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Abstract: In this paper, we deal with the existence of solutions to tiegfency problem of a perturbed systexh;- A(t)x =
ef(x,sinwt,coswt, €) with three-point boundary condition. The topological teicjue is used to obtain existence theorem. Two
examples are given to illustrate our results.
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1 Introduction Etheridge and Rodrigue4d§], Rodriguez B7,38,39 and
[42]). In these cases, resonance happens where the

Consider the three-point (boundary value problem) BVP associated linear homogeneous BVP admits nontrivial

solutions.
X —A(t)x=ef (x,sinwt,cosat,£),0 <t < 1, 1) Recently, Mohamed et al.3R,34] established the
Mx(0) +Nx(n)+Rx1) = ¢, (2)  existence of solutions at resonance for the following

. nonlinear boundary conditions
whereM, N andR are constant square matrices of order y

A(t) is an n x n matrix with continuous entries, X — Alt)x
f:R"xR xR x (—&,&) — R"is a continuous function
ande € R such that € |< &, ¢ € R", n € (0,1), andw is Mx
a function ofe such thatw = (1+eu(e))™2, u(e) is a )
twice differentiable function of € such that WhereM,N andRare constantsquare matrices of order
p(0) = o # 0. Let T =wt = (1+eu(e))~2t and A(t) is an nxn matrix with continuous entries,
9t — (14 ep(e)) L E : [0 - R is  continuous,
dt F :]0,1) x R"x (—¢&p, &) — R" is a continuous function
wheregy >0,/ € R", n € (0,1) andg: R® — R" is

=H(t,x,&) = eF(t,x,€) +E(), 0<t <1, (3)
(0) +Nx(n) +Rx(1) = £+ £9(x(0),x(n),X(1)), (4)

The existence of solutions to two-point, three-point,
four-point or multipoint BVPs for ODEs at resonance . ) ) )
have been studied by a number of authors (see, fo igggnl;gli‘nst' Itrr]wgg]r’et;e)\//v?]?cpr:leg a d\l/ﬁars't%n I?/Ifirg:l%lgwe(ge
[eggmlei]ﬂ][z[ﬂlﬂ[gé]q[[z%ﬂ[aﬁl [[316?',, [[1196];],’ [[;(7)]] E% Piccinini, Stampacchia and VidossicBS) to prove the
[31]. [40], [43], [45], [48]). A great amount of work has €Xistence of solutions taBj, (4). In [34], by employing
been completed on the existence of solutions to BVPs fmthe. implicit functpn theorem sufficient c.ondltlons for the
nonlinear systems of first-order ODES at resonance whictfXiStence of solutions @}, (4) are established.
involve a small parameter (see, for examgdk [29], [30] In addition, Mohamed et al3@] used the Theorem of
and @1]). The resonance case for systems of first-orderBorsuk to show the existence of solutions ®) vith
difference and differential equations has been considere@oundary condition
by several authors (see for example Agarvid| Agarwal
and O'Regan 7], Agarwal and Sambandham3][ Mx(0) +Nx(n)+Rx1) = 0. (5)
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A result for computing the local degree of polynomials Lemma 1.Consider the system

whose terms of highest order have no common Iinearx,_A

factors is also presented.

(t)x (8)

In [9,10], Cronin gives examples of the entrainment where At) is an nx n matrix with continuous entries on
of frequency problem for a singularly perturbed systemthe interval [0,1]. Let X(t) be a fundamental matrix o8J.
for the case of periodic boundary conditions. In this Then the solution o) which satisfies the initial condition

paper, we establish analogues of these results fo
three-point and two-point BVPs adapting the approach o

Cronin [6,7].
By the chain ruled* = &4 the system) becomes

%( = (14+¢cu(e))A(t)x+ (1+¢eu(e))ef(x,sinT, cosT, €)

or
X = Alt)x+e [u(s)A(t)er (1+eu(g))f(x,sinT,cost, s)} :

Let
F(x,sinT,cosr, €)
= H(e)A(t)x+ (1 +eu(e))f(x,sinT,costT, €).
Then the systemlj becomes

%( = A(t)x+ €F (x,sinT,cosT, €). ©6)

We assume the following:

Assumption (D1). Let
f(x,sint,cost, €) = h(x, &) + k(sint, cost, €).

