at
very short times. With increase inFo the damping effect ofα is stronger forα < 0.5 (see Fig.3b and Fig.3c).

Fig. 2: Functional relationship α = α(De) defining the fraction order as a function of the Deborah number .

3.4 Complete Fractional Expressions of the Dodson Equationwith Memory

At this point we focus the attention on the single time-relaxing term of integer order, that is the decaying diffusion
coefficientD0e−β t . Following the technology applied to the exponential memory kernel we may present the diffusion
coefficient as (taking into account the relationships (50))

D0exp(−β0t) = D0exp

(

−β0tD

(

t
tD

))

= D0exp

(

−
α0

1−α0
Fo

)

. (52)

From the relations

β0tD =
1

0De
=

tD
τ0

=
α0

1−α0
,

τ0

tD
=

1−α0

α0
, (53)

it follows directly that if no relaxation exists, that is forτ0 = 0 we getα0 = 1 and consequentlyD = D0. However,
considers this comment with caution when interpret the physics behind the model because it affects the diffusion
coefficient of the original Dodsons equation, especially when it is expressed through the fractional orderα, as it s
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Fig. 3: Short time relaxation kernel 1−exp
(

−
α

1−α Fo
)

as a function of the fractional order α and the Fourier number Fo

demonstrated next. Now, we may express two extended Dodson equations (39) and (46) in complete fractional forms,
namely

Single-memory Model

∂C(x, t)
∂ t

=

(

1−e
−

α0
1−α0

Fo
)(

∂ 2C(x, t)
∂x2

)

+D0(1−α0)CFDα0
t

(

∂ 2C(x, t)
∂x2

)

. (54)

Two-memory Model

∂C(x, t)
∂ t

= D0

[(

1−e
−

α0
1−α0

Fo
)

+(1−α0)CFDα0
t

]

∂ 2C(x, t)
∂x2 −D0

[(

1−e−
αs

1−αs
Fo
)

+(1−αs)CFDαs
t

] ∂ 2C(x, t)
∂x2 . (55)

When memory effects do not exist, i.e. forα0 = αs = 1 both models reduce to an ordinary diffusion equation with a
diffusion coefficientD0

∂C(x, t)
∂ t

= D0
∂ 2C(x, t)

∂x2 . (56)

If the assumptionβ0t << 1 is applicable, then the reduction of the single-memory model (39) to (40) is a valid operation.
This simply means that forα0 → 1, as well as forαs → 1 we get

∂C(x, t)
∂ t

≈D0e−β0t ∂ 2C(x, t)
∂x2 . (57)
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The reference sources [1,2,3,4,5,6,7] for systems where the Dodson equation was conceived as a model reveal that
the order of magnitude ofD0 is 10−20m2/s. Moreover Dodson commented thatthe relaxation timeτ can be million of
years(Sic!) [1]. This makesβ = 1/τ extremely small value allowing the approximationβ0t << 1 to be accepted as a
reasonable step. Now, using (52) we may express (57) as

∂C(x, t)
∂ t

≈Dα

(

∂ 2C(x, t)
∂x2

)

,Dα = D0e
−

α0
1−α0

Fo
. (58)

Regarding equation (57), if we forget for a while about the idea to use memory integral, it may be considered as a
version of the integer-order Dodson equation (1) but now controlled by a single parameterα ∈ [0,1]⇒ β ∈ [0,∞], which
can be defined in a way demonstrated above. The variations ofDα/D0 = exp(− −α

1−α Fo) with α andFo are shown in Fig.4.

Fig. 4: Dimensionless exponential diffusion coefficient ofDodson as a function of the fractional orderα and the Fourier number
Fo.

4 Comments of the Results and Some Ideas Beyond

4.1 What Really We Derived Starting from the Constitutive Equation of Cattaneo? A Comparative
Analysis.

Now, we have to stress the attention on the single-kernel model presented in two equivalent forms: (24) and (54). Actually,
we derived in straightforward manner the complete diffusion equation (Fourier or Fick) presented through the Caputo-
Fabrizio time-fractional operator (derivative). However, there are three alternative forms of the diffusion equation in
terms of the Caputo-Fabrizio operator which arestrongly dependent on the kernel in the initially assumed constitutive
equations. We will comment them in order to demonstrate how the different initial approaches are resulting in different
forms of expressions as well as to project the results of thisstudy on the area of existing ones in the literature.

