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Abstract: In this paper, we deal with the existence of solutions to the frequency problem of a perturbed system,x′ − A(t)x =
ε f (x,sinwt,coswt,ε) with three-point boundary condition. The topological technique is used to obtain existence theorem. Two
examples are given to illustrate our results.
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1 Introduction

Consider the three-point (boundary value problem) BVP

x′−A(t)x= ε f (x,sinwt,coswt,ε),0≤ t ≤ 1, (1)

Mx(0)+Nx(η)+Rx(1) = ℓ, (2)

whereM,N andRare constant square matrices of ordern,
A(t) is an n × n matrix with continuous entries,
f : Rn×R×R× (−ε0,ε0)→ R

n is a continuous function
andε ∈ R such that| ε |< ε0, ℓ ∈ R

n, η ∈ (0,1), andw is
a function ofε such thatw = (1+ εµ(ε))−1, µ(ε) is a
twice differentiable function of ε such that
µ(0) = µ0 6= 0. Let τ = wt = (1 + εµ(ε))−1t and
dτ
dt = (1+ εµ(ε))−1.

The existence of solutions to two-point, three-point,
four-point or multipoint BVPs for ODEs at resonance
have been studied by a number of authors (see, for
example [4], [12] [46], [47], [14], [15], [16], [17], [18],
[23], [24], [25], [26], [27], [44], [36], [19], [20], [21],
[31], [40], [43], [45], [48]). A great amount of work has
been completed on the existence of solutions to BVPs for
nonlinear systems of first-order ODEs at resonance which
involve a small parameter (see, for example [5], [29], [30]
and [41]). The resonance case for systems of first-order
difference and differential equations has been considered
by several authors (see for example Agarwal [1], Agarwal
and O’Regan [2], Agarwal and Sambandham [3],

Etheridge and Rodriguez [13], Rodriguez [37,38,39] and
[42]). In these cases, resonance happens where the
associated linear homogeneous BVP admits nontrivial
solutions.

Recently, Mohamed et al. [32,34] established the
existence of solutions at resonance for the following
nonlinear boundary conditions

x′−A(t)x= H(t,x,ε) = εF(t,x,ε)+E(t), 0≤ t ≤ 1, (3)

Mx(0)+Nx(η)+Rx(1) = ℓ+ εg(x(0),x(η),x(1)), (4)

whereM,N andRare constant square matrices of ordern,
A(t) is an n × n matrix with continuous entries,
E : [0,1] → R is continuous,
F : [0,1]×R

n× (−ε0,ε0) → R
n is a continuous function

whereε0 > 0 , ℓ ∈ R
n, η ∈ (0,1) and g : R3n → R

n is
continuous. In [32], they applied a version of Brouwer’s
fixed point theorem which is due to Miranda (see
Piccinini, Stampacchia and Vidossich [35]) to prove the
existence of solutions to (3), (4). In [34], by employing
the implicit function theorem sufficient conditions for the
existence of solutions to (3), (4) are established.

In addition, Mohamed et al. [33] used the Theorem of
Borsuk to show the existence of solutions to (3) with
boundary condition

Mx(0)+Nx(η)+Rx(1) = 0. (5)
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A result for computing the local degree of polynomials
whose terms of highest order have no common linear
factors is also presented.

In [9,10], Cronin gives examples of the entrainment
of frequency problem for a singularly perturbed system
for the case of periodic boundary conditions. In this
paper, we establish analogues of these results for
three-point and two-point BVPs adapting the approach of
Cronin [6,7].

By the chain rule,dx
dτ = dx

dt
dt
dτ , the system (1) becomes

dx
dτ

= (1+ εµ(ε))A(t)x+(1+ εµ(ε))ε f (x,sinτ,cosτ,ε)

or

dx
dτ = A(t)x+ ε

[

µ(ε)A(t)x+(1+ εµ(ε)) f (x,sinτ,cosτ,ε)
]

.

Let

F(x,sinτ,cosτ,ε)
= µ(ε)A(t)x+(1+ εµ(ε)) f (x,sinτ,cosτ,ε).

Then the system (1) becomes

dx
dτ

= A(t)x+ εF(x,sinτ,cosτ,ε). (6)

We assume the following:

Assumption (D1). Let
f (x,sinτ,cosτ,ε) = h(x,ε)+ k(sinτ,cosτ,ε).

