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Abstract: In this paper, the point at issue of this paper is to deliberate point and interval estimations for the parameters of
Weibull-exponential distribution (WED) using progressively Type-II censored (PRO-II-C) sample under constant stress partially
accelerated life tests (CSPALT) model. The maximum likelihood, Bayes and parametric bootstrap methods are used for estimating the
unknown parameters and acceleration factor. Markov chain Monte Carlo (MCMC) and Lindley’s approximation are used to get the
Bayes estimators. Finally, an example presented to illustrate the results.
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1 Introduction

Accelerated life test ALT and partial accelerated life testPALT are used to obtain failure data in a short time. The most
types of stresses used to accelerate the life test are constant-stress, step-stress and progressive-stress. The main assumption
in ALT is that the relationship between life and stress must be known or can be assumed so that the data obtained from
accelerated conditions can be extrapolated to normal use conditions. If such a relationship is unknown or cannot be
assumed, one cannot apply the ALT approach. So, PALT are often used in such cases. In CSPALT each unit run either
normal use condition or accelerated (stress) use conditiononly until the test is terminated. These conditions are often
referred to as stresses which may be in the form of temperature, pressure, vibrations, and so on.

The CSPALT studied by many authors, Abdel-Hamid [1] discussed CSPALT for Burr type-XII distribution with
progressive type-II censoring, EL-Sagheer [5] studied CSPALT under progressive type-II censoring, Srivastava and
Mittal [14]optimized CSPALT for the truncated logistic distributionunder time constraint and Abushal and Soliman
[2]estimated the Pareto parameters under progressive censoring data for CSPALT.

Also, Several authors preferred to use Lindley’s approximation beside classical methods to get the Bayes estimators.
Metiri [8] showed Bayes estimates of Lindley distribution under linex loss function, informative and non informative
priors, Preda et al.[9] applied Bayes estimators of modified-Weibull distribution parameters using Lindley’s
approximation, Singh et al.[10] evaluated Bayes estimator of inverse gaussian parametersunder general entropy loss
function using Lindley’s approximation, Singh et al.[11] computed Bayes estimator of generalized-exponential
parameters under linex loss function using Lindley’s approximation, Soliman et al.[13]estimated under progressive
first-failure censored sampling with binomial removals by using classical and Bayesian methods and Singh et al. [12]
estimated the parameter of Marshall-Olkin exponential distribution under type-I hybrid censoring scheme.

This paper focused on point and interval estimations for theparameters of WED under PRO-II-C by used non-Bayesian
and Bayesian methods. Finally, this paper organized as follows: Sec. 2 the assumptions and description of WED are shown.
Sec. 3 devoted to study the maximum likelihood estimations (MLEs) used to evaluate point and interval estimation for
the unknown parameters under consideration, asymptotic variance-covariance matrix and parametric bootstrap confidence
intervals. Sec. 4 Bayesian estimation computed by using both MCMC and Lindley’s approximation methods. Sec. 5 an
illustrative example is developed to explain the theoretical results. Eventually conclusion is inserted in Sec. 6.
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2 Assumptions and Model Description

2.1 Basic assumptions

1.n identical units are put on the life test .
2.The lifetimes of the units have independent and identically WED.
3.The lifetime of units tested under normal condition follows WED with probability density function (PDF), cumulative

distribution function (CDF), survival function (SF) and hazard rate function (HRF) are given, respectively, by

f1 (t;α,γ,β ) = αγβ
(

1− e−γt)β−1
eγβ te−α(eγt−1)β , t > 0;α,γ,β > 0, (1)

F1 (t,α,γ,β ) = 1− e−α(eγt−1)β
, t > 0;α,γ,β > 0, (2)

S1 (t,α,γ,β ) = e−α(eγt−1)β
, t > 0;α,γ,β > 0, (3)

h1 (t,α,γ,β ) = αγβ eγβ t (1− e−γt)β−1
, t > 0;α,γ,β > 0, (4)

whereα andγ are the scale parameters andβ is the shape parameter.
4.The HRF of units tested under accelerated condition is given byh2(t) = λ h1(t), whereλ > 1 is an acceleration factor.

