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Abstract: There are different approaches to derive the wave equation with some approximations. In this paper, considering the wave
equation as already specified, we get an exact discrete analog of this equation. We derive an discrete equation that exactly corresponds
to the continuum wave equation. The proposed discrete equations are represented as equations withT -differences that are represented
by infinite series. From a physical point of view, this discrete equation describes a lattice with long-range interactions of power-law
type. From a mathematical point of view, it is a uniquely selected difference equation that exactly corresponds to continuous wave
equation.
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1 Introduction

It is well-known that the wave equations can be derived
by the continualization method applied to a lattice. For
example, the one-dimensional system of particles and
springs, where all particles have massM and all springs
have spring stiffnessK, is usually described by the
equations of motion in the form

M
d2un(t)

dt2 = K (un+1(t)−2un(t)+ un−1(t)). (1)

In the continualization method, it is assumed that the
continuous displacementu(x, t) is equals to the lattice
displacementun(t) at particlen by un(t) = u(nh, t), where
the particle spacing is denoted byh. Expressing the
displacementsun±1(t) in terms of the continuous
displacementu(x ± h, t), the Taylor series is used in the
form

un±1(t) = u(x± h, t) = u(x, t)±

±h
∂u(x, t)

∂x
+

h2

2
∂ 2u(x, t)

∂x2 ±
h3

6
∂ 3u(x, t)

∂x3 +O(h4). (2)

Then substitution of the terms (2) into equation (1) and
division by the cross-section area of the mediumA and the
inter-particle distanceh, gives

ρ
∂ 2u(x, t)

∂ t2 = E
∂ 2u(x, t)

∂x2 +O(h2), (3)

whereρ = M/(Ah) is the mass density andE = (K h)/A
is the Young’s modulus. Note that all odd-order
derivatives of u(x, t) are cancelled. Removing all the
termsO(h2), equation (3) is represented in the form

∂ 2u(x, t)
∂ t2 = c2 ∂ 2u(x, t)

∂x2 , (4)

where c =
√

E/ρ is the velocity. We can see that
continualization by Taylor series cannot give the wave
equation exactly since we removed allO(h2)-terms. If we
consider the next term of the Taylor series (2) with h4, we
get the equations of the gradient elasticity [3,4,5] instead
of the wave equation (4).

There are different methods to derive the wave
equations with some approximations. In this paper, we do
not discuss these methods of a derivation of the wave
equation. We try to understand an inverse problem.
Considering the wave equation as already given, we
would like to get exact discrete analogue of this equation.
In this paper we obtain exact discrete equations that
correspond to the wave equation (4). The proposed
discrete equations are equations with differences, which
are represented by infinite series. From a physical point of
view, these equations describe models of lattices with
long-range interactions [6,7]. From a mathematical point
of view, these questions are uniquely selected difference
equations that exactly correspond to the continuous wave
equation. For simplification, we will consider one
dimensional wave equation only. A generalization for
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three-dimensional case can be easily realized by the
approach that is proposed in [10,11,12].

2 From discrete equation with finite
difference to continuum wave equation

Let us consider the linear wave equation

∂ 2u(x, t)
∂ t2 = c2 ∂ 2u(x, t)

∂x2 . (5)

Usually a discrete analogue of this equation is considered
in the form of the equation with finite difference of second
order

d2un(t)
dt2 =

c2

h2

(

un+1(t)−2un(t)+ un−1(t)
)

. (6)

It is well-known [1,2] that this discrete equation is not
exact analog of the wave equation (5). Let us give some
details to explain a connection of equations (5) and (6).
Applying the Fourier series transformFh,∆ , which is
defined by the equation

f̂ (k) =
+∞

∑
n=−∞

f [n] e−i k nh = Fh,∆{ f [n]}, (7)

equation (6) gives

d2û(k, t)
dt2 =−

2c2

h2

∞

∑
m=1

(−1)m

(2m)!
(k h)2m û(k, t). (8)

The inverse Fourier integral transformF−1, which is
defined by the equation

f (x) =
1

2π

∫ +∞

−∞
dk f̂ (k) ei kx = F

−1{ f̂ (k)}, (9)

gives

d2u(x, t)
dt2 =

2c2

h2

∞

∑
m=1

h2m

(2m)!
∂ 2mu(x, t)

∂x2m . (10)

Equation (10) also can be obtained (for details, see Section
8 of [2]) by using the well-known relation

exp

(

h
∂
∂x

)

f (x) = f (x+ h).

