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Abstract: In this paper, different methods to correct HPGe detector full-energy peak efficiency for Neutron Activation 

Analysis (NAA) samples are presented. These methods include Monte Carlo method and analytical formulas. An analytical 

formula for the sample geometry correction has been derived. A comparison between the Monte Carlo and analytical 

calculations results were performed. The experiment carried out in this research showed that the Monte Carlo method and 

the derived formula are highly accurate methods for HPGe detector full-energy peak efficiency corrections for NAA 

samples. 
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1 Introduction 

The accuracy of Neutron Activation Analysis (NAA) 

technique depends on the accuracy of the data used in all 

the NAA stages. Most current NAA laboratories operate 

HPGe detectors for the radioactivity analyses. HPGe 

detectors usually are calibrated using standard sources that 

are available as small deposits on thin backing material so 

that they may closely approximate non absorbing point 

sources. Although, NAA samples are usually very small (~ 

500 mg), the effect of sample geometry and gamma-ray 

self-attenuation on the detector efficiency would not be 

neglected for accurate NAA results. 

Monte Carlo method is widely used for the evaluation of 

the efficiencies of the HPGe detectors [1-3]. Usually, the 

Monte Carlo method is used to find a correction factor 𝐹 

for correcting the full-energy peak efficiency of the 

detector, calibrated by point sources, for volume samples 

[4-6]: 

Ԑ𝑠 = 𝐹Ԑ𝑝,                              (1) 

where, Ԑ𝑠 is the detector efficiency for the sample and Ԑ𝑝 is 

the detector efficiency for the point source.  In this case the 

detector calibration is simulated for the point source and for 

the sample of interest and the correction factor 𝐹 would be: 

𝐹 =
Ԑ𝑠𝐶

Ԑ𝑃𝐶
,                                (2) 

where, Ԑ𝑠𝐶  is the calculated detector efficiency for the 

sample and Ԑ𝑃𝐶 is the calculated detector efficiency for the 

point source. This method eliminates the error regarding the 

uncertainty in the detector data (e.g. detector’s window 

thickness, active and inactive Ge dimensions,…) and the 

accuracy will depend on the accuracy of the simulation of 

the sample. 

 

Figure 1.Schematic diagram of sample-detector 

configuration. 

In the analytical methods for HPGe detector full-energy 

peak efficiency corrections, the correction factor 𝐹 is 

usually unfolded to two correction factors: 

𝐹 = 𝐹𝐺𝐹𝜇 ,                                               (3) 

where, 𝐹𝐺 is the sample geometry correction and 𝐹𝜇is 

sample self-attenuation correction. The common way of 

evaluating 𝐹𝐺is by correcting the solid angle covered by the 

detector from a point source to the sample [7-9].  In 
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particular, Aguiar et al. [8] has generated the following 

geometric correction factor for cylindrical samples: 

𝐹𝐺 =
2

3𝐿
[𝐿 − 𝑟 arctan (

𝑑+𝐿

𝑟
) +  

(𝑑+𝐿)3

2𝑟2 ln (1 +
𝑟2

(𝑑+𝐿)2) +

𝑟 arctan (
𝑑

𝑟
) −

𝑑3

2𝑟2 ln (1 +
𝑟2

𝑑2)],   (4) 

where, 𝐿 is the sample height, 𝑑 is the distance between the 

sample and the detector crystal and 𝑟 is the sample radius. 

Eq. (4) correct the detector efficiency calibrated by a point 

source located at the position of the sample center (ℎ = 𝑑 +
𝐿/2, Figure 1).   

The simple method of calculating the gamma-ray self-

attenuation correction is by assuming a parallel radiation 

emission [10,11]. In this case, the relative number of 

photons emitted from an element, 𝑑𝑥 (Figure 1) that 

penetrate a distance 𝑥 before leaving the sample towards 

the detector is: 

𝑒−𝜇𝑥, 

where, 𝜇 is the linear attenuation coefficient. For a 

homogeneous distribution of the radioactivity in the 

sample, the fraction of gamma photons emitted from the 

element  𝑑𝑥 is: 

𝑑𝑥/𝐿 

Therefore, the attenuation correction factor will be: 

𝐹𝜇 = ∫
𝑒−𝜇𝑥𝑑𝑥

𝐿

𝐿

0
=

1−𝑒𝜇𝐿

𝜇𝐿
      (5) 

The accuracy of this formula depends on the sample size, 

the attenuation coefficient (which depends on the photon 

energy) and the distance between the sample and the 

detector.  