Therefore, the HRF, SF,CDF and PDF under accelerated condition with t > 0; α,γ,β > 0 andλ > 1, are given,
respectively, by

h2 (t,α,γ,β ,λ ) = αγβ λ eγβ te−α(eγt−1)β−1
, (5)

S2 (t,α,γ,β ,λ ) = e
[−

t
∫

0
h2(u)du]

= e[−αλ eγβ t(1−e−γt)
β
], (6)

F2(t,α,γ,β ,λ ) = 1− e[−αλ eγβ t(1−e−γt)
β
], (7)

f2 (t,α,γ,β ,λ ) = αγβ λ eγβ t (1− e−γt)β−1
e[−αλ eγβ t(1−e−γt)

β
]. (8)

2.2 Model description

According to CSPALT,n units are divided into two groups:n1 units for group 1 (normal condition) andn2 = n− n1 for
group 2 (accelerated condition). Pro-II-C is applied as follows: In groupj, j = 1,2, at the time of theith failure, a random
number of the surviving unitsR ji , i = 1,2, ...,m j −1, are randomly removed from the test. Finally, at the time of the mth

j

failure, the remaining surviving unitsR jm j = n j −m j −
m j−1

∑
i=1

R ji are removed from the test and the test is terminated.

Suppose thatR ji and(m j ≤ n j) are prefixed. Then the observed progressive censored data are

t
Rj
j1;m j ,n j

< t
Rj
j2;m j ,n j

< ... < t
Rj
jm j ;m j ,n j

, j = 1,2 (9)

3 Methods of Estimation

This section contains different estimation methods to estimate unknown parameters of WED and acceleration factor by
using the MLEs method and two parametric bootstrap methods,percentile bootstrap and bootstrap-t.
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3.1 Maximum likelihood estimation

Let, t
Rj
j1;m j ,n j

< t
Rj
j2;m j ,n j

< · · ·< t
Rj
jm j ;m j ,n j

, for j = 1,2 denote two Pro-II-C samples from two populations whose CDFs and
PDFs are as given in (1), (2) and (7), (8) withR j = R j1,R j2, . . . ,R jm j , i = 1,2, · · · ,m. The likelihood function based on
the Pro-II-C is given by

L(α,γ,β ,λ |t) =
2

∏
j=1

A j

m j

∏
i=1

f j (t ji,m j,n j) [S j (t ji,m j,n j)]
Rji

∝
m1

∏
i=1

(

αγβ
(

1− e−γt1i
)β−1

eγβ t1ie−α(eγt1i−1)
β
)

·
(

e−α(eγt1i−1)
β
)R1i

×
m2

∏
i=1

(

αγβ λ eγβ t2i
(

1− e−γt2i
)β−1

e−αλ eγβ t2i(1−e−γt2i)
β
)(

e−αλ eγβ t2i(1−e−γt2i)
β
)R2i

, (10)

whereA j = n j(n j −1−R j1)(n j −2−R j1 −R j2) · · · (n j −m j −
m j−1

∑
i=1

R ji).

The log-likelihood functionℓ(α,γ,β ,λ ) = logL(α,γ,β ,λ ) without normalized constant is given by

ℓ(α,γ,β ,λ ) = (m1+m2)(logα + logγ + logβ )+m2 logλ + γβ

(

m1

∑
i=1

t1i +
m2

∑
i=1

t2i

)

−α
m1

∑
i=1

(

eγt1i −1
)β

(R1i +1)−αλ
m2

∑
i=1

eγβ t2i
(

1− e−γt2i
)β

(R2i +1)

+(β −1)

(

m1

∑
i=1

log(1− e−γt1i )+
m2

∑
i=1

log(1− e−γt2i )

)

. (11)

Calculating the first order partial derivatives of log-likelihood function with respect toα, γ, β andλ , respectively, and
equating each to zero, we get

m1+m2

α
−

m1

∑
i=1

(

eγt1i −1
)β

(R1i +1)−λ
m2

∑
i=1

eγβ t2i
(

1− e−γt2i
)β

(R2i +1) = 0, (12)

m1+m2

γ
+β

(

m1

∑
i=1

t1i +
m2

∑
i=1

t2i

)

