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Abstract: The present study analyses the stagnation-point flow over a stretching sheet embedded in a porous medium. The plane
stagnation-point flow is a class of flow problem which involves two-dimensional flow. The present study develops a mathematical
model of a non-Newtonian flow of Casson fluid. The novelty of the present study is to account for the effect of permeability of the
medium as well as energy loss due to Julian dissipation. A linear Darcian model is used to model the flow through porous media,
whereas the non-linear term in energy equation accounts forthe Joulian dissipation. Some interesting outcomes of the present study are
the presence of porous matrix, which enhances the velocity thereby contributing to the growth of boundary layer and accelerates the
momentum diffusion through larger fluid layers, whereas Julian dissipation is counterproductive for the growth of thermal boundary
layer i.e. moderately large Eckert number produces thinnerboundary layer.
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1 Introduction

The exact solution of the flow problem in the vicinity of a
stagnation-point for both two and three-dimensional flows
of a viscous fluid may be obtained from the consideration
that at large distances from the stagnation-point the flow
is essentially same as that of the corresponding potential
flow problem. Thus, the solution of viscous flow may be
derived from the solution of the potential flow problem.
The study of stagnation-point flow over a stretching sheet
has attracted many researchers [1,2,3,4,5]. This problem
holds numerous applications such as glass fiber, cooling
of a metallic plate, polymer-processing manufacturing of
glass sheets, paper production, and many others. Crane
[1] initiated a study of viscous fluid towards a linearly
stretching sheet. Caragher and Crane [2] analyzed heat
transfer aspect on a continuous stretching sheet. The use
of similarity transformation in solving flow and heat
transfer equation is one of the most successful
idealization in fluid mechanics [3]. An exact similarity
solution for the dimensionless differential system of the

flow model has been obtained. Many investigations have
been carried out to examine the flow over a
stretching/shrinking sheet under different aspects of
magnetohydrodynamic (MHD), suction/injection, heat
and mass transfer etc. [4,5,6,7,8,9,10,11].
Magnetohydrodynamic three-dimensional flow and heat
transfer over a stretching surface in a viscoelastic fluid
were discussed by Ahmad and Nazar [12]. Recently, in
another article, Nadeem et al. [13] examined the
magnetohydrodynamic boundary layer flow of a Casson
fluid over an exponentially accelerated shrinking sheet.
They discussed the analytical solutions of the differential
system by Adomian decomposition method (ADM).
Mishra et al. [14] investigated the mass and heat transfer
effect on MHD flow of a viscoelastic fluid through a
porous medium with oscillatory suction and heat source.