Our goal is to solve the following problem: Left) be the
solution of the BVP
dx

ar = At)x @)
subject to boundary condition®)( The problem is to

show that fore > 0, ¢ sufficiently small, there exists a
solution of the BVP §), (2) close tox(t) wherex(t) is the

(0)=c 9)
is X(t) = Y(t)Y~1(0)c where c is a constant n-vector.
Abbreviate Yt)Y1(0) to Yp(t). Thus Xt) = Yo(t)c.

Lemma 2Using Lemmd, let X(T) = Yo(T)c be a solution
of %‘ = A(t)x. Then any solution oBJ can be written as
(10)
(11)

The solution {0) satisfies the boundary conditior (
if and only if

X(1,c,€) =Yo(1)C
+ Jo Y (W)Y~ (ws)eF (x, sinws cosws €)ds

Mc+N(Yo(n)c+/OnY(n)Y’l(s)eF(xsinwscows s)ds)
+R<Y0(1)c+/(;1Y(1)Y*1(s)eF(x,sinws Cosws, e)ds) =/,

or equivalently
Zec=¢eN(c,a,n,€)+d,
where

(12)

£ = M+NYo (1) +R¥(1),
n
A(c,a,n,e) = _</o NY(n)Y ~1(s)F (x,sinws cosws €)ds

-1
+ /O RY(1)Y(9F (x,sinws cosws £)ds)
d=¢
and Xt,c, ¢) is the solution of§) given X0) = c.

Thus (2) is a system oh real equations irg,c1,---,Cn
wherecy,-- - ,c, are components af. The systemX?) is
sometimes called the branching equations.

solution of (7), (2). This is called the resonance or Remarl.32 Let xi,---,X, be a basis fofR" such that
entrainment of frequency problem. The entrainment ofxy,---,x is a basis forE;, and X1, -- ,X, a basis for
frequency has been observed in physical systems foE, .. Let P be the matrix projection onto Ke#” = E;,
centuries and has been studied mathematically for over and P,_, = | — P, wherel is the identity matrix. Thus
hundred years. The phenomenon can be described &%_, is a projection onto the complementary sp&Ge,
follows: ‘Suppose a periodic force is impressed upon aof E;, and

physical system which has a natural frequency of
oscillation and that the natural frequency is differentriro
the frequency of the impresses force. If the system then

oscillates with the frequency impresses force, we say thaW'thOUt loss of generality, we may assume

Pr2 =h, an_r =PyrandP, R =RP,;=0.

the entrainment occurs '(se€9]]. For example, the Pc=(c, G0, ,0) andPy_rc = (0,---,0,Cra1, -~ ,Cn)-
entrainment of frequency occurs in a model of cardiac oo Lo
Punkinje fiber given by Cronirg]. Let H be a nonsingular x n matrix satisfying

Hg - Pnfr. (13)

2 Preliminary Results Matrix H can be computed easily (see Cronifj)] The
nature of the solutions of the branching equations depends

We recall the following results of3p). heavily on the rank of the matrig’.
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3 Existence Results

We need to solvel) for c whene is sufficiently small.
The problem of finding solutions t®), (2) has become
the problem of solving the branching equatidr)(for c.
So considerX?2), which is equivalent to

L (P 4Prr)c=eA((R+Pr)ca,n,e)+d. (14)

Multiplying (14) by the matrixH and using 13), we have
Pi_rc=€eHA((P +Pyr)c,a,n,€) +Hd
(15)
where
HA (R + P r)C a,n,g)) =

—H( / NY(n
+/O RY(1)Y !

andHd = H/.