Our goal is to solve the following problem: Let ¯x(t) be the
solution of the BVP

dx
dτ

= A(t)x (7)

subject to boundary conditions (2). The problem is to
show that forε > 0, ε sufficiently small, there exists a
solution of the BVP (6), (2) close to ¯x(t) wherex̄(t) is the
solution of (7), (2). This is called the resonance or
entrainment of frequency problem. The entrainment of
frequency has been observed in physical systems for
centuries and has been studied mathematically for over a
hundred years. The phenomenon can be described as
follows: ‘Suppose a periodic force is impressed upon a
physical system which has a natural frequency of
oscillation and that the natural frequency is different from
the frequency of the impresses force. If the system then
oscillates with the frequency impresses force, we say that
the entrainment occurs ’(see [9]). For example, the
entrainment of frequency occurs in a model of cardiac
Punkinje fiber given by Cronin [9].

2 Preliminary Results

We recall the following results of [32].

Lemma 1.Consider the system

x′ = A(t)x (8)

where A(t) is an n× n matrix with continuous entries on
the interval [0,1]. Let Y(t) be a fundamental matrix of (8).
Then the solution of (8) which satisfies the initial condition

x(0) = c (9)

is x(t) = Y(t)Y−1(0)c where c is a constant n-vector.
Abbreviate Y(t)Y−1(0) to Y0(t). Thus x(t) =Y0(t)c.

Lemma 2.Using Lemma1, let x(τ) =Y0(τ)c be a solution
of dx

dτ = A(t)x. Then any solution of (6) can be written as

x(τ,c,ε) =Y0(τ)c (10)

+
∫ τ

0 Y(ws)Y−1(ws)εF(x,sinws,cosws,ε)ds. (11)

The solution (10) satisfies the boundary conditions (2)
if and only if

Mc+N
(

Y0(η)c+
∫ η

0
Y(η)Y−1(s)εF(x,sinws,cosws,ε)ds

)

+R
(

Y0(1)c+
∫ 1

0
Y(1)Y−1(s)εF(x,sinws,cosws,ε)ds

)

= ℓ,

or equivalently

L c= εN (c,α,η ,ε)+d, (12)

where

L = M+NY0(η)+RY0(1),

N (c,α,η,ε) = −
(

∫ η

0
NY(η)Y−1(s)F(x,sinws,cosws,ε)ds

+

∫ 1

0
RY(1)Y−1(s)F(x,sinws,cosws,ε)ds

)

,

d = ℓ,

and x(t,c,ε) is the solution of (6) given x(0) = c.

Thus (12) is a system ofn real equations inε,c1, · · · ,cn
wherec1, · · · ,cn are components ofc. The system (12) is
sometimes called the branching equations.

Remark.[32] Let x1, · · · ,xn be a basis forRn such that
x1, · · · ,xr is a basis forEr , and xr+1, · · · ,xn a basis for
En−r . Let Pr be the matrix projection onto KerL = Er ,
and Pn−r = I − Pr , where I is the identity matrix. Thus
Pn−r is a projection onto the complementary spaceEn−r
of Er , and

P2
r = Pr , P2

n−r = Pn−r andPn−rPr = PrPn−r = 0.

Without loss of generality, we may assume

Prc= (c1, · · · ,cr ,0, · · · ,0) andPn−rc= (0, · · · ,0,cr+1, · · · ,cn).

Let H be a nonsingularn×n matrix satisfying

HL = Pn−r . (13)

Matrix H can be computed easily (see Cronin [7]). The
nature of the solutions of the branching equations depends
heavily on the rank of the matrixL .
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3 Existence Results

We need to solve (12) for c whenε is sufficiently small.
The problem of finding solutions to (6), (2) has become
the problem of solving the branching equation (12) for c.
So consider (12), which is equivalent to

L (Pr +Pn−r)c= εN ((Pr +Pn−r)c,α,η ,ε)+d. (14)

Multiplying (14) by the matrixH and using (13), we have

Pn−rc= εHN ((Pr +Pn−r)c,α,η ,ε)+Hd

(15)

where

HN ((Pr +Pn−r)c,α,η ,ε)) =

−H
(

∫ η

0
NY(η)Y−1(s)F(x,sinws,cosws,ε)ds

+

∫ 1

0
RY(1)Y−1(s)F(x,sinws,cosws,ε)ds

)

,

andHd = Hℓ.
The following theorem gives a necessary condition for

the existence of solutions to the BVP (6) and (2).

Theorem 1.A necessary condition that (15) can be solved
for c, with | ε |< ε0, for someε0 > 0 is PrHd = 0.

Proof The proof is very similar to that of Theorem 1 of
[32] and is omitted.