In the second article of Caputo and Fabrizio [22], just a year ago, the associate fractional integral to the derivative (25)
was defined as (section 7 of [22])

0Iα f (t) =
1
α

∫ t

0
f (s)exp

(

−
1−α

α
(t − s)

)

ds, α ∈ [0,1]. (59)
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It is noteworthy that the fractional factor ( the temporal rate constant depending onα) in the exponential kernel
(1−α)/α is reciprocal to the factor used in the kernel of the derivativeα/(1−α) (25). Forα = 0 this definition provides
directly the functionf (t) as well as it follows that

d
dt

(0Iα f (t)) =
1
α

f (t)−
1−α

α 0
(Iα f (t)) . (60)

Caputo and Fabrizio suggested the following constitutive equation for the flux (in terms used here) [22]

j(t) =−D0

(

0Iα f (t)

[

∂C(x, t)
∂x

])

=−D0
1
α

∫ t

0

∂C(x,s)
∂x

exp

(

−
1−α

α
(t − s)

)

ds. (61)

Applying the rule (60) to the constitutive equation (61) we get (eq.(33) in [22])

d
dt

j(t) =−
D0

α
∂C(x, t)

∂x
−

1−α
α

f (t). (62)

Equation (62) coincides with the Cattaneo-Maxwell equation (63)

α
1−α

d
dt

j(t) =− j(t)−
D0

1−α
. (63)

This equation reduces (forα = 0) to the Fourier (Fick) lawj(t) =−D0
∂C(x,t)

∂x .
Recall, that if the constitutive equation is defined as (23) (or (24) ) the same result can be derived forα = 1, which is

in agreement with the definition of the fractional derivative (25). In accordance with the definition (25) for α = 1 there is
no time delay, i.e. by definitionτ = 0⇒ β → ∞ ⇒ α → 1.

Now, applying the mass balance equation (16) we obtain an alternative form of the diffusion equation [22], namely

∂C(x, t)
∂ t

= D0
∂ 2C(x, t)

∂x2 +
1−α

α

[

1
α

∫ t

0

∂C(x, t)
∂x

exp

(

−
1−α

α
(t − s)

)

ds

]

. (64)

For α = 1 we get the diffusion equation without delay.
The specific feature of (64) is thatthe last term is expressed through the associate fractionalintegral ((61)) instead

the Caputo-Fabrizio time-fractional derivative, as it is in the developed here diffusion model. It easy to check that in (64)
the fractional orderα is related to the Deborah number by the relation (51) in a manner demonstrated in section 3.3.

It is quite clear that, despite the task to derive the diffusion equation in terms ofCFDα
t , the final form of the equation

is strongly dependent on the constitutive equation relating the flux and the gradient. In this context, exploring the idea of
heat waves [39], when the relaxation kernel is of Jeffrey typeRJP = k1δD(s)+(k2/τ)exp(−sτ/) , whereδD is Dirac delta
function [19,39] (the case of transient heat conduction was at issue, so we preserve the original notations) the constitutive
relation about the flux is

q(x, t) =−k1
∂T(x, t)

∂x
−

k2

τ

∫ t

−∞
e(−

t−s
τ ) ∂T(x, t)

∂x
ds. (65)

In (65) k1 andk2 arethe effective thermal conductivityandthe elastic thermal conductivity, respectively. In this case
the Fourier law (16) leads to the Jeffrey type integro-differential equation [19]

∂T(x, t)
∂ t

= a1
∂ 2T(x, t)

∂x2 +
a2

τ

∫ t

−∞
e(−

t−s
τ ) ∂T(x, t)

∂x
ds. (66)

Herea1 = k1/ρCp anda2 = k2/ρCp arethe effective thermal diffusivityandthe elastic thermal diffusivity, respectively;
ρ is the density whileCp is the heat capacity of the medium.

This equation can be expressed in terms ofCFDα
t by the relationτ ≡ (1−α)/α and the analysis performed in [38]

resulted in

∂T(x, t)
∂ t

= a1
∂ 2T(x, t)

∂x2 +a2(1−α)
∂ 2T(x, t)

∂x2 , t > 0. (67)

Hence, the models expressed in terms ofCFDα
t , i.e. (39) and equally (54) and (67), are equivalent to (64) where the

relaxation of the flux is represented by the fractional integral 0Iα .
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Actually, this work demonstrated the derivation of an alternative form of the diffusion equation in terms of Caputo-
Fabrizio time-fractional derivative. For very big relaxation timesτ (that is whenβ << 1 corresponding toα → 0 ) reduces
to the fractional version (see (39) and forα = 1 to the original integer-order version of the Dodson equation (6).