S)F (x,sinws cosws, £)ds

s)F (x, sinws cosws e)ds) ,

The following theorem gives a necessary condition for

the existence of solutions to the BVE) @nd @).

Theorem 1A necessary condition that) can be solved
for c, with | € | < &, for somegp > 0is RHd = 0.

Proof The proof is very similar to that of Theorem 1 of
[32] and is omitted.

Definition 1.[32] Let E; denote the null space d¥ and
let E,_; denote the complement &I of E;. Let R be the
matrix projection onto KerZ = E;, and R, =1 —BR,
where | is the identity matrix. Thus,R is a projection
onto the complementary space E of E. If E,_, is
properly contained inR" then E is an r—dimensional
vector space wher® < r < n. If ¢ = (cg,---,Cn), let
¢ =(cy,---,¢) and &' = (cr41,- -+ ,Cn), then define a
continuous mappin@; : R" — R', given by

®8(Cla"' 7Cr) = PI'H’/V(Cr @Cnir(crag)vaanv‘g)a

where where't™"(c", ) = c" " is a differentiable function
of ¢ and g, RH./ is interpreted as(H.#1,--- ,H.%).
Similarly we will sometimes identify,Bc and &'
Settinge = 0, we have

@0(C1,--- 7Cr) = PrHe/V(Cr S Pnfer,U,’LO)
where ¢-"(c",0) = P,_+Hd; note that from the context
c""(c,0) = PRyHd is interpreted as
c""(c",0) = (Hdr 11, -~ ,Hdp).

IfEr =R"and R =1, then R_; = 0. Since R_; =0t

follows that the matrix H is the identity matrix. Thus define

a continuous mappin@; : R" — R", given by
®e(c) = A (c,a,n,e).
Settinge = 0, we have

@y(c) = .4 (c,a,n,0).

Lemma 3(see CroninT] p. 297) LetP,.Hd = 0. Suppose
that

@3 (C1,C2) = kiC1 + kaCa + Vi (€1, C2)
®Z(C1,C2) = kaC1 + KaCa + Va(C1, C2)

where de<t k4> # 0 and fori = 1,2, the polynomial

Vi(c1, C2) consists of terms of the forkici*c)? whereq; +

02 > 2 andK is a constant. IBy is a ball with centre at the
origin and sufficiently small radius then

_ ki ko
d(®p,Bk,0) = sgn de<k3 k4> )

ki ko
k3 kg
A'is nonsingular it follows that there exist> 0 such that
givenc = (c1,Cz), we havel Ac|> | | c| . By assumption
onV;, for eachk > 0 there is a constaul; such that

|\/i(clac2) |§dk|c|27 i:1727

for c € By. Notice that forc € 9By we have| @p(c) |> 0.
Thus we choosk > 0 such that

Proof SetA = , and letA = supy -, | Ac|. Since

| @o(c) | = 1| c|—[V(c1,Cr) |
>1|c|—d|cl|?
=[c[(I—dk|c])
>0

for|c|< min{d'—k, 1}. Define the homotopy
H(c,A) = Ac+ AV(cy,C2), 0<A <1

Therefore if ¢ € dBx then | H(c,A) |> 0. Thus
0¢H(dB,A) for 0 <A <1 and therefore

d(®p, By,0) = d(A, By, 0) = sgn deh # 0.

Hence we conclude LemnBawith Theoren?.

Theorem 2(Compare with Theorem 6.12, p. 93 of
Cronin [6]) If Assumption (D1) is satisfied, and
d(®o,By,0) is defined forBy, a ball with centre at the
origin and sufficiently small radius, then for all
sufficiently small ¢, the system 1) has at least one
solution with the boundary conditions

Mx(0, Co,0) + Nx(n, Co,0) + RX(1, cp, 0) = Mx(0, c(¢), €)
+NX(1+;:IJ( €)’ ( ) )+RX(1+8/J( Bk C(&),E) :é,

(16)

wherec(0) = co.