−αβ
m1

∑
i=1

t1ie
γt1i
(

eγt1i −1
)β−1

(R1i +1)

+(β −1)

[

m1

∑
i=1

t1ie
−γt1i

(1− e−γt1i )
+

m2

∑
i=1

t2i e
−γt2i

(1− e−γt2i )

]

−αλ β
m2

∑
i=1

t2ie
γβ t2i

(

1− e−γt2i
)β−1

(R2i +1) = 0, (13)

m1+m2

β
+ γ

(

m1

∑
i=1

t1i +
m2

∑
i=1

t2i

)

−α
m1

∑
i=1

(

eγt1i −1
)β

(log
(

eγt1i −1
)

)(R1i +1)

−αλ
m2

∑
i=1

eγβ t2i
(

1− e−γt2i
)β

(log
(

1− e−γt2i
)

)(R2i +1)−αλ γ
m2

∑
i=1

t2ie
γβ t2i

(

1− e−γt2i
)β

(R2i +1)

+

(

m1

∑
i=1

log(1− e−γt1i )+
m2

∑
i=1

log(1− e−γt2i )

)

= 0, (14)

and
m2

λ
−α

m2

∑
i=1

eγβ t2i
(

1− e−γt2i
)β

(R2i +1) = 0. (15)

The solutions of likelihood equations (12), (13), (14) and (15) can not be obtained in a closed form. So they can be solved
numerically by using Newton–Raphson iteration method.
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3.1.1 Asymptotic variance–covariance matrix

The asymptotic Fisher information matrixI of maximum likelihood estimates is the 4×4 symmetric matrix of negative
second order partial derivatives of the log-likelihood function with respect toα, γ, β andλ . Let ψ1 = α, ψ2 = γ, ψ3 = β
andψ4 = λ , then

I =

(

∂ 2ℓ

∂ψi∂ψ j

)

↓(α̂,γ̂ ,β̂ ,λ̂ )
, i, j = 1,2,3,4 (16)

Therefore, the asymptotic variance-covariance matrix canbe written as follows

V = I−1 =

(

∂ 2ℓ

∂ψi∂ψ j

)−1

↓(α̂ ,γ̂,β̂ ,λ̂ )
=









var(α̂) Cov(α̂ γ̂) Cov(α̂ β̂) Cov(α̂ λ̂)
Cov(γ̂α̂) var(γ̂) Cov(γ̂β̂ ) Cov(γ̂λ̂ )
Cov(β̂ α̂) Cov(β̂ γ̂) var(β̂ ) Cov(β̂ λ̂ )
Cov(λ̂ α̂) Cov(λ̂ γ̂) Cov(λ̂ β̂ ) var(λ̂ )









−1

. (17)

Thus, the(1− ζ )100% approximate confidence intervals (ACIs) for the parametersα, γ, β andλ , are obtained as

(α̂L, α̂U ) = α̂ ± z ζ
2

√

var(α̂),

(β̂L, β̂U) = β̂ ± z ζ
2

√

var(β̂),

(γ̂L, γ̂U) = γ̂ ± z ζ
2

√

var(γ̂),

(λ̂L, λ̂U) = λ̂ ± z ζ
2

√

var(λ̂ ),
(18)

wherez ζ
2
is the value of the standard normal distribution leaving an area of ζ

2 to the right andvar(α̂), var(γ̂), var(β̂ ), and

var(λ̂) are the elements on the main diagonal of the variance-covariance matrix.

3.2 Parametric bootstrap methods

The second method used to estimate unknown parameters of WEDis the parametric bootstrap methods. This subsection
present two parametric bootstrap methods, percentile bootstrap method ( Bootp) see Efron [4] and bootstrap-t method (
Boott) see Hall [6]. The following algorithm is followed to obtain PRO-II-C bootstrap samples from WED under CSPALT
for both parametric bootstrap methods:

1.Determine the values ofn j andm j (1≤ m j ≤ n j), j = 1,2
2.Generate two independent random samplesU ji of sizem j, j =1,2 from Uniform (0,1) distribution(U j1,U j2, ....,U jm j ).
3.Determine the values of censoredR ji, i = 1, ...,m j and j = 1,2.