Definition 1.[32] Let Er denote the null space ofL and
let En−r denote the complement inRn of Er . Let Pr be the
matrix projection onto KerL = Er , and Pn−r = I −Pr ,
where I is the identity matrix. Thus Pn−r is a projection
onto the complementary space En−r of Er . If En−r is
properly contained inRn then Er is an r−dimensional
vector space where0 < r < n. If c = (c1, · · · ,cn), let
cr = (c1, · · · ,cr) and cn−r = (cr+1, · · · ,cn), then define a
continuous mappingΦε : Rr →R

r , given by

Φε (c1, · · · ,cr) = PrHN (cr ⊕ cn−r(cr ,ε),α,η ,ε),

where where cn−r(cr ,ε) = cn−r is a differentiable function
of cr and ε, PrHN is interpreted as(HN1, · · · ,HNr).
Similarly we will sometimes identify Pn−rc and cn−r .
Settingε = 0, we have

Φ0(c1, · · · ,cr) = PrHN (cr ⊕Pn−rHd,α,η ,0)

where cn−r(cr ,0) = Pn−rHd; note that from the context
cn−r(cr ,0) = Pn−rHd is interpreted as
cn−r(cr ,0) = (Hdr+1, · · · ,Hdn).

If Er = R
n and Pr = I, then Pn−r = 0. Since Pn−r = 0 it

follows that the matrix H is the identity matrix. Thus define
a continuous mappingΦε : Rn →R

n, given by

Φε (c) = N (c,α,η ,ε).

Settingε = 0, we have

Φ0(c) = N (c,α,η ,0).

Lemma 3.(see Cronin [7] p. 297) LetPrHd = 0. Suppose
that

Φ1
0(c1,c2) = k1c1+ k2c2+V1(c1,c2)

Φ2
0(c1,c2) = k3c1+ k4c2+V2(c1,c2)

where det

(

k1 k2
k3 k4

)

6= 0 and for i = 1,2, the polynomial

Vi(c1,c2) consists of terms of the formKcq1
1 cq2

2 whereq1+
q2 ≥ 2 andK is a constant. IfBk is a ball with centre at the
origin and sufficiently small radiusk, then

d(Φ0,Bk,0) = sgn det

(

k1 k2
k3 k4

)

.

Proof SetA=

(

k1 k2
k3 k4

)

, and letA= sup|c|≤1 | Ac |. Since

A is nonsingular it follows that there existl > 0 such that
givenc= (c1,c2), we have| Ac |≥ l | c | . By assumption
onVi, for eachk> 0 there is a constantdk such that

|Vi(c1,c2) |≤ dk | c |2, i = 1,2,

for c ∈ Bk. Notice that forc∈ ∂Bk we have| Φ0(c) |> 0.
Thus we choosek> 0 such that

| Φ0(c) | ≥ l | c | − |V(c1,c2) |

> l | c | −dk | c |2

= | c | (l −dk | c |)

> 0

for | c |< min{ l
dk
,1}. Define the homotopy

H(c,λ ) = Ac+λV(c1,c2), 0≤ λ ≤ 1.

Therefore if c ∈ ∂Bk then | H(c,λ ) |> 0. Thus
0 6∈ H(∂Bk,λ ) for 0≤ λ ≤ 1 and therefore

d(Φ0,Bk,0) = d(A,Bk,0) = sgn detA 6= 0.

Hence we conclude Lemma3 with Theorem2.

Theorem 2.(Compare with Theorem 6.12, p. 93 of
Cronin [6]) If Assumption (D1) is satisfied, and
d(Φ0,Bk,0) is defined forBk, a ball with centre at the
origin and sufficiently small radius, then for all
sufficiently small ε, the system (1) has at least one
solution with the boundary conditions

Mx(0,c0,0)+Nx(η ,c0,0)+Rx(1,c0,0) = Mx(0,c(ε),ε)

+Nx
(

η
1+εµ(ε) ,c(ε),ε

)

+Rx
(

1
1+εµ(ε) ,c(ε),ε

)

= ℓ,

(16)

wherec(0) = c0.

As a consequence of Theorem 3.8, p. 69 of Cronin [6], we
have the following Theorem3.

Theorem 3.If r = n, a necessary condition in order that
(12) has a solution c for eachε with | ε |< ε0 is ℓ= 0.
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4 Application to Second-Order Equations

In this section we use results of Section 3 to find solutions
to the three-point BVP

y′′+16π2y= ε f (y,y′,sin4πwt,cos4πwt,ε),0≤ t ≤ 1,

(17)

2y(0)− y(1/2)− y(1)= 0, −y′(1/2)+ y′(1) = 0,

(18)

as well as the two-point BVP

y′′+4π2y= ε f (y,y′,sin2πwt,cos2πwt,ε),0≤ t ≤ 1,

(19)

y(0) = 0, −y′(0)+ y′(1) = 0,

(20)

wherew = (1+ εµ(ε))−1, µ(ε) is a twice differentiable
function ofε such thatµ(0) = µ0 and f ∈C(R2×R×R×
(−ε0,ε0);R). We will use the following facts in solving
the examples.
∫ 1/2

0
sinn4πscosm4πs ds6= 0,

∫ 1

0
sinn4πscosm4πs ds6= 0 (21)

if and only if bothn andm are even.
∫ 1

0
sinn 2πscosm2πs ds6= 0 (22)

if and only if bothn andm are even.