As a consequence of Theorem 3.8, p. 69 of Cro@jnje
have the following Theorera.

Theorem 3If r = n, a necessary condition in order that
(12) has a solution c for eachwith | € |< g is ¢ = 0.
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4 Application to Second-Order Equations

In this section we use results of Section 3 to find solutions

to the three-point BVP
y' +16my = £f(y,y,sin4nwt,cos4mt, £),0 <t <1,
17)
2y(0) ~y(1/2) —y(1)=0, -y (1/2) +y(1) =0,
(18)
as well as the two-point BVP
y'+4m’y = ef(y,y,sin2mwt, cos2mt, £),0 <t < 1,
(19)
¥(0)=0, -y (0)+Y(1) =0,
(20)

wherew = (1+¢epu(e))~, u(e) is a twice differentiable

function ofe such tha(0) = pp andf € C(R? x R x R x

(—€0,%0);R). We will use the following facts in solving

the examples.
1/2
/ sin"4mscos"4rs ds+£ 0,
0
1
/ sin"4mscos"4rs ds# 0 (21)
0
if and only if bothn andm are even.

1
/ sin"2mscos"2mts ds#£ 0 (22)
0

if and only if bothn andm are even.

4.1 A Three-point BVP

Consider 17), (18). Then (L7) may be written as

dx

Pt

dx .

it —16mX1 + £ f (X1, %, Sin4rwt, cos 4w, €).  (23)
By the chain rule23) becomes

Xm

ar Xo+ EH(E)X2

%—);2 = —16n2x1+s[—16u(£)n2xl+

(1+ep(e)) f(Xq,X%2,SINAMTT, COS 4T, e)} . (29)

Writing (24), (18) into matrix form, we have

(&)~ (569 (2)¢
’ <—16H(<9)77’2L>l<(1‘?1):2L eu(e))f()) (25)

where
f() = f(Xq,X%2,SIN4rTT,COS 4T, €).

and

(6) (eto) + (o 3) (i)«

F (X1, X2, SIN47TT, COS 4T, €) =

( H(e)e )
—16u(&) Xy + (1+ g (€)) f (x1, %2, SINAMT, cOS 4T, €) )

The fundamental matrix

cos4ir
—47sin 4T

V(1) = e = ( sin4nT/(4n)> |

cos4r

Y1(1) = cos4Tr  — sind4rr /(4m)
4rmsind4rr cos4rtr '

cos4ir
Yo(T) = (—4nsin4nT

Yo(1/2) = (é 2) ;

and Yp(1) = <(1) (1)> Then by Lemma2, solving the

sin4rr/ (471))
cos4rtr ’

problem @5), (26) is reduced to that of solving
Zc=¢eN(c,a,n,e)+d for c. Thus we find¥ and
A (c.a,n,e).

Z =M+NY(1/2) + RY(1)
20 -10 10 —-10\ /10
:(oo)+<o —1)(01)*(0 1)(01)
~ (00
—\00/"
1 0 .
Rank.Z = 0. Leteg = 0) &=11 , be a basis for

Ker(.¥), andKer(.¥) = Span(e;,e). Let P, be the

matrix projection onto Ketf), P = (é 2) So
10

00
P=1-P = <OO>.SetH: <01> so thatH.Z = P,
and
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Now T =wt = (1+ eu(g))~*t where ate = 0, wt =t. Set
= 0, and xi(t,c,0) = cycosdtt + cpsindmt/(4m),