Equation (10) gives the wave equation (5) only in the
limit h → 0, since

lim
h→0

2
h2

∞

∑
m=1

h2m

(2m)!
∂ 2mu(x, t)

∂x2m =
∂ 2u(x, t)

∂x2 . (11)

Therefore equation (6) cannot be considered as an exact
discretization of (5).

Using (8), we see that the central finite differencec∆2,
which is used in equation (6), is characterized by the
inequality

Fh,∆ ( c∆ c) 6= (ik h)2. (12)

This inequality leads us (see equation (10)) to the
corresponding inequality

1
h2F

−1(
Fh,∆

( c∆2)) 6=
∂ 2

∂x2 , (13)

which means that this finite difference of second orders
cannot give exactly the derivative of second order∂ 2/∂x2.
The second-order derivative can be obtained only by the
limit h → 0, such that

lim
h→0

F−1
(

Fh,∆
(

c∆2
))

h2 =
∂ 2

∂x2 . (14)

As a result, the discrete equation (6) can be considered
only as approximation of the wave equation (5). Equation
(6) cannot be considered as an exact analogue of the wave
equation (5).

3 From continuum wave equation to discrete
equation

Using the approach, which is proposed in [10,11,12], we
can suggest an exact discrete analog of the wave equation
(5).

Let us consider the Fourier integral transformF ,
which is defined by equation

f̂ (k) =
∫ +∞

−∞
dx f (x) e−i kx = F{ f (x)}. (15)

Applying this Fourier transform to the wave equation (5),
we get

d2û(k, t)
dt2 =−c2 k2 û(k, t). (16)

Using the inverse Fourier series transform

f [n] =
h

2π

∫ +π/h

−π/h
dk f̂ (k) ei k nh = F

−1
h,∆{ f̂ (k)}, (17)

we obtain
d2un(t)

dt2 =
c2

h2
T ∆2 un(t), (18)

whereT ∆2 is the T -difference of second order that is
defined by

T ∆2un :=−
+∞

∑
m=−∞
m6=0

2(−1)m

m2 un−m −
π2

3
un. (19)
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As a result we get an exact discrete analogue of the wave
equation (5) in the form of the difference equation

d2un(t)
dt2 =−

2c2

h2

+∞

∑
m=−∞
m6=0

(−1)m

m2 un−m(t)−
π2c2

3h2 un(t).

(20)
To use the Fourier series transform, we assume that the

function un(t) belongs to the Hilbert spacel2 of square-
summable sequences, where the norm on thelp-space is
defined by the equation

‖ f‖p :=

(

+∞

∑
n=−∞

| f [n]|p
)1/p

. (21)

The T -difference (19) is defined by convolution of
um ∈ l2 and the functions

K2(m) =
(−1)m

m2

that are belong to the spacel1. Using the Young’s
inequality for convolutions (see [13,14] and Theorem 276
of [15]). in the form

‖T ∆2 u‖r = ‖K2 ∗ u‖r ≤ ‖K2‖p‖u‖q, (22)

wherem ∈ Z, and

1
r
+1=

1
p
+

1
q
, (23)

we get that the result of the action of operatorT ∆2 also
belongs to the Hilbert spacel2 of square-summable
sequences, i.e.

T ∆2 um ∈ l2 (24)

since condition (23) holds.
Note that using equation 5.1.2.3 of [8], we can get

∞

∑
m=1

K2(m) =
∞

∑
m=1

(−1)m

m2n =−
1
2

ζ (2) =

=−
1

Γ (x)

∫ ∞

0

x
ex +1

dx =−
π2

12
, (25)

where ζ (z) is the Riemann zeta function,Γ (z) is the
Gamma function. Therefore a result of the action of the
T -differenceT ∆2 on a constant function converge.