4.1 A Three-point BVP

Consider (17), (18). Then (17) may be written as

dx1

dt
= x2

dx2

dt
= −16π2x1+ ε f (x1,x2,sin4πwt,cos4πwt,ε). (23)

By the chain rule (23) becomes

dx1

dτ
= x2+ εµ(ε)x2

dx2

dτ
= −16π2x1+ ε

[

−16µ(ε)π2x1+

(1+ εµ(ε)) f (x1,x2,sin4πτ,cos4πτ,ε
)]

. (24)

Writing (24), (18) into matrix form, we have
( dx1

dτ
dx2
dτ

)

=

(

0 1
−16π2 0

)(

x1
x2

)

+

ε
(

µ(ε)x2

−16µ(ε)π2x1(1+ εµ(ε)) f ()

)

(25)

where
f ( ) = f (x1,x2,sin4πτ,cos4πτ,ε).

and

(

2 0
0 0

)(

x1(0)
x2(0)

)

+

(

−1 0
0 −1

)(

x1(1/2)
x2(1/2)

)

+

(

−1 0
0 1

)(

x1(1)
x2(1)

)

=

(

0
0

)

, (26)

where x =

(

x1
x2

)

, A =

(

0 1
−16π2 0

)

, M =

(

2 0
0 0

)

,

N =

(

−1 0
0 −1

)

, R=

(

−1 0
0 1

)

, and

F(x1,x2,sin4πτ,cos4πτ,ε) =
(

µ(ε)x2
−16µ(ε)π2x1+(1+ εµ(ε)) f (x1,x2,sin4πτ,cos4πτ,ε)

)

.

The fundamental matrix

Y(τ) = eAτ =

(

cos4πτ sin4πτ/(4π)
−4π sin4πτ cos4πτ

)

,

Y−1(τ) =
(

cos4πτ −sin4πτ/(4π)
4π sin4πτ cos4πτ

)

,

Y0(τ) =
(

cos4πτ sin4πτ/(4π)
−4π sin4πτ cos4πτ

)

,

Y0(1/2) =

(

1 0
0 1

)

,

and Y0(1) =

(

1 0
0 1

)

. Then by Lemma2, solving the

problem (25), (26) is reduced to that of solving
L c = εN (c,α,η ,ε) + d for c. Thus we findL and
N (c,α,η ,ε).

L = M+NY0(1/2)+RY0(1)

=

(

2 0
0 0

)

+

(

−1 0
0 −1

)(

1 0
0 1

)

+

(

−1 0
0 1

)(

1 0
0 1

)

=

(

0 0
0 0

)

.

Rank L = 0. Let e1 =

(

1
0

)

, e2 =

(

0
1

)

, be a basis for

Ker(L ), and Ker(L ) = Span(e1,e2). Let P1 be the

matrix projection onto Ker(L ), P1 =

(

1 0
0 1

)

. So

P2 = I −P1 =

(

0 0
0 0

)

. SetH =

(

1 0
0 1

)

so thatHL = P2

and
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N (c,α,η ,ε) =

−

∫ 1/2

0

(

−1 0
0 −1

)(

1 0
0 1

)

Y−1(s)×

(

µ(ε)x2

(−16µ(ε)π2x1+(1+ εµ(ε)) f ())

)

ds

−

∫ 1

0

(

−1 0
0 1

)(

1 0
0 1

)

Y−1(s)×

(

µ(ε)x2

(−16µ(ε)π2x1+(1+ εµ(ε)) f ())

)

ds

= (N1(c,α,η ,ε),N2(c,α,η ,ε)),

where

N1(c,α,η,ε) =
∫ 1/2

0
{µ(ε)x2(s,c,ε)cos4πs

+16π2µ(ε)
sin4πs

4π
x1(s,c,ε)

−(1+ εµ(ε))
sin4πs

4π

[

h(x1(s,c,ε),x2(s,c,ε),ε)

k(sin4πs,cos4πs,ε)
]

}ds

+
∫ 1

0
{µ(ε)x2(s,c,ε)cos4πs+16π2µ(ε)

sin4πs
4π

x1(s,c,ε)

−(1+ εµ(ε))
sin4πs

4π

[

h(x1(s,c,ε),x2(s,c,ε),ε)

+k(sin4πs,cos4πs,ε)
]

}ds,

and

N2(c,α,η ,ε) =−
∫ 1

1/2
{4πµ(ε)x2(s,c,ε)sin4πs

−16π2µ(ε)x1(s,c,ε)cos4πs

+(1+ εµ(ε))cos 4πs
[

h(x1(s,c,ε),x2(s,c,ε),ε)+

k(sin4πs,cos4πs,ε)
]

}ds,

and f is defined inAssumption (D1)as

f ( ) := f (x1,x2,sin4πs,cos4πs,ε)
= h(x1(s,c,ε),x2(s,c,ε),ε)+ k(sin4πs,cos4πs,ε).