The last correction factor that should be considered, in 

particular when low photon energy is considered is the 

container wall attenuation of gamma-ray, 𝐹𝑊. Assuming 

parallel radiation emission, this correction would be: 

𝐹𝑊 = 𝑒−𝜇𝑤𝑡 ,                                     (6) 

where, 𝜇𝑤is the attenuation coefficient of the container wall 

and 𝑡 is the wall thickness.  

The aim of this paper is to present different methods to 

correct HPGe detector full-energy peak efficiency for NAA 

samples including Monte Carlo method and analytical 

formulas. A simple formula for the geometry correction 

factor, 𝐹𝐺  considering the NAA samples would be derived.  

The validity of the derived formula and the sample self 

attenuation correction given by Eq. (5) would be studied, as 

well.  

2 Geometry Correction 

Assuming NAA cylindrical samples, the geometry 

correction factor, 𝐹𝐺would depend on the sample diameter 

and the sample length. Although in the geometry factor 

calculations, sample is assumed to be vacuum, this factor is 

also depends on the photon energy. This is due to that the 

angular distribution of photons incident on the detector 

window differs from a point source to a volume source.  

The Monte Carlo code: MCNPX [12] was used to calculate 

the geometry correction factor for an HPGe detector 

exposed to a disk source at different photon energies. The 

detector diameter and height are 8 cm and 10 cm, 

respectively (8D x 10H cm). Two disk diameters were 

considered: 2 and 8 cm and two positions for each were 

simulated: at 0.5 and 10 cm from the detector crystal. Pulse 

height distribution tally, F8 with corresponding E8 tally 

were used to record the photons which deposited all their 

energies in the detector. The uncertainties in the results 

were around 0.2%. The results are plotted as given in 

Figure 2. The dependence of  𝐹𝐺 on the photon energy 

appears clearly from the results of the large disk diameter. 

Therefore, the dependence of 𝐹𝐺 on the photon energy 

should not be ignored for bulk samples especially when it is 

counted on (or near) the detector window. 

 
Figure 2.Geometry factors as function of the photon energy 

for an 8D x 10H cm HPGe detector exposed to 2 and 8 cm 

diameter disk sources at 0.5 and 10 cm from the detector 

crystal. 
 

In the case of small disk, 𝐹𝐺 is very close to 1. In this study, 

the NAA samples are considered to be had small diameters 

with respect to detector diameter such that a disk sample 

correction, 𝐹𝐺~1. Three cases were treated to study the 

geometry correction factor for small disks sources as 

function of the detector diameters and their positions with 

respect to the detector crystal. These cases are: 

1. An 8D x 10H cm HPGe detector exposed to 2 cm 

diameter disk source. 

2. An 8D x 10H cm HPGe detector exposed to 1 cm 

diameter disk source. 

3. An 4D x 6H cm HPGe detector exposed to 1 cm 

diameter disk source. 

The calculations were carried out at photon energy of 1 

MeV. Figure 3 shows 𝐹𝐺 of the three cases as function of 

the source position. NAA samples diameters usually are 
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less than 1 or 2 cm and usually are measured far enough 

from the detector to avoid the coincidences. As shown in 

Figure 3, the effect of the sample diameter on the detector 

efficiency can be ignored when the samples are counted at a 

distance higher than  5 or 7 cm from the detector crystal. In 

this case the sample height has the dominant effect on the 

geometry correction factor.   

 
Figure 3. Geometry factors for small disk sources as 

function of the distance between the detector and the disk 

positions, ℎ. R is the detector radius and r is the disk radius. 