An important property of the suggested difference (19)
is that the Fourier series transformFh,∆ of this difference
is represented by the equality

Fh,∆

(

T ∆2
)

= (ik h)2. (26)

This equation leads us to the corresponding equality

1
hn F

−1
(

Fh,∆

(

T ∆2
))

=
1
h2F

−1((ik h)2)=
∂ 2

∂x2 ,

(27)

which means that the difference of second order gives the
derivative ∂ 2/∂x2 exactly. This T -difference are
connected with the derivative∂ 2/∂x2 not only
asymptotically defined by the limith → 0. It’s obvious
that the limith → 0 also gives this derivative

lim
h→0

F−1
(

Fh,∆
(

T ∆ n
))

hn =
∂ n

∂xn . (28)

As a result, the suggested equations withT -difference
can be considered not only as approximation of the wave
equation. The suggested discrete equations (20) are exact
discrete analogue of the continuous wave equation (5).

4 Solution of difference equation

Difference wave equation (20)can be solved, by using the
method of separation of variables. Let us representun(t)
in the form

un(t) = u[n]T (t). (29)

Substitution of (29) into equations (20), gives equation for
u[n] in the form

c2

h2
T∆2u[n]+ω2u[n] = 0, (30)

Equations forT (t) are the same for equations (5) and (20).
To solve (30), we assume that solution is proportional to
exp(λ n) with a constantλ . Substituteu[n] = exp(λ n) into
difference equation (30), and use the relation

T∆1exp(λ n) = λ exp(λ n), (31)

which is proved [12], we get a solution of difference
equation (30) in the form

u[n] =C1 eλ1·hn +C2eλ2·hn, (32)

whereλ1,2 are solution of equationλ 2+ω2 = 0, i.e.λ1 =
+iω andλ1 =−iω . It is easy to see that solutions (32) is
connected with the solutionu(x, t) of wave equation (5) by
the relationun(t) = hu(hn, t) for all n ∈ Z andh > 0, up to
renormalization constantsC1,2.

Difference equation (30) can be considered as an
exact discretization of differential equation (5). The exact
discretization means that the difference equation has the
same general solution as the associated differential
equation. Here we use the following criterion of exact
discretization of differential equations. A discretization of
differential equation is exact if and only if the associated
difference equation has solutionsun(t) is exactly equal to
the solutionsu(x, t) of associated differential equation for
x = hn, wheren ∈ Z andh > 0.

It should be noted that discretization of the wave
equation by standard finite differences (6) cannot be
considered as an exact discretization since

c∆1exp(λ n) 6= λ exp(λ n) (33)

in contrast with (31). Therefore (32) is not the solution of
the standard difference equation (6).
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5 Conclusion

We propose exact discrete equations that corresponds to
the wave equation exactly. From a mathematical point of
view, these discrete equations are selected equations with
nonstandard differences that exactly correspond to the
continuous wave equation. Physically these equations
describe microstructural models of chain with long-range
interactions. The main advantage of the suggested
discrete equations are the connection with continuous
wave equation without any approximation. For
simplification, we consider one-dimensional wave
equation only. A generalization for three-dimensional
case can be easily realized by the approach proposed in
[10,11,12]. Computer simulation of suggested exact
discrete analogue of the continuous wave equation can be
realized similar to modeling of chain systems with
long-range interactions. We assume that the suggested
equations with T -differences can be important in
application since its allow us to reflect characteristic
properties of complex systems and continua at the
micro-scale and nano-scale, where long-range
interactions play a crucial role in determining the
properties (see [16,17,18,19] and references therein).

References

[1] G. Boole, A Treatise on the Calculus of Finite Differences
(Cambridge University Press, 2009).

[2] V.P. Maslov,Operator Methods (Mir, Moscow, 1976).
[3] V.E. Tarasov, ”General lattice model of gradient elasticity”,

Modern Physics Letters B. Vol.28. No.7. (2014) 1450054 (17
pages). (arXiv:1501.01435)

[4] V.E. Tarasov, ”Lattice model with nearest-neighbor and
next-nearest-neighbor interactions for gradient elasticity”,
Discontinuity, Nonlinearity, and Complexity. Vol.4. No.1.
(2015) 11-23. (arXiv:1503.03633)

[5] R.D. Mindlin, ”Theories of elastic continua and crystallattice
theories”. In: E. Kroner (Ed.),Mechanics of Generalized
Continua (Springer-Verlag, Berlin, 1968) pp. 312-320.

