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Abstract: In this article, authors introduced the notion of(p,q)-preinvex functions. Some new and interesting estimates ofthe integral

a+η(b,a)
∫

a
(a+η(b,a)−u)p(u−a)q f (u)du via (p,q)-preinvex functions are obtained. These estimates can be viewed as refined bounds

of the quadrature formula of Gauss-Jacobi type. The ideas and technique of this paper may be starting point for further research in this
dynamic and interesting field.
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1 Introduction and Preliminaries

Theory of convexity plays a pivotal role in modern
analysis through its numerous applications. This theory
has received special attention by several authors over the
years. Consequently the classical concepts of convexity
have been extended and generalized in different directions
using novel and innovative ideas, see [3,4,7,14,17,26,
27]. Hanson [7] introduced the notion of differentiable
invex functions, without calling them by this word. In the
same year, Craven [1] introduced the term invex for
calling this class of functions. Mititelu [10] defined the
concept of invex set, as follows:
Let Kη be be a nonempty set inR. Let f : Kη → R be a
continuous function and letη(., .) : R → R be a
continuous function.

Definition 1.A set Kη ∈ R is said to be invex with respect
to the bifunctionη(., .), if

u+ tη(v,u)∈ Kη , ∀u,v∈ Kη , t ∈ [0,1].

The concept of invex setKη is sometimes referred to as
η-connected set.

Remark.Note thatη(v,u) = v−u, the invex set reduces to
classical convex set. Thus, every convex set is also an invex

set with respect toη(v,u) = v−u, but the converse is not
necessarily true. For further details, see [11,12,13,27] and
the references therein.

Preinvex functions are defined as:

Definition 2([27]). A function f : Kη → R is said to be
preinvex function with respect to the bifunctionη(., .), if

f (u+ tη(v,u)) ≤ (1− t) f (u)+ t f (v),

∀u,v∈ Kη , t ∈ [0,1].

A function f is said to be preincave if and only if− f is
preinvex. Forη(v,u) = v− u in Definition 2 a preinvex
function reduces to a convex function in the classical
sense.This shows that every convex function is a preinvex
function, but the converse is not true.

Remark.In this paper functionη(., .) : R× R → R is
supposed to have the following property:

η(v+ t1η(u,v),v+ t2η(u,v)) = (t1− t2)η(u,v),
∀t1, t2 ∈ [0,1], t1 ≤ t2. (1)

In this case the following consequences hold:
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1.If t1 = t2 = 0 then (1) implies thatη(v,v) = 0 for all
v∈ R.

2.If t1 = 0 and t2 = t > 0 then
η(v,v+ tη(u,v)) = −tη(u,v) for all u,v ∈ R. This is
the first requirement of Condition C introduced in
[13].

3.If η(u,v) > 0 for some (u,v) ∈ R then
η(v,v+ tη(u,v)) ≤ 0 for all t ∈ [0,1]. It means that
property (1) implies that functionη has not constant
sign onR×R.

Theory of convexity has a strong relationship with theory
of inequalities. Several inequalities have been obtained
for convex functions, see [2,5,6,9,14,16,17,18,19,20,
21,23,24,22,26]. One of the most interesting and
extensively studied inequality in the literature for convex
functions is Hermite-Hadamard’s inequality. This gives
an equivalent property for convexity property. This
inequality is stated as:
Let f : I = [a,b]⊂ R→ R be a convex function, then the
following inequality holds:

f

(

a+b
2

)

≤
1

b−a

b
∫

a

f (u)du≤
f (a)+ f (b)

2
.

Noor [14] extended the Hermite-Hadamard’s inequality
for preinvex functions as:
Let f : Kη → R be a preinvex function such thatη(., .)
satisfies (1), then the following inequality holds:

f

(

2a+η(b,a)
2

)

≤
1

η(b,a)

a+η(b,a)
∫

a

f (u)du

≤
f (a)+ f (b)

2
.

We now recall some known concepts which will be helpful
in obtaining some of our main results.
Beta functionsB(., .) are defined as:

B(u,v) =

1
∫

0

tu−1(1− t)v−1 dt.

It is known that

B(u,v) =
Γ (u)Γ (v)
Γ (u+ v)

.

The generalized quadrature formula of Gauss-Jacobi type
has the form:

b
∫

a

(x−a)p(b− x)q f (x)dx=
m

∑
k=0

Bm,k f (γk)+Rm[ f ],

for some Bm,k,γk and rest term Rm[ f ]. For more
information, see [25]

2 Main Results

In this section, we define the class of(p,q)-preinvex
functions and obtain some new integral inequalities for
(p,q)-prinvex functions. This is the main motivation of
this paper.

Definition 3. A function f : Kη → R is said to be(p,q)-
preinvex function with respect to bifunctionη(., .), if

f (u+ tη(v,u)) ≤ t p(1− t)q[ f (u)+ f (v)],

∀u,v∈ Kη , t ∈ [0,1]. (2)

Remark.Note that ifη(v,u) = v−u in (2) then we have a
new definition of(p,q)-convex function.