Assume that a small-diameter cylindrical sample with 

height 𝐿 and located at a distance 𝑑 from the detector 

crystal as shown in Figure 1. Two methods were considered 

for geometry correction factor, 𝐹𝐺. First method is based on 

the Inverse-Square Law (ISL). In this case the fraction of 

photons emitted from the element 𝑑𝑥 and reach the detector 

crystal, 𝑁𝑑𝑥 is inversely proportional to the square distance 

between the element 𝑑𝑥 and the detector crystal: 

𝑁𝑑𝑥)𝐼𝑆𝐿 =
𝑆𝐶

(𝑑+𝑥)2

𝑑𝑥

𝐿
,                                            (7) 

where, the subscript 𝐼𝑆𝐿 refers to inverse-square law, 𝑆 is 

the source intensity and 𝐶 is the proportionality constant. 

Therefore the number of photons per source photon reach 

the detector, 𝑁𝑠 is: 

𝑁𝑠)𝐼𝑆𝐿 = ∫
𝐶

(𝑑 + 𝑥)2

𝑑𝑥

𝐿

𝐿

0

=
𝐶

𝑑(𝑑 + 𝐿)
                 (8) 

Noting that according to ISL, the number of photons per 

source photon reach the detector from a point source 

located at ℎ is: 

𝑁𝑃)𝐼𝑆𝐿 =
𝐶

ℎ2                                                (9) 

By dividing 𝑁𝑠 from Eq. (8) by 𝑁𝑃from Eq. (9), the 

geometry factor 𝐹𝐺would be obtained: 

𝐹𝐺)𝐼𝑆𝐿 =
ℎ2

𝑑(𝑑 + 𝐿)
                                           (10) 

The second method is based on the Solid Angle Correction 

(SAC) covered by the detector for the small-diameter 

sample (approximated to line source). The solid angle for a 

point source, 𝛺𝑝located at the distance ℎ can be calculated 

from the following equation [13]: 

  𝛺𝑝  = 2𝜋 [1 −
ℎ

√ℎ2+𝑅2
],                                      (11) 

where, 𝑅 is the detector radius.  Therefore, the solid angle 

for the element 𝑑𝑥 (Figure 1), 𝛺𝑑𝑥 at distance 𝑑 + 𝑥 is 

calculated from: 

              𝛺𝑑𝑥  = 2𝜋[1 −
𝑑+𝑥

√(𝑑+𝑥)2+𝑅2
],                             (12) 

The solid angle for the entire sample would be: 

𝛺𝑠  = 2𝜋 ∫ [1 −
𝑑 + 𝑥

√(𝑑 + 𝑥)2 + 𝑅2
]

𝐿

0

𝑑𝑥

𝐿
 

=
2𝜋

𝐿
[𝐿 + √𝑑2 + 𝑅2 − √(𝑑 + 𝐿)2 + 𝑅2] (13) 

Dividing 𝛺𝑠 (Eq. 13) by 𝛺𝑝(Eq. 11), the geometry 

correction factor, 𝐹𝐺would be obtained: 

𝐹𝐺)𝑆𝐴𝐶 =
√ℎ2+𝑅2

𝐿(√ℎ2+𝑅2−ℎ)
[𝐿 + √𝑑2 + 𝑅2 − √(𝑑 + 𝐿)2 + 𝑅2]   (14) 

In NAA, usually the sample is measured at the sample 

position of the point source used in the calibration (𝑑 = ℎ). 

Figure 4 shows the calculation results of 𝐹𝐺 using ISL and 

SAC methods (Eqs. 10 and 14, respectively) and MCNPX 

code for 1 cm diameter samples with heights of 0.5, 1 and 2 

cm. The HPGe detector used is 6D x 7H when 𝑑 = ℎ. The 

calculations were carried out as function of the distance 

between the detector and the sample as shown in the figure. 

Table 1 gives the deviations between the analytical methods 

(ISI and SAC) and the Monte Carlo method.  Generally, the 

difference between the three methods decreases with 

increasing the distances 𝑑 and with decreasing the sample 

height. The SAC method is more agreeable with Monte 

Carlo calculations than the ISL method. At small distance 

𝑑, the ISL method comes to be not reliable and should not 

be used.  