A(c,a,n,g) = X2(t,¢,0) = —47cy sin4mt + cpcos 4. Thus we obtain
l/2<—1 o) 10) 1
-G Y x e
0 0 -1/\01 ‘7’&(01702):/0 {Hoxz(s, ¢,0) cos 4ts
)Xo )
ds - -
((—16u<e>n2xl+ (1+eu(e)f() +16"2'j1°ij“4"3x1<s7 c0)-
L/-10\ [10\,- :
- (o 1) (01)Y "9 [n(xa(5,,0),%(5.¢,0)) + k(sin4ms, cos 41, 0) | }ds
1 167 Lo Sin 47T sin 4rrs
H(E)% 0)+ L HOSTE, (s ¢.0)—
dS + {“OX2(3707 )+ Xl(S7C7 ) X
((—16u(8)ﬂ2><1+(1+8u( £))f ())) /0 am amt
= (M(c,a,n,€),45(c,a,n,e€)), [h(xl(SC,O)’Xz(S,C,O))+k(5in4n37005471570)]}dS
1/2
where :/0 { loC1 Sin4mscos 4ts+ u0c2co§4ns
1/2 .
M(c,a,n,€) :/0 {H(&)x2(s,c,€) cos 4ts +47TC; o SN 4TTSCOS 4TS+ Lo Cp SiN? 475 — Sllins
sin4rs Cpsindrrs
+16mp(e) 4 a(sce) [h(clcos4ns+ o
_(1+s“(g))3|n4ns[h(xl(s’c’s)7xz(s’c’s)7g) —4nclsin4ns+czcos4ns)+k(sin4ns,cos4nso)}}ds
1
k(sin 4rts, cosms)]}ds +/0 { HoC1 SIN 4TTSCOS 4TS+ LIgCp COS 4TS
1 i . .
+/O {1(e)xa(s,c,€) cos ATs+ 1677 () S”;insxl(gq €) +41TCy Lo SN 4715COS 45+ Hocz Sir? 47ts
sin s _sin 47 [h(cl cos4rs+
—(1+u(e) 5 [ (5,C,), %2(5,C, ), &) An
o Cosin47ts —471C] SiN 4715+ €2 COS 4TTS)
+k(sin4ns7cos4157s)}}ds 4 1 2
and +k(3|n4ns7cos4rs70)]}ds
3HoC2
= +Vi(c1,¢2),
Aa(c,a,n,€) / {4nu(g)xa(s, ¢, €) sin4rts 2 101, 2)
— 161U (€)x1 (S, C, £) COS 4TS
+(1+eu(e))cos 47'[5[h(xl(s,C,e),xz(s,c,e),e)+ ®3(c1,¢p) = / {4710 (—4TIC, SIN 4TS+ Cp COS 4TS) Sin 47TS
k(sin 4rts, cos 4rs, s)} tds 16m 1oy O 4TS + C2 Afr;T4ns)cos4n_S
andf is defined inAssumption (D1)as +cos413[h(c S CoSin4rrs
l b
41

f():= f(x1,%,SIN4rTS,COS 4TS, €)
=h(x1(s,C, €),%2(s,C, €),€) + K(sin 4rts, cos 415, €).

—471C SiN 4115+ C) COS 47TS)

+K(sin 4rts, cos 4, 0)} }ds
Sinced = 0, it follows thatP,Hd = 0. Thus a necessary

condition of Theoreni is satisfied. We compute = 8 HoCy +V2(C1, ),

where fori = 1,2 thqe qpolynomiaM (c1,C2) consists of
_ {10\ (10)\ (AM(c,a,n,¢) terms of the formKc{*c)? whereq; + 0 > 2 andK is a
PHA(c 0.0, €) = (0 1) ( ) <</V2(C,0!,'7,8) constant. Now we apply Lemn@ Since

N (M(c,a,n,8)> »
. -
det<8n2uo (2) > #0,

Ma(c,a,n,€)
1(c,a,n,e) it follows that d(®p, By, 0) # 0. Hence fore sufficiently
( ‘ small, we conclude that by Theore2the problem 23)