The flow and heat transfer of Jeffrey fluid near
stagnation-point on a stretching/shrinking sheet with the
parallel external flow was investigated by Turkyilmazoglu
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and Pop [15]. They developed an exact solution to the
Navier-Stokes equations. Chiam [16] studied the
combined problem of Hiemenz [17] and Crane [1], i.e.
the stagnation-point flow over a stretching sheet where
they considered the identical stretching velocity and
straining velocity and found no boundary layer structure
near the sheet. Afterward, Mahapatra and Gupta [18]
re-investigated the stagnation-point flow towards a
stretching sheet taking different stretching and straining
velocities and ultimately they found two different kinds of
boundary layer structures near the sheet depending on the
ratio of the stretching and straining velocity rates.
However, some other important investigations concerning
the stagnation-point flow over stretching sheet were made
by Mahapatra and Gupta [19], Fredrickson [20]
investigated the steady flow of a Casson fluid in a tube.
The unsteady boundary layer flow and heat transfer of a
Casson fluid over a moving flat plate with a parallel free
stream were studied by Mustafa et al. [21] and they
solved the problem analytically by using homotopy
analysis method (HAM). Bhattacharyya et al. [22,23]
reported the exact solution for boundary layer flow of
Casson fluid over a permeable stretching/shrinking sheet
with and without external magnetic field. Recently,
Bhukta et al. [24] have studied heat and mass transfer on
the MHD flow of a Viscoelastic fluid through porous
media over a shrinking sheet. Entropy analysis for an
unsteady MHD flow past a stretching permeable surface
in nanofluid was investigated by Abolbashari et al. [25].
Rashidi et al. [26] studied the mixed convective heat
transfer for MHD viscoelastic fluid flow over a porous
wedge with thermal radiation. Further Rashidi and Erfani
[27] have studied steady MHD convective and slip flow
due to a rotating disk with viscous dissipation and Ohmic
heating and solve the same problem analytically.
Recently, Freidoonimehr et al. Numerical and analytical
solutions for Falkner-Skan flow of MHD Oldroyd-B fluid
was investigated by Abbasbandy et al. [29].
It is well known that Casson fluid is a shear thinning
liquid which is assumed to have an infinite viscosity at
zero rates of shear, a yield stress below which no flow
occurs and a zero viscosity at an infinite rate of shear, i.e.
if a shear stress less than the yield stress is applied to the
fluid, it behaves like a solid, whereas if a shear stress
greater than yield stress, it starts moving [30]. The
examples of Casson fluid are as follows: jelly, tomato
sauce, honey, soup, concentrated fruit juices, etc. Human
blood can also be treated as Casson fluid. Due to the
presence of several substances like protein, fibrinogen,
and globulin in aqueous base plasma, human red blood
cells can form a chainlike structure, known as aggregates
or rouleaux. If the rouleaux behaves like a plastic solid,
then there exists a yield stress that can be identified with
the constant yield stress in Casson fluid [31].
The objective of the present study is to generalize the
works of Nazar et al. [32] and Bhattacharyya [33] by
incorporating the loss due to Julian dissipation in the
energy equation. Moreover, the flow is subjected to pass

Fig. 1: Flow Geometry

through a porous medium, which has been effectively
accounted with the help of a non-Darcy model. The
extension is justified as because no system is foolproof to
trap the thermal energy loss. Secondly, the flow through a
porous media is more practical having numerous
applications in the field of oil recovery and saline aquifer.

2 Mathematical Analysis

Consider the flow of an incompressible Casson fluid past
a flat sheet that coincides with the planey = 0. The fluid
flow is confined toy > 0. Two equal and opposite forces
are applied alongx-axis to initiate the formation of the
fluid. The rheological equation of state for an isotropic
and incompressible flow of Casson fluid is as follows:

τi j(x) =

{

2(µB +
py√
2π )ei j π > πc,

2(µB +
py√
2πc

)ei j π < πc
(1)

The governing continuity, momentum, and energy
equations of such type of flow following Bhattacharyya
[33] are written as:

∂u
∂x

+
∂v
∂y

= 0, (2)
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Table 1: Nomenclature
a Straining rate parameter [s−1] B Velocity ratio parameter
c Stretching constant C f Wall skin friction coefficient

cp Specific heat [J/(Kg.K)] ψ Dimensionless stream function
B0 Strength of magnetic field [kgs−2A−1] kp Porosity parameter
M Magnetic parameter Ec Eckert number
Pr Prandtl number Nux Local Nusselt number
py Stress of fluid [kgm−1s−2] qr Radiative heat flux [Wm−2]
qw Heat flux from the sheet R Thermal radiation parameter
Rex Local Reynolds number T Temperature[K]
Tw Constant temperature at the sheet [K] T∞ Free stream temperature[K]
Us Straining velocity [ms−1] Uw Stretching velocity of the sheet [ms−1]
u,v Velocity components [ms−1] ei j (i, j)th component of deformation rate

Greek symbols
β Non-Newtonian Casson parameter δ Velocity boundary layer thickness [m]
η Similarity variable η∞ Finite value ofη
k Thermal conductivity [W m−1K−1] π Product of the components

πc Critical value ofπ υ Kinematic fluid viscosity[m2s−1]
ρ Fluid density [kgm−3] ψ Stream function
τw Shear stress [kgm−1s−2] σ∗ Stefan ? Boltzmann constant [Wm−2K−4]
µB Plastic dynamic viscosity [kgm−1s−1] θ Dimensionless temperature [K]
σ Electrical conductivity of the fluid [s3A2kg−1m−3]

The appropriate boundary conditions are:

u =Uw, v = 0, T = Tw aty = 0,
u →Us, T → T∞ asy → ∞

}

(5)