[6] V.E. Tarasov, ”Continuous limit of discrete systems with
long-range interaction”, Journal of Physics A. Vol.39. No.48.
(2006) 14895-14910. (arXiv:0711.0826)

[7] V.E. Tarasov, ”Map of discrete system into continuous”,
Journal of Mathematical Physics. Vol.47. No.9. (2006)
092901. (arXiv:0711.2612)

[8] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev,Integrals and
Series, Vol. 1: Elementary Functions (Gordon and Breach,
New York, 1986).

[9] A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi,
Higher Transcendental Functions Volume 1. (Krieeger,
Melbourne, Florida, 1981).

[10] V.E. Tarasov, ”Toward lattice fractional vector calculus”,
Journal of Physics A. Vol.47. No.35. (2014) 355204.

[11] V.E. Tarasov, ”Lattice fractional calculus”, Applied
Mathematics and Computation. Vol.257. (2015) 12-33.

[12] V.E. Tarasov, ”Exact discretization by Fourier transforms”,
Communications in Nonlinear Science and Numerical
Simulation. Vol.37. (2016) 31-61.

[13] W.H. Young, ”On classes of summable functions and their
Fourier series”, Proceedings of the Royal Society A. Vol.87.
No.594. (1912) 225-229. doi: 10.1098/rspa.1912.0076

[14] W.H. Young, ”On the multiplication of successions
of Fourier constants”, Proceedings of the Royal
Society A. Vol.87. No.596. (1912) 331-339. doi:
10.1098/rspa.1912.0086

[15] G.H. Hardy, J.E. Littlewood, D.G. Polya,Inequalities,
Second edition (Cambridge University Press, Cambridge,
1952).

[16] V.E. Tarasov, Fractional Dynamics: Applications of
Fractional Calculus to Dynamics of Particles, Fields and
Media (Springer, New York, 2011).

[17] V.E. Tarasov, ”Review of some promising fractional
physical models”, International Journal of Modern Physics
B. Vol.27. No.9. (2013) 1330005.

[18] T.M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica,
Fractional Calculus with Applications in Mechanics: Wave
Propagation, Impact and Variational Principles (Wiley-
ISTE, London, Hoboken, 2014).

[19] V.E. Tarasov, ”Exact discretization of Schroedinger
equation”, Physics Letters A. Vol.380. No.1-2. (2016) 68-75.

Vasily Tarasov received
his Ph.D. in Theoretical
Physics from the Lomonosov
Moscow State University
in 1995. He was a Research
Associate at the Skobeltsyn
Institute of Nuclear Physics,
Moscow State University for
six years; a Senior Research
Associate at the Skobeltsyn

Institute of Nuclear Physics, Lomonosov Moscow State
University, and then became a a Leading Researcher at
the Skobeltsyn Institute of Nuclear Physics, Lomonosov
Moscow State University. Vasily is an Associate Professor
at the Applied Mathematics and Physics Department of
Moscow Aviation Institute. He is a member of Organizing
Committee of International Workshop on High Energy
Physics and Quantum Field Theory. Vasily E. Tarasov
was Senior Visitor at Courant Institute of Mathematical
Sciences, New York University in 2005-2009. V.E.
Tarasov is an Associate Editor of ”Communications
in Nonlinear Science and Numerical Simulations”
(Elsevier); ”Journal of Applied Nonlinear Dynamics”
(LH Scientific Publishing). V.E. Tarasov is a member of
Editorial Boards of the journals: ”Fractional Calculus
and Applied Analysis” (De Gruyter)”, ”Fractional
Differential Calculus” (Ele-Math); ”International Journal
of Applied and Computational Mathematics” (Springer);
”Discontinuity, Nonlinearity, and Complexity” (LH
Scientific Publishing); ”Physics International” (Science
Publications). He has published about 160 scientific
works, among which 8 books, 4 chapters in books and
about 140 papers in refereed journals.

c© 2017 NSP
Natural Sciences Publishing Cor.


	Introduction
	From discrete equation with finite difference to continuum wave equation
	From continuum wave equation to discrete equation
	Solution of difference equation
	Conclusion