4.SetV ji =U
Wji
ji ,whereWji = 1/(

m j

∑
k=m j−i+1

R jk), i = 1, ...,m j and j = 1,2.

5.Then, setX ji = 1−
m j

∏
k=m j−i+1

V ji ,i = 1, ...,m j is the required PRO-II-C samples generated from Uniform (0,1)

distribution
6.Finally, sett ji = F−1(X ji) whereF−1(.) is the inverse CDF of WED under CSPALT. Then,(t1;m j ,n j < t2;m j ,n j < ... <

tm j ;m j ,n j) represent the two PRO-II-C samples from WED under CSPALT.

7.Based on two PRO-II-C samples, obtain the MLEs of parameters α̂, γ̂, β̂ andλ̂ .
8.Repeat Steps 1-7B times to get the bootstrap estimatesα̂∗ , γ̂∗, β̂ ∗ andλ̂ ∗.

9.Arrange allα̂∗′s , γ̂∗′s, β̂ ∗′s andλ̂ ∗′s in ascending order to obtain the bootstrap sample
(

ψ̂∗[1]
k , ψ̂∗[2]

k , ..., ψ̂∗[B]
k

)

, k =

1,2,3,4 andψ̂∗
1 = α̂∗, ψ̂∗

2 =, γ̂∗, ψ̂∗
3 = β̂ ∗, ψ̂∗

4 = λ̂ ∗.

3.2.1 Bootp confidence intervals

Let Φ(z) = P(ψ̂∗
k ≤ z) be the CDF ofψ̂∗

k . Defineψ̂∗
kBootp

= Φ−1(z) for given z. The approximate percentile bootstrap

100(1− ζ )% confidence interval (Bootp CI) of ψ̂∗
k is given by

[

ψ̂∗
kBootp

( ζ
2 ) , ψ̂∗

kBootp
(1− ζ

2 )
]

. (19)
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3.2.2 Boott confidence intervals

Consider the order statisticsδ ∗[1]
k < δ ∗[2]

k < ... < δ ∗[B]
k ,k = 1,2,3,4 where

δ ∗[ j]
k =

√
B(ψ̂∗[ j]

k − ψ̂k)
√

Var
(

ψ̂∗[ j]
k

)

, j = 1,2, ...,B, (20)

whereψ̂k = α̂ , ψ̂k =, γ̂, ψ̂k = β̂ andψ̂k = λ̂ while Var
(

ψ̂∗[ j]
k

)

is obtained using the inverse of the Fisher information

matrix as done before in (17). LetW (z) = P
(

δ ∗
k < z

)

,k = 1,2,3,4 be the CDF ofδ ∗
k . Defineδ ∗

k =W−1 (z) for a givenz,
define

ψ̂∗
kBoott = ψ̂k +

1√
B

√

Var
(

ψ̂∗
k

)

W−1(z) . (21)

Thus, the approximate bootstrap-t 100(1− ζ )% confidence interval (Boott CI) of ψ̂∗
k is given by

[

ψ̂∗
kBoott

( ζ
2 ) , ψ̂∗

kBoott
(1− ζ

2 )
]

. (22)

4 Bayesian Estimation

In this section, two Bayesian estimation methods (MCMC and Lindley’s approximation) are discussed to obtain Bayes
estimators for unknown parameters of WED. The steps of Bayesian process are:

1.Specify prior distribution for the unknown parametersα, γ, β andλ which are independent and follow the gamma
prior distributions, as follows:

π (α) ∝ αa1−1e−αb1, α > 0,

π (β ) ∝ β a3−1 e−β b3, β > 0,

π (γ) ∝ γa2−1 e−γb2, γ > 0,

π (λ ) ∝ λ a4−1 e−λ b4, λ > 1.
(23)

wherea1,a2,a3,a4,b1,b2,b3 andb4 are the hyper parameters and they are non negative.