Definition 4. A function f : K → R is said to be(p,q)-
convex function, if

f ((1− t)u+ tv) ≤ t p(1− t)q[ f (u)+ f (v)],

∀u,v∈ K, t ∈ [0,1].

Remark.It is worth to mention here that forp= 1= q in
Definition 3 and Definition4, we recover the definitions
of so-calledtgs-preinvex functions [15] and tgs-convex
functions [26].

Theorem 1.Let f : Kη → R be a(p,q)-preinvex function
such that η(., .) satisfies (1) with η(b,a) > 0. If
f ∈ L [a,a+η(b,a)], then

2p+q−1 f

(

2a+η(b,a)
2

)

≤
1

η(b,a)

a+η(b,a)
∫

a

f (u)du

≤ B(p+1,q+1)[ f (a)+ f (b)].

Proof. Sinceη(., .) satisfies (1) and f is (p,q)-preinvex
function, so, foru = a+ tη(b,a), v = a+(1− t)η(b,a)
andt = 1

2, we have

f

(

2a+η(b,a)
2

)

≤
f (a+ tη(b,a))+ f (a+(1− t)η(b,a))

2p+q .

Integrating both sides of the above inequality with respect
to t on [0,1], we have

2p+q−1 f

(

2a+η(b,a)
2

)

≤
1

η(b,a)

a+η(b,a)
∫

a

f (u)du. (3)

We now prove second inequality. Since it is known thatf
is (p,q)-preinvex function, then, we have

f (a+ tη(b,a))≤ t p(1− t)q[ f (a)+ f (b)].

Integrating both sides of the above inequality with respect
to t on [0,1], we have

1
η(b,a)

a+η(b,a)
∫

a

f (u)du≤ B(p+1,q+1)[ f (a)+ f (b)].(4)

On summation of inequalities (3) and (4) the proof is
complete. ⊓⊔
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Note that whenp→ 1 andq→ 1 in Theorem1, we have
the following new result fortgs-preinvex functions.

Corollary 1. Let f : Kη → R be a tgs-preinvex function
such that η(., .) satisfies (1) with η(b,a) > 0. If
f ∈ L [a,a+η(b,a)], then

2 f

(

2a+η(b,a)
2

)

≤
1

η(b,a)

a+η(b,a)
∫

a

f (u)du

≤
f (a)+ f (b)

6
.

Theorem 2. Left f,g : Kη → R be two (p,q)-preinvex
functions such thatη(., .) satisfies (1) andη(b,a) > 0. If
f g∈ L [a,a+η(b,a)], then

22(p+q)−1 f

(

2a+η(b,a)
2

)

g

(

2a+η(b,a)
2

)

−B(2p+1,2q+1)[M(a,b)+N(a,b)]

≤
1

η(b,a)

a+η(b,a)
∫

a

f (u)g(u)du,

where

M(a,b) = f (a)g(a)+ f (b)g(b), (5)

and

N(a,b) = f (a)g(b)+ f (b)g(a), (6)

respectively.

Proof.Since f andg are(p,q)-preinvex functions, so

f

(

2a+η(b,a)
2

)

g

(

2a+η(b,a)
2

)

≤
1

2p+q [ f (a+ tη(b,a))+ f (a+(1− t)η(b,a))]

×
1

2p+q [g(a+ tη(b,a))+g(a+(1− t)η(b,a))]

=
1

22(p+q)
[ f (a+ tη(b,a))g(a+ tη(b,a))

f (a+(1− t)η(b,a))g(a+(1− t)η(b,a))
+ f (a+(1− t)η(b,a))g(a+ tη(b,a))
f (a+ tη(b,a))g(a+(1− t)η(b,a))]

≤
1

22(p+q)
[ f (a+ tη(b,a))g(a+ tη(b,a))

f (a+(1− t)η(b,a))g(a+(1− t)η(b,a))
+2t2p(1− t)2q[ f (a)+ f (b)][g(a)+g(b)]

]

.

Integrating the above inequality with respect tot on [0,1],
we have

f

(

2a+η(b,a)
2

)

g

(

2a+η(b,a)
2

)

≤
1

22(p+q)−1

[

1
η(b,a)

a+η(b,a)
∫

a

f (u)g(u)du

+B(2p+1,2q+1)[M(a,b)+N(a,b)]

]

.

⊓⊔

Theorem 3. Left f,g : Kη → R be two (p,q)-preinvex
functions such thatη(b,a)> 0. If f g ∈ L [a,a+η(b,a)],
then

1
η(b,a)

a+η(b,a)
∫

a

f (u)g(u)du

≤ B(2p+1,2q+1)[M(a,b)+N(a,b)],

where M(a,b) and N(a,b) are given by (5) and (6)
respectively.