Although, the SAC method is based on accurate analytical 

derivation for correction of the solid angle, a negative 

biasing would be observed between the SAC and Monte 

Carlo methods as shown in Figure 4. This error depends on 

the sample height and the distance between the sample and 

detector. This is due to that the detector intrinsic efficiency, 

Ԑint (defined as the number of counts in full-energy peak per 

photon incident on the detector surface) is function of the 

source positions [14]. This parameter is neglected in the 

SAC method. The detector intrinsic efficiency of the 6D x 

7H cm HPGe detector as function of point source position, ℎ 

is calculated using MCNPX code at photon energy, 𝐸=1 

MeV as shown in Figure 5. This parameter, Ԑint cannot be 

neglected for large samples. For example, a sample with a 

height of 5 cm positioned at a distance of 5 cm from the 

detector would has a variation of around 20% in the 

detector intrinsic efficiency for photons emitted from the 

bottom and the top of the sample. 

0.98

0.99

1

0 5 10 15 20

F
G

h (cm)

R=4 cm, r=1 cm

R=4 cm, r=1 cm

R=2 cm, r=0.5 cm

 

http://www.naturalspublishing.com/Journals.asp


40       N. Mohamed: Corrections of HPGe Detector Efficiency… 

 

 

© 2017 NSP 

Natural Sciences Publishing Cor. 
 

 

Figure 4. Calculated 𝐹𝐺using ISL and SAC methods and 

MCNPX code for 1 cm diameter samples with heights of 

0.5, 1 and 2 cm when 𝑑 = ℎ . The HPGe detector used is 6D 

x 7H cm. 

Table 1.  Percent devotions between the analytical methods 

(ISI and SAC) and the Monte Carlo method in 𝐹𝐺 when 

𝑑 = ℎ. The sample diameter is 1 cm and the HPGe detector 

is 6D x 7H cm. 

𝑑 
(cm) 

L =0.5 cm L= 1 cm L =2 cm 

ISL SAC ISL SAC ISL SAC 

0.5 -42 5.7 -56 8.7 -67 12 

1 -24 3.2 -36 4.2 -48 5.2 

2 -13 0.45 -18 -0.1 -26 -1.5 

3 -6 -0.63 -11 -2 -18 -3.7 

5 -2.7 -0.92 -5.4 -2.2 -9.3 -4.1 

7 -1.5 -0.73 -3.2 -1.8 -5.7 -3.3 

10 -0.67 -0.37 -1.7 -1.2 -3.3 -2.3 

15 -0.30 -0.21 -0.95 -0.77 -1.6 -1.2 

20 -0.26 -0.22 -0.75 -0.67 -0.90 -0.76 

 

 

Figure 5. Intrinsic efficiency, Ԑint of a 6D x 7H cm HPGe 

detector as function of point source position, ℎ at photon 

energy, 𝐸=1 MeV. 

More accurate evaluation of 𝐹𝐺can be obtained if the point 

source is located at the sample center position. However, 

one batch of NAA samples usually has a large number of 

samples with different volumes and it is difficult to 

calibrate the detector for each sample. In this case the 

position of the calibrated point source can be optimized to 

be near the samples centers. The above calculations were 

repeated assuming the point source is located at the sample 

center position (ℎ = 𝑑 + 𝐿/2).  The Aguiar et al. model, 

Eq. (4) is included for the comparison. Fig. 6 shows the 

results for samples heights 1 cm and 2 cm and Table 2 

gives the deviations between the analytical methods 

(Aguiar et al., ISL and SAC) and Monte Carlo method. As 

shown in the figures, the value 𝐹𝐺 closes one for all the 

methods as the distance 𝑑 increases and in this case 

detector efficiency does not need to be corrected for the 

sample geometry. Also, the SAC method is the most 

agreeable method to the Monte Carlo Method as given in 

Table 2. 

 
 

Figure 6. Calculated 𝐹𝐺using Aguiar et al., ISL and SAC 

methods and MCNPX code for 1 cm diameter samples with 

heights of 1 and 2 cm when ℎ = 𝑑 + 𝐿/2 . The HPGe 

detector used is 6D x 7H cm.  