2.The joint prior of the parametersα, γ, β andλ can be written as

π (α,γ,β ,λ ) ∝ αa1−1 γa2−1 β a3−1 λ a4−1 e−αb1−γb2−β b3−λ b4, α > 0, γ > 0, β > 0,λ > 1. (24)

3.Combine the distributions into the joint posterior distribution of α, γ, β andλ , denoted byπ∗(α,γ,β ,λ |t) can be
written as

π∗(α,γ,β ,λ |t) = L(α,γ,β ,λ )×π (α,γ,β ,λ )
∫ ∞

1

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(α,γ,β ,λ )×π (α,γ,β ,λ )dαdγdβ dλ

= K−1αm1+m2+a1−1γm1+m2+a2−1β m1+m2+a3−1λ m2+a4−1e−αb1−γb2−β b3−λ b4

×
m1

∏
i=1

(

(

1− e−γt1i
)β−1

eγβ t1ie−α(eγt1i−1)
β
)

·
(

e−α(eγt1i−1)
β
)R1i

×
m2

∏
i=1

(

eγβ t2i
(

1− e−γt2i
)β−1

e−αλ eγβ t2i(1−e−γt2i)
β
)(

e−αλ eγβ t2i(1−e−γt2i)
β
)R2i

(25)

whereK−1 is the normalizing constant, equal to

K−1 =

∫ ∞

1

∫ ∞

0

∫ ∞

0

∫ ∞

0
αm1+m2+a1−1γm1+m2+a2−1β m1+m2+a3−1λ m2+a4−1e−αb1−γb2−β b3−λ b4

×
m1

∏
i=1

(

(

1− e−γt1i
)β−1

eγβ t1ie−α(eγt1i−1)
β
)

·
(

e−α(eγt1i−1)
β
)R1i

×
m2

∏
i=1

(

eγβ t2i
(

1− e−γt2i
)β−1

e−αλ eγβ t2i(1−e−γt2i)
β
)(

e−αλ eγβ t2i(1−e−γt2i)
β
)R2i

. (26)
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4.Evaluate the posterior mean for any function of the parametersα, γ, β andλ ,sayh(α,γ,β ,λ ) which is the Bayes
estimate under squared error loss function, i.e.

ĥ(α,γ,β ,λ ) =
∫ ∞

1

∫ ∞
0

∫ ∞
0

∫ ∞
0 h(α,γ,β ,λ )×L(α,γ,β ,λ )×π (α,γ,β ,λ )dαdγdβ dλ

∫ ∞
1

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(α,γ,β ,λ )×π (α,γ,β ,λ )dαdγdβ dλ

(27)

Therefore, this integrals given by (27) cannot be obtained in closed form, so propose to use MCMC method and
Lindley’s approximation method to obtain Bayes estimatorsunder squared error loss function.

4.1 MCMC method

The MCMC method is one of the best technique for obtaining theBayes estimates. Suppose Gibbs sampler and Metropolis
-Hastings algorithm can be used to generate samples from thefull conditional posterior distributions and then compute
the Bayes estimates. For applying the Gibbs algorithm, the full conditional posterior densities ofα, γ, β andλ are given
by

π∗
1(α|γ,β ,λ , t) ∝ αm1+m2+a1−1e−αb1

m1

∏
i=1

e−α(eγt1i−1)
β
(1+R1i)

m2

∏
i=1

e−αλ eγβ t2i(1−e−γt2i)
β
(1+R2i), (28)

π∗
2(γ|α,β ,λ , t) ∝ γm1+m2+a2−1e−γb2

m1

∏
i=1

(

1− e−γt1i
)β−1

eγβ t1ie−α(eγt1i−1)
β
(1+R1i)

×
m2

∏
i=1

eγβ t2i
(

1− e−γt2i
)β−1

e−αλ eγβ t2i(1−e−γt2i)
β
(1+R2i), (29)

π∗
3(β |α,γ,λ , t) ∝ β m1+m2+a3−1e−β b3

m1

∏
i=1

(

1− e−γt1i
)β−1

eγβ t1ie−α(eγt1i−1)
β
(1+R1i)

×
m2

∏
i=1

eγβ t2i
(

1− e−γt2i
)β−1

e−αλ eγβ t2i(1−e−γt2i)
β
(1+R2i), (30)