Where,u andv are the velocity components inx andy
directions respectively.Us = ax is the straining velocity of
the stagnation-point witha(> 0) being the straining
constant andUw = cx is the stretching velocity of the
sheet withc(> 0) being the stretching constant.
The equation of continuity Eq. (2) is identically satisfied
if we take the stream functionψ(x,y) such that:

u =
∂ψ
∂y

, v =−
∂ψ
∂x

(6)

Using Eq. (6), the momentum equation, Eq. (3) takes
the form:

∂ψ
∂y

∂ 2ψ
∂x∂y

−
∂ψ
∂x

∂ 2ψ
∂y2 =Us

dUs

dx
+ν

(

1+
1
β

)

∂ 3ψ
∂y3 (7)

−

(

σB2
0

ρ
+

ν
kp

)(

∂ψ
∂y

−Us

)

The boundary condition in Eq. (5) reduces to:

∂ψ
∂y

=Uw,
∂ψ
∂x

= 0, aty = 0, (8)

∂ψ
∂y

→Us, asy → ∞

Using the Rosseland approximation, the radiation
parameter is qr = − 4σ∗

3k1

∂T 4

∂y , where σ∗ is the
Stefan-Boltzmann constant andk1 is the absorption
coefficient. Using Taylor’s series to expandT 4 aboutT∞
and neglecting higher-order terms, we get
T 4 = 4T ∞

3T −3T∞
4.

Now Eq. (4) becomes:

u
∂T
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+ v
∂T
∂y

=
k

ρcp

∂ 2T
∂y2 +

16σT 3
∞

3k1ρcp

∂ 2T
∂y2 −

σB2
0

ρ
u2 (9)

The momentum and energy equations, Eqs. (7) and
(9) can be transformed into the corresponding ordinary
differential equations by introducing the following
similarity transformations:

ψ(x,y) =
√

cνx f (η),

T−T∞
Tw−T∞

= θ (η)

(10)

whereη = y
√ c

ν
The momentum and energy equations, Eqs. (7) and (9)

are transformed to:

(

1+ 1
β

)

f ′′′+ f f ′′− f ′
2
−

(

M+ 1
kp

)

( f ′−B)+B2 = 0,

(3R+4)θ ′′+3RPr f θ ′−3RPrMEc f ′
2
= 0

(11)
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The non-dimensional parameters are:

M =
σB2

0

ρc
, B =

a
c
, Pr =

cµ
k
,

Ec =
1

cp(Tw−T∞)

c2x2
, R =

k∗k1

4σT 3
∞

Subject to the boundary conditions:

f (η) = 0, f ′(η) = 1, θ (η) = 0 atη = 0,
f ′(η)→ B, θ (η)→ 0 asη → ∞

}

(12)

3 Numerical Method

The set of coupled non-linear governing boundary layer
equations, Eqs. (2) - (4) together with the boundary
conditions in Eq. (5) are solved numerically by using
Runge-Kutta method along with a shooting technique.
First of all, higher order non-linear differential equations,
Eqs. (2) - (4) are converted into a set of simultaneous
non-linear differential equations of first order and they are
further transformed into initial value problem by applying
the shooting technique. The transformed initial value
problem is solved by employing Runge-Kutta fourth
order method. The step-size△ η = 0.05 is used to obtain
the numerical solution with five decimal places of
accuracy as the criterion of convergence. The aforesaid
differential equations are written as follows:

f = y1, f ′ = y2, f ′′ = y3, θ = y4, θ ′ = y5,

f ′′′ =
1

1+ 1
β

(

− y1y3+ y2
2+

(

M+
1
kp

)

(y2−B)−B2
)

θ ′′ =−
1

3R+4
(3RPrMEcy2

2−3RPry1y5)

y1(0) = 0, y2(0) = 1, y4(0) = 1

In order to integrate we require withy3(0), y5(0), but
these values are not given in the boundary condition. The
suitable values ofy3(0), y5(0) are chosen and integration
is performed.

In course of numerical computation, the skin-friction
coefficient and the Nusselt number that are respectively
proportional to f ′′(0),θ ′(0) are also calculated and their
numerical values are presented in Table 2.