 

Table 2. Percent devotions between the analytical methods 

(Aguiar et al. , ISI and SAC) and the Monte Carlo method 

in 𝐹𝐺 when ℎ = 𝑑 + 𝐿/2. The sample diameter is 1 cm and 

the HPGe detector is 6D x 7H cm. 

𝑑 

(cm) 

L = 1 cm L =2 cm 

Aguiar 

et al. 
ISL SAC 

Aguiar 

et al. 
ISL SAC 

0.5 -14 31 -1 -13 70 -2.8 

1 -6.7 11 -0.36 -8.1 27 -1.3 

2 -2.7 3.5 0.20 -4.5 9 0.26 

3 -1.5 1.6 0.28 -3 4.4 0.69 

5 -0.74 0.50 0.20 -1.7 1.5 0.58 

7 -0.39 0.28 0.17 -1.1 0.64 0.31 

10 -0.19 0.16 0.13 -0.66 0.28 0.18 

15 -0.21 -0.05 -0.06 -0.29 0.15 0.13 

20 -0.16 -0.07 -0.07 -0.26 -0.01 -0.01 

 

3 Self-Attenuation Correction 

To study the validity of the sample self-attenuation 

correction, 𝐹𝜇 which is derived with the assumption of 

parallel radiation emission, Eq. (5), three water samples 

with diameter of 1 cm and heights of 0.5, 1, and 2 cm have 
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been considered. Each sample was assumed to be measured 

at three different distances from a 6D x 7H cm HPGe 

detector. 

According to Eq. (5),  𝐹𝜇 is independent on the distance 

between the sample and the detector, 𝑑. MCNPX was used 

to simulate the detection system and for each case two runs 

were carried out. The first run is for a cylinder of vacuum 

and the second run is for the cylinder when it is filled with 

water. By dividing the detector response in the second case 

by its response in the first case, 𝐹𝜇 was calculated. Figure 7 

shows 𝐹𝜇 as function of the photon energy for the first 

sample (𝐿=0.5 cm) at 𝑑=0.5, 2 and 10 cm. The deviations 

between the analytical and Monte Carlo calculations are 

given in Table 3. Excellent agreement between the 

analytical and Monte Carlo calculations can be observed for 

all the range of photon energies (from 30 keV to 3 MeV), in 

particular when the distance between the detector crystal 

and the sample is greater than 2 cm. When the sample 

height is increased to 1 cm, a systematic error can be 

observed between the analytical and Monte Carlo 

calculations as shown in Figure 8.This error decreases as 

Table 3.  Percent devotions between the analytical method 

and the Monte Carlo method in Fμ calculations for samples 

with diameter 1 cm and heights 0.5, 1 and 2 cm. the HPGe 

detector is 6D x 7H cm. 

E 

(keV) 

L = 0.5 cm L = 1 cm L = 2 cm 

𝑑=0.5 

cm 

𝑑=2 

cm 

𝑑=10 

cm 

𝑑=2 

cm 

𝑑=5 

cm 

𝑑=10 

cm 

𝑑=5 

cm 

𝑑=10 

cm 

𝑑=20 

cm 

30 -0.92 
-

0.25 
0.37 1.84 1.42 0.85 5.86 2.78 0.78 

60 -0.91 
-

0.27 
0.16 1.15 0.88 0.57 3.91 2.22 1.22 

100 -0.75 
-

0.15 
0.10 0.98 0.76 0.49 3.63 2.21 1.31 

200 -0.55 
-

0.13 
0.12 0.82 0.61 0.44 2.78 1.74 1.13 

500 -0.38 0.16 0.02 0.48 0.42 0.18 1.80 1.03 0.45 

1000 -0.32 
-

0.04 
-0.14 0.33 0.43 0.14 1.28 0.97 0.52 

2000 -0.30 0.25 0.26 0.56 0.40 0.30 1.47 1.20 0.66 

3000 -0.09 0.10 -0.02 0.08 0.05 -0.34 0.24 -0.32 0.41 
 

 
Figure 7. Analytical and Monte Carlo calculations of 𝐹𝜇for 

1D x 0.5H cm sample as function of the detector energy at 

𝑑 =0.5, 2 and 10 cm. The HPGe detector  used is 6D x 7H 

cm.  

the photon energy, 𝐸 increases and as 𝑑 increases. The 

deviations would be less than 1% when 𝐸 is greater than 

100 keV and 𝑑 is greater than 2 cm as given in Table 3. 