Sinced = 0, it follows thatP1Hd = 0. Thus a necessary
condition of Theorem1 is satisfied. We compute

P1HN (c,α,η ,ε) =
(

1 0
0 1

)(

1 0
0 1

)(

N1(c,α,η ,ε)
N2(c,α,η ,ε)

)

=

(

N1(c,α,η ,ε)
N2(c,α,η ,ε)

)

.

Thus

Φε (c1,c2) =

(

N1(c,α,η ,ε)
N2(c,α,η ,ε)

)

.

Now τ = wt = (1+ εµ(ε))−1t where atε = 0, wt = t. Set
ε = 0, and x1(t,c,0) = c1cos4πt + c2sin4πt/(4π),
x2(t,c,0) =−4πc1sin4πt+ c2cos4πt. Thus we obtain

Φ1
0(c1,c2) =

∫ 1/2

0
{µ0x2(s,c,0)cos4πs

+
16π2µ0sin4πs

4π
x1(s,c,0)−

sin 4πs
4π

×
[

h(x1(s,c,0),x2(s,c,0))+k(sin4πs,cos4πs,0)
]

}ds

+
∫ 1

0
{µ0x2(s,c,0)+

16π2µ0sin4πs
4π

x1(s,c,0)−
sin 4πs

4π
×

[

h(x1(s,c,0),x2(s,c,0))+k(sin4πs,cos4πs,0)
]

}ds

=
∫ 1/2

0
{µ0c1sin4πscos4πs+µ0c2 cos2 4πs

+4πc1µ0sin 4πscos4πs+µ0c2 sin2 4πs−
sin 4πs

4π
×

[

h(c1 cos4πs+
c2 sin4πs

4π
,

−4πc1 sin4πs+c2 cos4πs)+k(sin4πs,cos4πs,0)
]

}ds

+
∫ 1

0
{µ0c1sin4πscos4πs+µ0c2 cos2 4πs

+4πc1µ0sin 4πscos4πs+µ0c2 sin2 4πs

−
sin 4πs

4π

[

h(c1 cos4πs+

c2sin4πs
4π

,−4πc1 sin4πs+c2 cos4πs)

+k(sin4πs,cos4πs,0)
]

}ds

=
3µ0c2

2
+V1(c1,c2),

Φ2
0(c1,c2) = −

∫ 1

1/2
{4πµ0(−4πc1 sin4πs+c2 cos4πs)sin4πs

−16π2µ0(c1 cos4πs+
c2 sin4πs

4π
)cos4πs

+cos4πs
[

h(c1 cos4πs+
c2 sin4πs

4π
,

−4πc1 sin4πs+c2 cos4πs)

+k(sin4πs,cos4πs,0)
]

}ds

= 8π2µ0c1+V2(c1,c2),

where for i = 1,2 the polynomialVi(c1,c2) consists of
terms of the formKcq1

1 cq2
2 whereq1+ q2 ≥ 2 andK is a

constant. Now we apply Lemma3. Since

det

(

0 3µ0
2

8π2µ0 0

)

6= 0,

it follows that d(Φ0,Bk,0) 6= 0. Hence forε sufficiently
small, we conclude that by Theorem2 the problem (23)
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has at least one solution with the boundary condition

(

2 0
0 0

)(

x1(0,c0,0)
x2(0,c0,0)

)

+

(

−1 0
0 −1

)(

x1(1/2,c0,0)
x2(1/2,c0,0)

)

+

(

−1 0
0 1

)(

x1(1,c0,0)
x2(1,c0,0)

)

=

(

2 0
0 0

)(

x1(0,c(ε),ε)
x2(0,c(ε),ε)

)

+

(

−1 0
0 −1

)

(

x1(
1

2(1+εµ(ε)) ,c(ε),ε)
x2(

1
2(1+εµ(ε)) ,c(ε),ε)

)

+

(

−1 0
0 1

)

(

x1(
1

1+εµ(ε) ,c(ε),ε)
x2(

1
1+εµ(ε) ,c(ε),ε)

)

=

(

0
0

)

,

wherec(0) = c0.