4 Results and Discussion

The following discussion is based on the numerical
solution of both the boundary layer equations i.e. velocity
boundary layer and thermal boundary layer. At the
beginning, the validity check is carried out by comparing
the present result with the work of Bhattacharyya [33]
(without the porous medium and Julian dissipation). The
specialty of the present study is to highlight the effect of
porous medium and Julian dissipation on the
stagnation-point flow of Casson fluid. From Eq. (12), it
can be seen that the importance of Julian heating can be
indicated by the combined effect of the magnetic
parameterM and Eckert numberEc. The Eckert number
is a measure of dissipation effect in the flow. Since this
grows in proportion to the square of the velocity, it can be
neglected for small velocities.
Fig. 2 exhibits the effect of velocity ratio in the porous
and non-porous medium. For the purpose of comparison
with Bhattacharyya, the dotted curve for
Kp = 10, B = 2.0, M = 0.5, β = 2 is drawn. It is seen
that the curve coincides with the curve presented in Fig.1
of Bhattacharyya [33]. It is interesting to note that the
velocity profile clearly displays three distinct
characteristics for the ratio of straining and stretching i.e.
B < 1, B = 1 andB > 1. B = 1 implies the equality of
straining velocity of the stagnation point flow and
stretching velocity of the sheet, which amounts to no
motion. Therefore, the velocity remains constant
throughout. On the other hand,B > 1 represents the
dominance of straining over stretching, which leads to the
increasing velocity in the layer close to bounding surface
i.e. stretching sheet, thereafter the velocity remains
constant. Moreover, it is seen that the effect of porous
matrix is to increase the velocity profile. Further, it is seen
that the profiles forB < 1 and B > 1 are almost
symmetrical aboutB = 1. This means a three-layer
character forB < 1, B = 1 andB > 1.

Fig. 3 and Fig. 4 exhibit the velocity variation for
various values of the parameterβ showing the
characteristics of Casson fluid. It is to note that an
increase inβ leads to increasing the velocity in both the
cases i.e. in the presence of porous medium and without
it. Thus, it is concluded that the non-Newtonian property
of Casson fluid model is responsible for diffusing the
momentum through more number of layers of fluid
contributing to thickening of boundary layer when the
effect of straining dominates over stretching(B > 1). For
B < 1, the profiles are a mirror image ofB > 1 about the
profile B = 1. Further, it is to note that the effect of
Lorentz force is to reduce the velocity at all points. This is
due to the resistive property of the ponderomotive force
generated due to the interaction of magnetic field with
conducting fluid (Fig.4). On careful observation, it is
further revealed that slight change in a magnetic field
does not affect the velocity profile in both porous and
nonporous media.
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Fig. 2: Variation ofB on velocity profile

Fig. 3: Variation ofβ on velocity profile

Fig. 4: Variation ofM on velocity profile

Fig. 5: Variation ofB,Ec M andKp on velocity profile

Fig. 6: Variation ofβ ,Ec M andKp on velocity profile

Figs. 5- 7 are drawn whenPr = 1. Pr is the salient
characteristic number. This imposes a pre-condition of
equality and kinematic viscosity and thermal diffusivity.
Figs.5 and6 depict the temperature variation for various
values of characterizing parameters.
On careful observation, it is seen that decrease inM leads
to decreasing the temperature at all layers (curves II and
III) but the reverse effect is observed in the case ofEc
(curves II and IV) as well as forB, (B < 1) (curves II and
VI). It is concluded that thinning of thermal boundary
layer occurs due to higher thermal dissipation and
stretching rate. It is also to noted that the presence of
porous matrix increases the temperature. Moreover,
(curves V and VII) of Fig.6 show that non-Newtonian
property of the Casson fluid enhances the temperature in
the presence of porous matrix.

Fig. 7 (curve I) intends to present a very special case
when the effects of magnetic field, dissipation, and
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Fig. 7: Variation ofM, Ec andKp on velocity profile

Fig. 8: Variation ofPr, M andEc on velocity profile

porosity are absent. This leads to lower down the
temperature which is otherwise established, in their
presence, in earlier discussions.