When the sample is measured at 𝑑> 10 cm, the deviations 

between the analytical and Monte Carlo calculations would 

be less than 1% for 𝐸> 30 keV and less than 0.5% for 𝐸> 

100 keV. A sample with diameter of 1 cm and height of 1 

cm has a volume of 0.785 cm3 and conventional NAA 

samples usually are limited to less than this volume.  

 

Figure 8. Analytical and Monte Carlo calculations of 𝐹𝜇for 

1D x 1H cm sample as function of the detector energy at 

𝑑 =2, 5 and 10 cm.. The HPGe detector  used is 6D x 7H 

cm.  

 

Figure 9. Analytical and Monte Carlo calculations of 𝐹𝜇for 

1D x 2H cm sample as function of the detector energy at 

𝑑 =5, 10 and 20 cm.. The HPGe detector  used is 6D x 7H 

cm.  

However, if the samples have longer heights for example 

𝐿=0.5 =2, the samples should be measured at a distance far 

enough from the detector (𝑑> 20 cm) if the approximation 

of parallel radiation emission is used in the calculation of 

sample self-attenuation correction. Figure 9 shows 𝐹𝜇 as 

function of the photon energy for the third sample (𝐿=2 cm) 

at 𝑑=5, 10 and 20 cm and the deviations between the 

analytical and Monte Carlo calculations are given in Table 

3. 
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4 Experiment  

A small drop of Co-60 and Eu-152 solution with activities 

of 2.8 and 3.5 kBq, respectively was put in a small bottle. 

This drop which represented the point source was counted 

at two positions: 10 and 10.5 cm from the crystal of a 

coaxial HPGe N-type Ortec detector. The detector is 7.9D x 

9.5H and has a relative efficiency of 100% and a resolution 

of 2.1 keV at 1.333 MeV Co-60 line.  The detector is 

operated by Gamma Vision software. The drop was diluted 

to obtain a water sample with 1.2 cm in diameter (the inner 

diameter of the bottle) and 1 cm in height. Therefore, the 

new sample contains the same activities of Co-60 and Eu-

152. The sample was counted at 10 cm from detector 

crystal. The measurement time for each run was 3.5 hrs.  

The first correction factor was calculated as: 

𝐹)ℎ=𝑑 =
𝐶𝑆

𝐶𝑝)𝑑=ℎ
,                                 (15) 

where, 𝐹)ℎ=𝑑 is the full-peak efficiency correction when 

the drop sample and the sample are counted at the same 

distance from the detector, ℎ = 𝑑=10 cm, 𝐶𝑆 is the counting 

rate of the sample and 𝐶𝑝)𝑑=ℎ is counting rate of the drop 

sample at ℎ=10 cm. The second correction was calculated 

as: 

𝐹)ℎ=𝑑+𝐿/2 =
𝐶𝑆

𝐶𝑝)ℎ=𝑑+𝐿/2
,                            (16) 

where, 𝐹)ℎ=𝑑+𝐿/2 is the full-peak efficiency correction 

when the drop sample and the sample are counted at 

different distances, ℎ = 𝑑 + 𝐿/2=10.5 cm and 𝐶𝑝)𝑑=ℎ+𝐿/2 

is counting rate of the drop sample at ℎ=10.5 cm.  The 

source of uncertainty considered is the counting 

uncertainties: 

𝜎𝐹 = √𝜎𝑝
2 + 𝜎𝑆

2,                              (17) 

where, 𝜎𝐹 is the uncertainty in the correction factor and 

𝜎𝑝and 𝜎𝑆 are the uncertainties in the drop sample and the 

sample counting, respectively. 