Proof.Since f andg are(p,q)-preinvex functions, so

f (a+ tη(b,a))≤ t p(1− t)q[ f (a)+ f (b)],

and

g(a+ tη(b,a))≤ t p(1− t)q[g(a)+g(b)].

Multiplying both sides of the above inequality and then
integrating the resultant respect tot on [0,1], we have

1
∫

0

f (a+ tη(b,a))g(a+ tη(b,a))dt

≤

1
∫

0

t2p(1− t)2q[ f (a)+ f (b)][g(a)+g(b)]dt.

This implies

1
η(b,a)

a+η(b,a)
∫

a

f (u)g(u)du

≤ B(2p+1,2q+1)[M(a,b)+N(a,b)].

⊓⊔

We now need an auxiliary result, which will be helpful in
obtaining our next results.

Lemma 1.Let f : Kη → R be a continuous function such
that f ∈ L [a,a+η(b,a)]. Then

a+η(b,a)
∫

a

(u−a)α(a+η(b,a)−u)β f (u)du

= ηα+β+1(b,a)

1
∫

0

tα(1− t)β f (a+ tη(b,a))dt.

Proof.Simple calculations yield the required result.⊓⊔
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Theorem 4.Let f : Kη →R be a continuous function such
that f ∈ L [a,a+η(b,a)]. If f is (p,q)-preinvex function.
Then

a+η(b,a)
∫

a

(u−a)α(a+η(b,a)−u)β f (u)du

≤ ηα+β+1(b,a)B(α + p+1,β +q+1)[ f (a)+ f (b)].

Proof.Using Lemma1, the definition of Beta function and
the fact thatf is a(p,q)-preinvex function, we have

a+η(b,a)
∫

a

(u−a)α(a+η(b,a)−u)β f (u)du

= ηα+β+1(b,a)

1
∫

0

tα(1− t)β f (a+ tη(b,a))dt

≤ ηα+β+1(b,a)

1
∫

0

tα(1− t)β [t p(1− t)q][ f (a)+ f (b)]dt

= ηα+β+1(b,a)B(α + p+1,β +q+1)[ f (a)+ f (b)].

⊓⊔

Theorem 5. Let f : Kη → R be a continuous function
such that f ∈ L [a,a + η(b,a)]. If | f |

r
r−1 is

(p,q)-preinvex function. Then

a+η(b,a)
∫

a

(u−a)α(a+η(b,a)−u)β f (u)du

≤ ηα+β+1(b,a)B(rα +1, rβ +1)

×
[

B(p+1,q+1)[| f (a)|
r

r−1 + | f (b)|
r

r−1 ]
]

r−1
r
.

Proof.Using Lemma1, Holder’s inequality, the definition
of Beta functions and the fact that| f |

r
r−1 is (p,q)-preinvex

function, we have

a+η(b,a)
∫

a

(u−a)α(a+η(b,a)−u)β f (u)du

≤ ηα+β+1(b,a)





1
∫

0

trα(1− t)rβ dt





1
r

×





1
∫

0

| f (a+ tη(b,a))|
r

r−1 dt





r−1
r

≤ ηα+β+1(b,a)B(rα +1, rβ +1)

×





1
∫

0

{

t p(1− t)q[| f (a)|
r

r−1 + | f (b)|
r

r−1 ]
}

dt





r−1
r

≤ ηα+β+1(b,a)B(rα +1, rβ +1)

×
[

B(p+1,q+1)[| f (a)|
r

r−1 + | f (b)|
r

r−1 ]
]

r−1
r
.

⊓⊔

Theorem 6. Let f : Kη → R be a continuous function
such that f∈ L [a,a+η(b,a)]. If | f |r is (p,q)-preinvex
function. Then

a+η(b,a)
∫

a

(u−a)α(a+η(b,a)−u)β f (u)du

≤ ηα+β+1(b,a) [B(α +1,β +1)]
r−1

r

× [B(α + p+1,β +q+1)[| f (a)|r + | f (b)|r ]]
1
r .

Proof.Using Lemma1, Holder’s inequality, the definition
of Beta functions and the fact that| f |r is (p,q)-preinvex
function, weobatin

a+η(b,a)
∫

a

(u−a)α(a+η(b,a)−u)β f (u)du

≤ ηα+β+1(b,a)





1
∫

0

(1− t)αtβ dt





r−1
r

×





1
∫

0

tα(1− t)β | f (a+ tη(b,a))|r dt





1
r

≤ ηα+β+1(b,a) [B(α +1,β +1)]
r−1

r

×





1
∫

0

tα(1− t)β t p(1− t)q[| f (a)|r + | f (b)|r ]dt





1
r

= ηα+β+1(b,a) [B(α +1,β +1)]
r−1

r

× [B(α + p+1,β +q+1)[| f (a)|r + | f (b)|r ]]
1
r .

This completes the proof.⊓⊔

Note that if p = 1 = q in Theorem4, Theorem5 and
Theorem6, we get previously known results [8]. Thus
these results can be considered as significant
generalizations of the results obtained in [8]
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