π∗
4(λ |α,γ,β , t) ∝ λ m2+a4−1e−λ b4

m2

∏
i=1

e−αλ eγβ t2i(1−e−γt2i)
β
(1+R2i). (31)

The algorithm of Gibbs sampling as suggested by Tierney [16] is as follows:

1.Start with an
(

α(0) = α̂ , γ(0) = γ̂, β (0) = β̂ andλ (0) = λ̂
)

2.Setk = 1
3.Generateα(k) from

gamma distribution

[

m1+m2+ a1,b1+
m1

∑
i=1

(

eγt1i −1
)β

(1+R1i)+
m2

∑
i=1

λ eγβ t2i
(

1− e−γt2i
)β

(1+R2i)

]

4.Generateλ (k) from

gamma distribution

[

m2+ a4,b4+
m2

∑
i=1

αeγβ t2i
(

1− e−γt2i
)β

(1+R2i)

]

5.Using the Metropolis-Hastings method, generateγ(k) andβ (k) from normal distribution as follows

N(γ(k−1),var (γ)) andN(β (k−1),var (β ))

6.Repeat Steps 3-5N times. for allk = 1,2,3, ...,N
7.Obtain the Bayes MCMC point estimates ofα, γ, β andλ as

αMCMC = 1
N−M ∑N

k=M+1 α(k),

βMCMC = 1
N−M ∑N

k=M+1 β (k),

γMCMC = 1
N−M ∑N

k=M+1 γ(k),

λMCMC = 1
N−M ∑N

k=M+1 λ (k).

whereM is the burn-in period.
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8.Compute 100(1− ζ )% credible interval (CRI) ofψl as

[

ψ
l
(

(N−M)(
ζ
2 )
) , ψ

l
(

(N−M)
(

1− ζ
2

))

]

,

whereψ1 = α, ψ2 = γ, ψ3 = β andψ4 = λ , l = 1,2,3,4.

4.2 Lindley’s approximation method

Consider Lindley’s approximation method for obtaining theBayes estimator ofα, γ, β andλ , which approaches the ratio
of the integrals in the posterior expectation to a simplifiedform. According to Lindley’s approximation in [7] and if n is
sufficiently large, then the posterior expectation in (27) can be written as follows:

I(t) = E[u(α,γ,β ,λ )] =
∫

(α ,γ,β ,λ )u(α,γ,β ,λ )× eL(α ,γ,β ,λ )+G(α ,γ,β ,λ )d(α,γ,β ,λ )
∫

(α ,γ,β ,λ ) eL(α ,γ,β ,λ )+G(α ,γ,β ,λ )d(α,γ,β ,λ )
(32)

whereu(α,γ,β ,λ ) is a function ofα,γ,β andλ
L(α,γ,β ,λ ) is Log-likelihood function
G(α,γ,β ,λ ) is Log of joint prior density

Then the ratio of the integral in equation (32) can be approximated as:

I(t) = u(α̂, γ̂, β̂ , λ̂ )+
1
2

4

∑
i=1

4

∑
j=1

(ûi j +2ûiĝ j)σ̂i j +
1
2

4

∑
i=1

4

∑
j=1

4

∑
k=1

4

∑
l=1

L̂i jkσ̂i j(σ̂kl ûl)

= u(α̂, γ̂, β̂ , λ̂ )+ (û1â1+ û2â2+ û3â3+ û4â4+ â5+ â6)

+
1
2
[A(û1σ̂11+ û2σ̂12+ û3σ̂13+ û4σ̂14)+A2(û1σ21+ û2σ22+ û3σ23+ û4σ24)

+A3(û1σ̂31+ û2σ̂32+ û3σ̂33+ û4σ̂34)+A4(û1σ̂41+ û2σ̂42+ û3σ̂43+ û4σ̂44)] (33)

where ˆai = ĝ1σ̂i1 + ĝ2σ̂i2 + ĝ3σ̂i3 + ĝ4σ̂i4, i = 1,2,3,4 â5 = 2(û12σ̂12+ û13σ̂13+ û14σ̂14+ û23σ̂23+ û24σ̂24+ û34σ̂34)
â6 = 1