Thus
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has at least one solution with the boundary condition ®3(c1,C2)
1
1 oCy — / {cos&lrrs[h(xl(s,c, 0),%2(s,c,0),0)
(2 0) <X1(0,00,0)> N (—1 0) <X1(1/2,CO,0)) n 12
00) { %(0,c0,0) 0 —-1) \x(1/2,c0,0) k(SN 47T, COS 4TS, 0)} 1ds
=10 Xl(l 0070) _ 20 Xl(oa C(E),E) + 1
0 1) \x(1,c0,0)) — {00/ \ x(0,c(¢),¢) = 8712;1001—// {c3cod4rms+
1/2

( 162 )
2
1

37C c3 maic, Y
= 8o, — ("t o~y T g)
If y=£ 0 andkis small enough they(c) # 0 for all c € By.
Sod(®p,Bk,0) = 0. Thus the branching equation has no
real solutions ife is sufficiently small. However, iff = 0,
and g # 0 then the polynomial:Dg(cl,cz) has roots in
Bk and, in particular, solutions exist. Indeed we can apply
Lemmas3. Since

-10 Xl(%vc(g)v’g) 2

( 0 —1) (x (;Lu(s)ijc £),€) 2 8r1010,) sin4mtsco 4mrs + yco 4rts)ds
(
(

wherec(0) = co.

Does the problem have nontrivial solutions?
Example 1: An example with local degree zero
In system 25, let f(xi,Xo,Sin4mr,cos4ir,e) =
X2COS4TT + X5Sin4mT + ycos4tr. Note also  that 3o
sindmt = sindr(1+ en(e))~'t at € = 0 is given by et(gnz ) # 0,
sin4mt. Assumption (D1)is satisfied since we have

h(x1(s,c,0),%2(s,¢,0),0) + k(sin4rt, cos 4, 0)
= c2cosi4nt + (2——|—CZ)COS24T[tSin4T[t
2

16
+1671°C3 Sin® 471t 4 ycos 4t

+(==2 — 87IC,Cy) SinP 47t cos 4t

Using condition 21), we obtain

Pg(c1.C2)
_ 3pocy /2{ S|n4ns
== A

[( 1(5,¢,0),%(s,¢,0),0)

+k(sin4rts, cos 4rs, 0)} }ds

B /01{ Slr;j-rns {h(X1(S, C, O)7X2(S, C, 0)7 0)

+k(sin4rts, cos 4rs, 0)} tds

3[1002 12 1 C1C2 .
= = — (== Amts sir?4
> A 1 o te C3) COSL ATTS Sin? 4TS
+16mc?sint4ms)ds
1 C1C2
47TS Sir? 4
/{471 T + C3) COS ATTS Sirf 4TS
+16mc?sint4ms)ds

3HoC2 C1C2
-T2 (128n2+67+3nzcl)

it follows thatd(®p, By,0) # 0. Hence for(e, y) # (0,0)

but small enough, we conclude that by Theor@nthe
problem @3) has at least one solution with the boundary
condition

(60) (eem) « (o %) Cezess)

(39 (ated)

~(39) (e (02 (e gers)
(@9 (mEmens) - (0

wherec(0) = co.

(@]

Remarkf the local degree at the origin and relative to a
small ball, By with center at the origin is nonzero, then
@p has at least one root iB¢. We note thai®y may have
solutions even if the local degree is equal to zero.

The following example indicates the degree is defined if
the radius oBy is sufficiently small.