At the end of this point, the formulated two-memory model is astep beyond the outcome of the task focusing the
derivation of the Dodson equation from basic constitutive relationship about the flux relation. This model constitutesa
two-kernel composite memory function physically based on the assumption that local disturbances causing short-time
transients affect the gross relaxation process. This modelreduces simply to the single-kernel memory model when the
short-time memory is neglected and further to the original Dodson equation expressed through a fractionalized diffusion
coefficient.

4.2 The Task is Completed and What are the Main Outcomes?

Therefore, we derived fractional diffusion equation with exponentially decaying in time diffusivity in terms of the Caputo-
Fabrizio time-fractional derivatives straightforwardlystarting from the constitutive equation of Cattaneo. Moreover, we
demonstrated that the original equation of Dodson is a particular case of the single-memory fractional model.

The developed functional relationshipα = α(De) allows calculating the fractional order,a fact that is essentially
missing in the existing publications involving time-fractional Caputo-Fabrizio derivatives, as well as in the models
discussed in preceding section. Moreover, the expression of the original model of Dodson, with diffusion coefficient
expressed through the fractional orderα and the Fourier number (see eq.(54)) is a step ahead in modeling with this
equation, which demonstrates a little progress since the time of it invention.

The formulated two-memory model is a step beyond the outcomeof the task focusing the derivation of the Dodson
equation from basic constitutive relationship about the flux relaxation. This model constitutes a two-kernel composite
memory function physically based on the assumption that local disturbances causing short-time transients affect the
gross relaxation process. This model reduces simply to the single-kernel memory model when the short-time memory is
neglected and further to the original Dodson equation expressed through a fractionalized diffusion coefficient. To the
point where the extended versions of the Dodson equation as atime-fractional equation with Caputo-Fabrizio derivatives
was derived the task of this article is completed. Solutionseither analytical or numerical as well as tests to real physical
situations draw new projects and related ideas beyond the format of this article.

4.3 The Formalistic Fractionalization of the Dodson Equation and what is the Outcome

Finally we have to stress the attention that if we replace directly the time-dependent derivative in (1) by CFDα
t we getvia

a formalistic fractionalizationthe following equation

CFDα
t C(x, t) = D0e−β0t ∂ 2C(x, t)

∂x2 . (68)

However, in this case we have no real physically based reasons to expressβ through the fractional orderα sincea
constitutive relation about the flux relaxation is missing. We may suggest only, without a proof, as a conjecture, that (68)
may be derived mechanistically if the mass balance equationis expressed as

CFDα
t C(x, t) =−

∂ j
∂x

. (69)

This is a fractional replica of (16) if the diffusion coefficient is constitutedad hocasD0e−β0t . However, in this case
, as in the classical Fick (Fourier) equation, the fluxj should be related to the gradient with a memory integral where the
kernel is the Dirac delta function, which physically contradicts the use of the relaxation timeτ as a process parameter;
because immediately we get a model with unrelated relaxation parameters, i.e.α andτ. However, the analysis of eq.(54)
and the principle differences with respect to the models (55), (58) and (69) are beyond the scope of the present work.

5 Conclusion

The present article demonstrated a new derivation of the integer-order Dodsons equation starting from the Cattaneo
constitutive relation with exponential kernel. This approach resulted in a fractional order diffusion equation with
exponential diffusivity expressed through the fractionalorderα and the Fourier number. This models simply reduces to
the original Dodson equation.
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A principle result developed in this work is the developmentof a straightforward relation of the fractional order and
the Deborah number calculated as a ratio of the relaxation time to the characteristic diffusion time of the process.

A new model with two memories corresponding to large and short time relation effects was conceived. It reduces to
the single-memory model when the short-time relaxations are neglected.

Therefore the initial task to derive the Dodson equation in anew way resulted in generalized fractional diffusion
models. We hope this will be a good contribution to the area when they could be implemented as well as challenging tasks
for the modelers interested in applications of the Caputo-Fabrizio time-fractional derivative.
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