MCNPX was used to simulate the detection system to 

calculate the two correction factors. The analytical method 

used to calculate the correction factors was the SAC 

method, Eq. (14) with the sample self-attenuation 

correction, Eq. (5). SAC method was selected, since it is the 

most accurate method with respect to the Monte Carlo 

calculations. 

Figures 10 and 11 show the results of the three methods 

(Experimental, Monte Carlo and analytical calculations) for 

𝐹)ℎ=𝑑 and 𝐹)ℎ=𝑑+𝐿/2, respectively. The error bars are 

represented by the expended uncertainty (2 𝜎). Excellent 

agreement between the Monte Carlo calculations and the 

experiment results is obtained as shown in the two figures. 

The deviations of the Monte Carlo and analytical 

calculations than the experiment results are given in Table 

4. When the drop sample and the sample are counted at the 

same distance from the detector (ℎ = 𝑑 = 10 𝑐𝑚), a 

negative biasing of the analytical method results can be 

observed as shown in Figure 10 and as given in Table 4. 

This is due to that the change of the detector intrinsic 

efficiency was not corrected for the volume sample as 

discussed above. When the drop sample is positioned at the 

position of the center of the volume sample (ℎ = 𝑑 +
𝐿/2 = 10.5 𝑐𝑚), the drop sample would be considered as a 

representative point for the sample geometry. Therefore, 

the deviation in the detector efficiencies for the drop 

sample and the sample would be due to the sample self-

attenuation. In this case, the agreement between the 

analytical and experiment results is enhanced as shown in 

Figure11 and as given in Table. 4.  

  

 

 
Figure 10.Experiment, Monte Carlo and analytical 

calculations results for 𝐹)ℎ=𝑑 . 𝑑 = 10 𝑐𝑚, 𝐿 = 1 𝑐𝑚.The 

HPGe detector  used is 7.9D x 9.5H cm. The error bars are 

represented by 2 𝜎. 

 

 
 

Figure 11.Experiment, Monte Carlo and analytical 

calculations results for 𝐹)ℎ=𝑑+𝐿/2 . 𝑑 = 10 𝑐𝑚, 𝐿 =

1 𝑐𝑚.The HPGe detector  used is 7.9D x 9.5H cm. The error 

bars are represented by 2 𝜎. 

Table 4. Percent devotions of the Monte Carlo and 
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analytical calculations than the experiment results in𝐹. 𝑑 =
10 𝑐𝑚, 𝐿 = 1 𝑐𝑚.The HPGe detector used is 7.9D x 9.5H 

cm. 

𝐸 

(keV) 

ℎ = 𝑑 ℎ = 𝑑 + 𝐿/2 

Monte 

Carlo 
Analytical 

Monte 

Carlo 
Analytical 

123 -0.23 -0.55 0.08 0.09 

245 -0.40 -1.10 -0.51 -0.48 

345 -0.11 -0.99 -0.49 -0.44 

779 -0.48 -1.69 0.08 0.01 

964 -0.05 -1.25 0.65 0.74 

1086 0.23 -1.23 0.32 0.16 

1173 -0.14 -1.75 0.75 0.78 

1332 0.24 -1.20 0.65 0.54 

1408 0.10 -0.87 0.64 0.93 
 

5 Conclusion   

Monte Carlo method is very accurate method of 

determining correction factors of HPGe detectors efficiency 

for NAA samples. Conventional NAA samples usually are 

measured far enough from the detector to minimize the 

coincidences. This in turn allows considering the small-

diameter samples as a line source for solid angle covered by 

the detector determination. Eq. (14) was derived and 

proposed as an analytical formula for the sample geometry 

correction.  However, determining a correction factor for 

the sample geometry by correcting the solid angle may lead 

to negative biasing, if the correction of the detector intrinsic 

efficiency is neglected, depending on the sample size and 

the distance between the detector and the sample. This 

problem can be overcome by positioning the calibrated 

point source at the position of the sample center. The 

approximation of parallel radiation emission in the 

derivation of the sample self-attenuation correction validity 

depends on the sample size, the distance between the 

sample and the detector and the photon energy. 
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