Example 2: An example where local degree is nonzero

In system R5), let £ f (X1, X, SiN 47T, COS 4T, €) = £(X3 +
cos4rr). Note that cosAt = cos4t(1+¢en(e)) "t ate =

0 is given by cos#t. Assumption (D1)is satisfied since
we have

h(x1(t,c,0),%(t,c,0),0) + k(sin4nt, cos4rt, 0)
= 167%C2 sir? 47t — 871C1Co Sin 4t cos 4t
+C5CcoS 4Tt + cos 4.
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Using condition 21), we obtain 4.2 A Two-point BVP
CD&(cl,cz) Consider the BVPX9), (20). Then (L9) may be written as
3o 1/2 sin4rs dxg
=57 | e [ba(s .0 xp(s..0).0) - =%
+k(Sin47TS7COS4TS,O)}}dS %—);2 = —AmPxy + £ (X1, X2, Sin 27wt cos 2wt ). (27)
1 g .
_/ {S|24ns[h(xl(s,c,0),X2(S,C70)70) By the chain rule27) becomes
0 T
Xm
+k(sin4rts, cos 4, O)} }ds g = e tEH(Ex
_ 3u3027 dd_);z = —167%1 + £ | — 4u (&) X +
(1+ ep(e)) f(xq,X%2,SiN 21T, COS 2T, €) | -
®g(c1,C2) (28)
1 . . .
_ 8712#001—/ {cos 4715{h(x1(s, ¢,0),%(5.¢,0),0) Writing (28), (20) into matrix form, we have
1/2 Xm O 1 X
| () - (ar ) ()
+k(sin 43, cos 4rs, 0)} }ds o -4 0) \x
1 e p(€)%e
= —// {cog4ms}ds —41(&)TPx1 + (1+ e (€)) f (X, X, SIN 21T, COS 21T, €) ) *
1/2
29
__/1{cos8ns+1}dS @9
Y 2 1 0 (x(0)) , (00 (x(1)) _ (0 (30)
1 0-1/ \ x(0) 01)\x(1)) ~\0)"
= 87'[2[10C1 — Z
X1 0 1> <1 0)
where x = , A= , M = ,
The Jacobian is <X2> (—4712 0 0-1
0 3k R= (8 ?_)
det( 2 2 ) <0.
8my O F (X1, X2, SiN 21T, COS 21T, €) =
. . L . U(E)X2
Thus the local degree is -1, since the Jacobian is negativé . >
except the origin. Hence foe sufficiently small, we 4[1(8)7'[2X1+(1—|—EIJ(E))f(Xl,Xz,SII”IZHT,COSZ'lT,E).
The fundamental matrix
conclude that by Theoreithe problem 23) has at least cos2t  sin2mr/(2m)
one solution with the boundary condition Y(1) =M= _onSin2TT | COS AT )
_ _ 2t —sin2mnt/(2m)
2 0\ (x1(0,co,0) 1 0 (x(1/2,¢,0) Y-L(t) — ( cos )
(o 0) (xZ<o,co,0)) - ( 0 —1> (xZ(l/z,co,m " 2"5'”2"; ( )“’52”‘
cos2tr  sin2mr/(2m
—10)\ (x1(1,¢0,0) Yo(1) = (—2nsin2n‘r cos 21T > and
0 1) \x2(1,c0,0) 10
_ (20 x1(0,c(€), €) N Yo(1) = <O 1). Then by Lemma2, solving the problem
00/ \x2(0,c(e),€) (29, (30 is reduced to that of solving
10 X1(2(1+glp<g>>ac(5)=£) f;(zczaeﬁVégja,n,e) +d for c. Thus we find.¥ and
0 —1) \ %e(gremey c(€):€) T
) H Z =M+RY(1)
+(—1 O) Xl(1+gf(8)7c(£)78) _ <O) (10 N 00\ /10
01 X2(1+g“(5)7c(8)78) 0/ —\0-1 01/\01
wherec(0) = ¢p. Thus there exists at least one solutionto = (é 8) .
the BVP even if all the terms iKW, or V, vanish, because
the terms%cz and_8nzuoc1 are nonzero. ' Rank.Z = 1. Let E; denote the null space o . Thus
rl:loe:tzv;/?;how that in the following case the local degree |sezz (2) be a basis foker(.), andKer(.Z')=Span(ey).
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Let P, be the matrix projection onto Kef(), P, = 8 (1) . Assumption (D1)is satisfied since we have
SoP =I-P,= (é 8) .SetH = (é 2) sothaH.Z =Py, h(x.(t,c,0),%(t, c,0),0) + k(sinwt, coswt, 0) = c3cos 2t 4 cos 2.
and Using condition 22),
A (c,a,n,€) = 1
do(cp) = —/0 {cos 215(C3 cos’ 275+ cos 2s) }d's
1 (00 (10) [ cos2ts —sin2ms/(2m) 1 5 cos8ts 3. cos4ms+1
_/o (o 1) (o 1) (2nsin2ns cos 213 ) 8 = —/0 {B(—— +2c0osdms+ 2) + ===~ }ds
H(E)xe ds -3m 1
—41xa(s,c,e)p(e) + (1+ep(e)) f (%1, %, T1, T2, €) =~ 7
_ ( 0 ) 7 We apply the Intermediate Value Theorem whes- 1.
Aa(c,a..€) Since @p(0) = 1/2 > 0 and Pp(1) = =32 < o, it
where follows then thai®o(0)@p(1) < 1. Thus
1
Axfe.a.n.8) = = [ {2m(epe(s.c.e)sinzrs d(@o,(0,1),0) = —1.
—41%H(€) cos 2T (S, €, €) Hence for & sufficiently small, we conclude that by
+cos2ts(1+ e(u(e)) f(x1,X, T1,T2,€) }ds Theorem2 the problem 27 ) has at least one solution