2(û11σ̂11 + û22σ̂22 + û33σ̂33 + û44σ̂44)

Âi = L̂11iσ̂11 + L̂22iσ̂22 + L̂33iσ̂33 + L̂44iσ̂44 + 2(L̂12iσ̂12 + L̂13iσ̂13 + L̂14iσ̂14 + L̂23iσ̂23 + L̂24iσ̂24 + L̂34iσ̂34) Put

θ1 = α̂ ,θ2 = γ̂,θ3 = β̂ ,θ4 = λ̂ , ĝi =
∂G(α ,γ,β ,λ )

∂θi
, i = 1,2,3,4

G(α,γ,β ,λ ) = logπ (α,γ,β ,λ )
= (a1−1) logα +(a2−1) logγ +(a3−1 ) logβ +(a4−1) logλ − (αb1+ γb2+β b3+λ b4) (34)

ûi =
∂u(θ1,θ2,θ3,θ4)

∂θi
, ûi j =

∂ 2u(θ1,θ2,θ3,θ4)
∂θi∂θ j

, i, j = 1,2,3,4

L̂i j =
∂ 2L(θ1,θ2,θ3,θ4)

∂θi∂θ j
, i, j = 1,2,3,4

L̂i jk =
∂ 3L(θ1,θ2,θ3,θ4)

∂θi∂θ j∂θk
, i, j,k = 1,2,3,4

σ̂i j =

{

−1
L̂i j

, i = j

0, i 6= j
Now the values of the Bayes estimates of various parameters can be obtained by used Lindley Approximation under

symmetric and asymmetric loss function. For more details see Zamani [15] and Soliman [13].

4.2.1 Symmetric Bayes estimation

1.Squared error loss function (SE) The Bayes estimators of the parametersα,γ,β and λ under squared error loss
function are

α̂SE = E(α|t), γ̂SE = E(γ|t), β̂SE = E(β |t), λ̂SE = E(λ |t). (35)
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Fig. 1: PDFs under normal and accelerated conditions

4.2.2 Asymmetric Bayes estimation

1.Linex loss function The Bayes estimators of the parametersα, γ, β andλ under Linex loss function are

α̂Linex = −1
c

logE(e−cα |t), γ̂Linex =−1
c

logE(e−cγ |t),

β̂Linex = −1
c

logE(e−cβ |t), λ̂Linex =−1
c

logE(e−cλ |t). (36)

2.General entropy loss function

The Bayes estimators of the parametersα,γ,β andλ under General Entropy (GE) loss function are

α̂GE = (E(α−c|t))−1/c, γ̂GE = (E(γ−c|t))−1/c,

β̂GE = (E(β−c|t))−1/c, λ̂GE = (E(λ−c|t))−1/c. (37)

5 Numerical Example

In this section for illustrative purposes, we present a simulation example to check the estimation procedures. In this
example, by using the algorithm described in Balakrishnan and Sandhu [3], we generate two samples from WE(α,γ,β )
distribution with parametersα = 0.5, γ = 2, β = 2 and λ = 1.5, using progressive censoring scheme (CSs)
n1 = n2 = 50, m1 = 20, m2 = 30, R1=(5, 0, 0, 5, 0, 0, 3, 0, 0, 5, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0) and R2= (3, 0, 0, 0, 2, 0, 0, 0, 2,
0, 0, 0, 2, 0, 0, 3, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 2, 0). The following two progressively censored data sets were observed:
Data Set 1: 0.1124, 0.1868, 0.2994, 0.3077, 0.3107, 0.3419,0.3755, 0.3775, 0.3799,0.3827, 0.3970, 0.4417,0.4788,
0.5074, 0.5749,0.6107, 0.6546, 0.7651,0.7696, 0.8122.
Data Set 2: 0.0471, 0.1578, 0.1881, 0.2148, 0.2516, 0.2866, 0.2994,0.3075, 0.3110, 0.3455, 0.3536, 0.3587, 0.3637,
0.3879, 0.3940, 0.4008, 0.4232, 0.4238, 0.4616, 0.4668, 0.4935,0.5092, 0.5716, 0.5922, 0.6111, 0.6445, 0.6500,
0.6564,0.6637, 0.7307.