Does the problem have nontrivial solutions?
Example 1: An example with local degree zero
In system (25), let f (x1,x2,sin4πτ,cos4πτ,ε) =
x2

1cos4πτ + x2
2sin4πτ + γ cos4πτ. Note also that

sin4πτ = sin4π(1+ εη(ε))−1t at ε = 0 is given by
sin4πt. Assumption (D1) is satisfied since we have

h(x1(s,c,0),x2(s,c,0),0)+ k(sin4πt,cos4πt,0)

= c2
1cos34πt+(

c1c2

2π
+ c2

2)cos24πt sin4πt

+(
c2

2

16π2 −8πc1c2)sin2 4πt cos4πt

+16π2c2
1sin34πt+ γ cos4πt.

Using condition (21), we obtain

Φ1
0(c1,c2)

=
3µ0c2

2
−

∫ 1/2

0
{

sin4πs
4π

[

h(x1(s,c,0),x2(s,c,0),0)

+k(sin4πs,cos4πs,0)
]

}ds

−
∫ 1

0
{

sin4πs
4π

[

h(x1(s,c,0),x2(s,c,0),0)

+k(sin4πs,cos4πs,0)
]

}ds

=
3µ0c2

2
−
∫ 1/2

0
{

1
4π

(
c1c2

2π
+ c2

2)cos24πs sin24πs

+16π2c2
1sin44πs}ds

−

∫ 1

0
{

1
4π

(
c1c2

2π
+ c2

2)cos24πs sin24πs

+16π2c2
1sin44πs}ds

=
3µ0c2

2
−3(

c1c2

128π2 +
c2

2

64π
+3π2c2

1),

Φ2
0(c1,c2)

= 8π2µ0c1−

∫ 1

1/2
{cos4πs

[

h(x1(s,c,0),x2(s,c,0),0)

+k(sin4πs,cos4πs,0)
]

}ds

= 8π2µ0c1−
∫ 1

1/2
{c2

1cos44πs+

(
c2

2

16π2 −8πc1c2)sin24πscos24πs+ γ cos24πs}ds

= 8π2µ0c1− (
3πc2

1

4
+

c2
2

256π2 −
πc1c2

2
+

γ
4
).

If γ 6= 0 andk is small enough thenΦ0(c) 6=0 for allc∈Bk.
So d(Φ0,Bk,0) = 0. Thus the branching equation has no
real solutions ifε is sufficiently small. However, ifγ = 0,
and µ0 6= 0 then the polynomialΦ2

0(c1,c2) has roots in
Bk and, in particular, solutions exist. Indeed we can apply
Lemma3. Since

det

(

0 3µ0
2

8π2µ0 0

)

6= 0,

it follows that d(Φ0,Bk,0) 6= 0. Hence for(ε,γ) 6= (0,0)
but small enough, we conclude that by Theorem2 the
problem (23) has at least one solution with the boundary
condition
(

2 0
0 0

)(

x1(0,c0,0)
x2(0,c0,0)

)

+

(

−1 0
0 −1

)(

x1(1/2,c0,0)
x2(1/2,c0,0)

)

+

(

−1 0
0 1

)(

x1(1,c0,0)
x2(1,c0,0)

)

=

(

2 0
0 0

)(

x1(0,c(ε),ε)
x2(0,c(ε),ε)

)

+

(

−1 0
0 −1

)

(

x1(
1

2(1+εµ(ε)) ,c(ε),ε)
x2(

1
2(1+εµ(ε)) ,c(ε),ε)

)

+

(

−1 0
0 1

)

(

x1(
1

1+εµ(ε) ,c(ε),ε)
x2(

1
1+εµ(ε) ,c(ε),ε)

)

=

(

0
0

)

,

wherec(0) = c0.

Remark.If the local degree at the origin and relative to a
small ball,Bk with center at the origin is nonzero, then
Φ0 has at least one root inBk. We note thatΦ0 may have
solutions even if the local degree is equal to zero.