andf (x1,Xp, T1, T2, €) = (X1, X2, SiN 27IWS COS 2TWS, €). with the boundary condition

Sinced = 0, it follows that RHd = 0. Hence the 1 0 (x(0,co,0) 0 0\ (x1(1,¢c,0)
condition of Theoreni is satisfied. In order to studg, 0 —1) \ x2(0,cop,0) tlo1 X2(1,¢o,0)
we must first obtainx(t,c,0), that is the solution of

1
X = A(t)x. By Lemmal, X = A(t)x has a solutiorx(t) - (1 0) (X1(07C(£)75)) 4 (0 O) <X1(1+5H<€)’C(g)’s))
with x(0) = ¢ = (0,c2)", wherex;(0) = 0 = c;. Thus 0-1)\e(0.c(e).8) )~ \0 1) \ ol ey (€, €)
(29), (30) has a solution it = 0 namely - <0)
. - O 9
xa(t,c,0) = 2SN2T
2m wherec(0) = cp.
X2(t,¢,0) = cpcos 2.
We compute
00\ /10 0 5 Conclusions
PH.¥(c,a,n,€) = <0 1) (0 1) (J;/Z(C’a’n’£)>
In this paper, the entrainment of frequency problem for a
= < 0 ) . perturbed system of first order ordinary differential
2(c,a.n.€) equations has been established by adapting the approach

_ 2 2_p _ (0 of Cronin [6,7]. It is shown that the problem
Tlh ui(DEP(CZ) B '/Vil(c ,aisn,s.) ' Wheref _OPZ = () :nd 9 — At)x +[slz](x,sinr,cosr,8) with three—po?nt and
¢' = Pc = (). Setting e = 0, we have g, ooint boundary conditions has a solutigft) For ¢

®o(c2) = A3(c? a,n,0), wherect(c?,0) = P.Hd = 0. gufficiently small, and this solution is close to the solatio

Using condition 22), we obtain of the problemd = A(t)x, the system whes = 0. This
1 ) is called the resonance or entrainment of frequency
Po(c2) = —/0 {2mo(c2 cos 2s) sin 2rs (31)  problem. The applications proposed in this paper for a

2-dimensional system of first-order equations can be

_Areopo C‘;S 18I 2rts extended to n-dimensional systems.
m
+cosZts{h(Ms,c2 COS4Ts) (32)
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