Fig. 8 aims at showing the relative importance of
kinematic viscosity and thermal diffusivity. It is evident
that higher kinematic viscosity, in the case of liquid,
restricts the heat transfer to fewer layers resulting in a
thinner boundary layer, whereas for gasPr = 0.71, the
heat energy diffuses to larger layers.

Fig. 9 presents the effect ofR, the radiation parameter.
This shows that thermal radiation associated with
magnetic effect lowers down the temperature (curves I
and IV) when kinematic viscosity and thermal diffusivity
enjoy the same order of priority.

Table2 is prepared for validity and authenticity check
by comparing the values off ′′(0) with earlier works by
Nazar et al. [32] and Bhattacharyya [33]. In the case of

Fig. 9: Variation ofR, M andEc on velocity profile

Table 2: Values of f ′′(0) for several values ofB with M = 0 and
β = ∞.

B Nazar et al. [33] Bhattacharyya et al. [33] Present study
0.1 -0.9694 -0.969386 -0.969381
0.2 -0.9181 -0.918107 -0.918102
0.5 -0.6673 -0.667263 -0.667260
2 2.0176 2.017503 2.017486

Newtonian fluid, this shows a good agreement. Table3
presents the numerical values of surface criteria such as
skin friction and Nusselt number. One most important
finding is that skin friction assumes positive values for
B > 1 i.e.B = 2 otherwise negative. This aspect has been
clearly shown in the velocity graph. Thus the
predominance of straining rate accounts for the positive
values of skin friction. Therefore, straining rate and
stretching rate have great influence on flow criteria
including stability and growth of boundary layer. It is also
noticed that all other parameters reduce the skin friction
including Casson fluid parameter, which is desirable,
exceptEc, which has no significant effect.
Table 3 also focuses light on the Nusselt number,
presenting rate of heat transfer at the bounding surface. It
is evident that stretching rate ratio has no such effect as
that of skin friction in reversing the rate of heat transfer at
the surface. Further, it is to note that rate of heat transfer
is enhanced with an increase of velocity ratio parameter
B, Eckert numberEc, Magnetic parameterM, Prandtl
number Pr and thermal radiation parameterR except
Casson parameterβ and porous matrixKp. Thus it is
concluded that non-Newtonian parameter and the
presence of porous matrix reduce the rate of heat transfer
at the bounding surface on which the flow phenomena
occurs.
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Table 3: Skin friction and Nusselt number at the plate
B Ec M K Pr B R f ′′(0) −θ ′(0)

0.1 0 0 10 0.71 0.1 1 -0.9061484 0.28598657
0.1 0.2 0 10 0.71 0.1 1 -0.9061484 0.28598657
0.1 0.2 0.5 10 0.71 0.1 1 -0.9262399 0.30087789
0.1 0.2 0.5 0.1 0.71 0.1 1 -0.360191 0.39828737
0.1 0.2 0.5 10 1 0.1 1 -0.92624 0.37802938
0.1 0.2 0.5 10 0.71 2 1 -2.5082692 0.21569436
0.1 0.2 0.5 10 0.71 0.1 3 -0.92624 0.21569436
2 0.2 0.5 10 0.71 0.1 1 1.14899708 0.80192012
2 0.2 0.5 0.1 0.71 0.1 1 0.65106272 0.75822076

0.1 0.2 0.5 0.1 0.71 0.1 1 -0.360191 0.39828737

5 Conclusions

The non-Newtonian property of Casson fluid is
responsible for diffusing the momentum through more
number of fluid layers. Slight change in magnetic field
does not affect the velocity profile in both porous and
nonporous media. The absence of magnetic field, Julian
dissipation, and porosity of the medium lower down the
temperature. The fluid with higher kinematic viscosity
restricts the heat transfer to fewer layers of fluid. The
straining rate and stretching rate have great influence on
the flow criteria including stability and growth of
boundary layer. Casson fluid parameter along with other
parameters reduce the skin friction, which is desirable,
except Eckert numberEc, which has no significant
contribution. The non-Newtonian parameter and the
presence of porous matrix reduce the rate of heat transfer
at the bounding surface.
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