The following example indicates the degree is defined if
the radius ofBk is sufficiently small.
Example 2: An example where local degree is nonzero
In system (25), let ε f (x1,x2,sin4πτ,cos4πτ,ε) = ε(x2

2+

cos4πτ). Note that cos4πτ = cos4π(1+εη(ε))−1t atε =
0 is given by cos4πt. Assumption (D1) is satisfied since
we have

h(x1(t,c,0),x2(t,c,0),0)+ k(sin4πt,cos4πt,0)

= 16π2c2
1sin24πt−8πc1c2sin 4πt cos4πt

+c2
2cos2 4πt+ cos4πt.
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Using condition (21), we obtain

Φ1
0(c1,c2)

=
3µ0c2

2
−

∫ 1/2

0
{

sin4πs
4π

[

h(x1(s,c,0),x2(s,c,0),0)

+k(sin4πs,cos4πs,0)
]

}ds

−

∫ 1

0
{

sin4πs
4π

[

h(x1(s,c,0),x2(s,c,0),0)

+k(sin4πs,cos4πs,0)
]

}ds

=
3µ0c2

2
,

Φ2
0(c1,c2)

= 8π2µ0c1−

∫ 1

1/2
{cos 4πs

[

h(x1(s,c,0),x2(s,c,0),0)

+k(sin 4πs,cos 4πs,0)
]

}ds

= −

∫ 1

1/2
{cos24πs}ds

= −

∫ 1

1/2
{

cos8πs+1
2

}ds

= 8π2µ0c1−
1
4
.

The Jacobian is

det

(

0 3µ0
2

8π2µ0 0

)

< 0.

Thus the local degree is -1, since the Jacobian is negative
except the origin. Hence forε sufficiently small, we
conclude that by Theorem2 the problem (23) has at least
one solution with the boundary condition
(

2 0
0 0

)(

x1(0,c0,0)
x2(0,c0,0)

)

+

(

−1 0
0 −1

)(

x1(1/2,c0,0)
x2(1/2,c0,0)

)

+

(

−1 0
0 1

)(

x1(1,c0,0)
x2(1,c0,0)

)

=

(

2 0
0 0

)(

x1(0,c(ε),ε)
x2(0,c(ε),ε)

)

+

(

−1 0
0 −1

)

(

x1(
1

2(1+εµ(ε)) ,c(ε),ε)
x2(

1
2(1+εµ(ε)) ,c(ε),ε)

)

+

(

−1 0
0 1

)

(

x1(
1

1+εµ(ε) ,c(ε),ε)
x2(

1
1+εµ(ε) ,c(ε),ε)

)

=

(

0
0

)

,

wherec(0) = c0. Thus there exists at least one solution to
the BVP even if all the terms inV1 or V2 vanish, because
the terms3µ0

2 c2 and 8π2µ0c1 are nonzero.
Next we show that in the following case the local degree is
non zero.

4.2 A Two-point BVP

Consider the BVP (19), (20). Then (19) may be written as

dx1

dt
= x2

dx2

dt
= −4π2x1+ ε f (x1,x2,sin2πwt,cos2πwt,ε). (27)

By the chain rule (27) becomes

dx1

dτ
= x2+ εµ(ε)x2

dx2

dτ
= −16π2x1+ ε

[

−4µ(ε)π2x1+

(1+ εµ(ε)) f (x1,x2,sin2πτ,cos2πτ,ε)
]

.

(28)

Writing (28), (20) into matrix form, we have
( dx1

dτ
dx2
dτ

)

=

(

0 1
−4π2 0

)(

x1
x2

)

+ε
(

µ(ε)x2
−4µ(ε)π2x1+(1+ εµ(ε)) f (x1,x2,sin2πτ,cos2πτ,ε)

)

,

(29)

(

1 0
0 −1

)(

x1(0)
x2(0)

)

+

(

0 0
0 1

)(

x1(1)
x2(1)

)

=

(

0
0

)

, (30)

where x =

(

x1
x2

)

, A =

(

0 1
−4π2 0

)

, M =

(

1 0
0 −1

)

,

R=

(

0 0
0 1

)

,

F(x1,x2,sin2πτ,cos2πτ,ε) =
(

µ(ε)x2

−4µ(ε)π2x1+(1+ εµ(ε)) f (x1,x2,sin2πτ,cos2πτ,ε)

)

.

The fundamental matrix

Y(τ) = eAτ =

(

cos2πτ sin2πτ/(2π)
−2π sin2πτ cos2πτ

)

,

Y−1(t) =

(

cos2πt −sin2πt/(2π)
2π sin2πt cos2πt

)

,

Y0(τ) =

(

cos2πτ sin2πτ/(2π)
−2π sin2πτ cos2πτ

)

and

Y0(1) =

(

1 0
0 1

)

. Then by Lemma2, solving the problem

(29), (30) is reduced to that of solving
L c = εN (c,α,η ,ε) + d for c. Thus we findL and
N (c,α,η ,ε).

L = M+RY0(1)

=

(

1 0
0 −1

)

+

(

0 0
0 1

)(

1 0
0 1

)

=

(

1 0
0 0

)

.

RankL = 1. Let E2 denote the null space ofL . Thus

e2 =

(

0
1

)

, be a basis forKer(L ), andKer(L )=Span(e2).
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Let P2 be the matrix projection onto Ker(L ), P2 =

(

0 0
0 1

)

.