Figure 1 plots the PDFs under normal and accelerated conditions. Newton–Raphson iteration method used to obtain
the MLEs of WED parameters.Denote the estimates using MLEs,the bootstrap-p,bootstrap-t, Bayes estimate according
to MCMC, Bayes estimate according to SE loss function, LINEXloss function, and GE loss function, respectively by
MLE, Bootp , Boott , MCMC, LindleySE , LindleyLinex andLindleyGE .
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Table 1. Different point estimates for(α,γ,β ,λ ) = (0.5,2,2,1.5)
Parameters α γ β λ
MLE 0.1901 1.9071 1.8308 1.6789
Bootp 0.2237 1.9486 1.9353 1.2973
Boott 0.1495 1.6402 1.8345 1.6383
MCMC 0.2119 1.8448 1.8799 1.4522
LindleySE 0.1896 1.8057 1.8375 1.5245
LindleyLinex (c=0.5) 0.1894 1.8042 1.8330 1.5085
LindleyGE (c=0.5) 0.1868 1.8032 1.8306 1.4985
LindleyLinex (c=-0.5) 0.1898 1.8072 1.8424 1.5435
LindleyGE (c=-0.5) 0.1886 1.8048 1.8351 1.5147

Table 2. 95% confidence intervals forα andγ
Method α Length γ Length

ACI [-0.8909,1.271] 2.16189 [-1.9884,5.6501] 7.63848
Bootp CI [0.0433,0.8435] 0.80018 [1.0487,2.9498] 1.90117
Boott CI [0.0286,0.1858] 0.15721 [1.5453,1.7598] 0.21453

CRI [0.1374,0.3041] 0.16670 [1.8301,1.8603] 0.03019

Table 3. 95% confidence intervals forβ andλ
Method β Length λ Length

ACI [0.4181,3.3961] 2.97805 [0.717,2.6409] 1.92387
Bootp CI [1.4402,2.6574] 1.21722 [1.0084,1.8777] 0.8693
Boott CI [1.7762,1.8677] 0.09159 [1.6142,1.6562] 0.04198

CRI [1.8631,1.8967] 0.03357 [0.8386,2.3268] 1.48819

Table 4. 90% confidence intervals forα andγ
Method α Length γ Length

ACI [-0.7171,1.0972] 1.81432 [-1.3744,5.036] 6.41042
Bootp CI [0.0452,0.6866] 0.64141 [1.1301,2.8601] 1.7300
Boott CI [0.0466,0.1844] 0.13776 [1.5661,1.7443] 0.17812

CRI [0.1428,0.2734] 0.13062 [1.8371,1.8912] 0.05410

Table 5. 90% confidence intervals forβ andλ
Method β Length λ Length

ACI [0.6575,3.1568] 2.49926 [0.8717,2.4862] 1.61456
Bootp CI [1.4731,2.5297] 1.0566 [1.0227,1.7637] 0.7410
Boott CI [1.7888,1.863] 0.07416 [1.6187,1.6546] 0.03594

CRI [1.8798,1.9113] 0.03145 [0.9154,2.1195] 1.20408

6 Conclusion

Based on PRO-II-C samples, this paper is related to full Bayes and non-Bayes procedures for the analysis of the CSPALT
using the WED failure model. The classical Bayes estimates cannot be obtained in explicit form. One can clearly see the
scope of MCMC-based Bayesian solutions which make every inferential development routinely available. In this paper,
we have considered the maximum likelihood and Bayes estimates for the parameters of WED using PRO-II-C scheme.
This paper also studied the construction of confidence intervals for the parameters and acceleration factor by using the
parametric bootstrap methods. It is well known that when allparameters are unknown, the Bayes estimates cannot be
obtained in explicit form. We used the MCMC and Lindley’s techniques to compute the approximate Bayes estimates and
the corresponding credible intervals. A numerical exampleusing the simulated data set is presented to illustrate how the
MCMC, Lindley’s and parametric bootstrap methods work based progressive censored data.
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