SoP1= I−P2=

(

1 0
0 0

)

.SetH =

(

1 0
0 1

)

so thatHL =P1,

and

N (c,α,η,ε) =

−
∫ 1

0

(

0 0
0 1

)(

1 0
0 1

)(

cos2πs −sin2πs/(2π)
2π sin2πs cos2πs

)

×

(

µ(ε)x2
−4π2x1(s,c,ε)µ(ε)+(1+ εµ(ε)) f (x1,x2,τ1,τ2,ε)

)

ds

=

(

0
N2(c,α,η,ε)

)

,

where

N2(c,α,η ,ε) =−

∫ 1

0
{2πµ(ε)x2(s,c,ε)sin2πs

−4π2µ(ε)cos2πsx1(s,c,ε)
+cos2πs(1+ ε(µ(ε)) f (x1,x2,τ1,τ2,ε)}ds

and f (x1,x2,τ1,τ2,ε) = f (x1,x2,sin2πws,cos2πws,ε).
Since d = 0, it follows that P2Hd = 0. Hence the

condition of Theorem1 is satisfied. In order to studyΦ0,
we must first obtainx(t,c,0), that is the solution of
x′ = A(t)x. By Lemma1, x′ = A(t)x has a solutionx(t)
with x(0) = c = (0,c2)

T , where x1(0) = 0 = c1. Thus
(29), (30) has a solution ifε = 0 namely

x1(t,c,0) =
c2sin2πt

2π
,

x2(t,c,0) = c2cos2πt.

We compute

P2HN (c,α,η ,ε) =
(

0 0
0 1

)(

1 0
0 1

)(

0
N2(c,α,η ,ε)

)

=

(

0
N2(c,α,η ,ε)

)

.

ThusΦε(c2) = N2(c2,α,η ,ε), wherec2 = P2 =
( 0

c2

)

and

c1 = P1c =
(c1

0

)

. Setting ε = 0, we have
Φ0(c2) = N2(c2,α,η ,0), where c1(c2,0) = P2Hd = 0.
Using condition (22), we obtain

Φ0(c2) = −

∫ 1

0
{2πµ0(c2cos2πs)sin2πs (31)

−
4π2c2µ0cos2πssin2πs

2π

+cos2πs
[

h(
c2sin2πs

2π
,c2 cos4πs) (32)

+k(sin2πs,cos2πs,0)
]

}ds

= V1(c2)+K1. (33)

Example 3

In system (29), let

ε f (t,x1,x2,sinτ,cosτ,ε) = ε(x3
2+ cos2πτ).

Assumption (D1)is satisfied since we have

h(x1(t,c,0),x2(t,c,0),0)+ k(sinwt,coswt,0) = c3
2cos3 2πt+ cos2πt.

Using condition (22),

Φ0(c2) = −

∫ 1

0
{cos2πs(c3

2 cos32πs+cos 2πs)}ds

= −
∫ 1

0
{c3

2(
cos8πs

2
+2cos4πs+

3
2
)+

cos4πs+1
2

}ds

=
−3πc3

2
4

+
1
2
.

We apply the Intermediate Value Theorem whenn = 1.
Since Φ0(0) = 1/2 > 0 and Φ0(1) = (−3π+2)

4 < 0, it
follows then thatΦ0(0)Φ0(1)< 1. Thus

d(Φ0,(0,1),0) =−1.

Hence for ε sufficiently small, we conclude that by
Theorem2 the problem (27 ) has at least one solution
with the boundary condition
(

1 0
0 −1

)(

x1(0,c0,0)
x2(0,c0,0)

)

+

(

0 0
0 1

)(

x1(1,c0,0)
x2(1,c0,0)

)

=

(

1 0
0 −1

)(

x1(0,c(ε),ε)
x2(0,c(ε),ε)

)

+

(

0 0
0 1

)

(

x1(
1

1+εµ(ε) ,c(ε),ε)
x2(

1
1+εµ(ε) ,c(ε),ε)

)

=

(

0
0

)

,

wherec(0) = c0.

5 Conclusions

In this paper, the entrainment of frequency problem for a
perturbed system of first order ordinary differential
equations has been established by adapting the approach
of Cronin [6,7]. It is shown that the problem
dx
dτ = A(t)x + εF(x,sinτ,cosτ,ε) with three-point and
two-point boundary conditions has a solution ¯x(t) for ε
sufficiently small, and this solution is close to the solution
of the problemdx

dτ = A(t)x, the system whenε = 0. This
is called the resonance or entrainment of frequency
problem. The applications proposed in this paper for a
2-dimensional system of first-order equations can be
extended to n-dimensional systems.
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