Appl. Math. Inf. Sci.11, No. 2, 509-513 (2017) %N =¥} 509

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/110220

Some Contributions of Congruence Relations on Lattice
of Fuzzy /-ideals

P. Bharathi, J. Vimala*, L. Vijayalakshmi and J. Arockia Reeta

Department of Mathematics, Alagappa University, Karaik@idmilnadu, India.

Received: 2 Dec. 2016, Revised: 26 Jan. 2017, Accepted:r2&047
Published online: 1 Mar. 2017

Abstract: The main objective of this paper is to introduce the congeearlations on the set of all fuzZy- ideals of¢-group. Let F

be the set of all fuzzy-ideals defined on the lattice ordered group G. We introdheecbngruence relations on F and derived some
intresting results on the relation between F and its congreigelations. Also we established some important resultsoogruence
relations by using the operations on fuzzideals.
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1 Introduction (-ideals and fuzzy congruence. In this paper, we introduce
the congruence relation on the set of all fuzzigleals of
¢-group. In section 2 , we gave some preliminary
definitions and results. In section 3, we discussed about
the relation between the congruence and the set of all
fuzzy (-ideals. Also we obtained an important result on
the relation between the congruence and fuzzy
congruence on the family of fuzzyideals

To generalize the classical notion of set theordd [
initiated the study of fuzzy set as a mapping from any non
empty set into the unit interval [0,1]. Then many
algebraists took interest to introduce fuzzy theory in
various algabraic structures by fuzzyfying the formal
theory. R,3,16] developed the theory of fuzzy groups. In
[1,12] fuzzy lattices were studied. Subsequently,[L8]
introduced fuzzy/-idelas and produced some interesting
results. In 7,9,10,11] fuzzy algera was studied.6] 2 Preliminaries

applied the theory of fuzzy ideals to robotics motion

planning. In B,21,22 the theory of € , ev q ) fuzzy In this section we presented some preliminary definitions
ideals is applied to medical diagonosis system. Now a we pr P Y !
days the study of congruence relations is important for itSand results which will be used for subsequent discussions.
applications in the field of logic-based process to
uncertainity. In fuzzy automata theory congruence
relations are widely used1®,13,14,15] introduced the
concept of idelas ii-groups and they discussed about th
concept of congruence relations on the family of fuzzy
ideals. Using the congruence relations they derived a_ . ) )
characterization theorem for distributiveideals.Fuzzy ~ Definition 2.[5] A non-empty set G is called &group iff
equivalence relations and fuzzy congruence relations ard) (G.*) is a group.

the main tools in the research area of fuzzy alget&d. [ (i) (G,V, A) is alattice.

initiated the notion of L-Fuzzy-ideals and gave some (i) 2 +(xVvy)=(a+x)V (a+y) and a+(xy)=(a+x)\(a+y)for
prominent results. He proved that the set of all L-Fuzzy@ll x.y,;abin G.

(-ideals of an¢-group form a complete lattice. Also he

initiated the study of fuzzy congruence #rgroups and ~ Theorem 1[5] The above two definitions of-group are
derived some main results on the relation between fuzzygduivalent.

Definition 1.[5] A non-empty set G is called &group iff
() (G,+)is agroup.

e (iN(G, <) is a lattice.

(i) x <y implies a+x+b< a+y+b for all x,y,a,bin G.
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Definition 3.[19] Let X be any non empty set and let
I=[0,1]. Then the magu : X — | is called a fuzzy subset
of X.

Definition 4.[20] Let u be a fuzzy subset on a non empty
set X and te [0,1].Then the sety = { x € X/ u (x) >t}
is called the level set gi..

Definition 5.[20] Let u be a fuzzy subset on a non empty
set X. Then the sefu(x)/x € X} is called the image off
and is denoted by Inp().

Definition 6.[20] Let u be a fuzzy subset on a non empty
set X. The se{ x/ xe X, u(x)> 0 } is called the support
of y and it is denoted by suppj.

Definition 7.[4] Let G= (G, +,A, V) be a¢-group.A fuzzy
setu : G — [0,1]is called a fuzzy-ideal of G if
(DH(x-y) = p(x) AU(Y)

(i) pu(xVy) = ux) Au(y)

(i) u(x Ay ) > p(x) Ap(y)

(iv) 0<x<a= u(x)> u(a) for x,y,a,be G.

Resulf4][Characterization Theorem] Let G b&agroup.
Afuzzy setu of G is a fuzzy/-ideal of G if and only if the
set ={x eG/u(x)>t } is an/-ideal of G for all €[0,1]

with L # @. ; is known as level-ideal of G.

Definition 8.[4] The union of two fuzzy/-idealsu; and
U2 of al-group G denoted byug U L) is a fuzzy subset
of G defined by

(UL U p2) (x) = max{ pi(x) , Hz(x) } for all x €G.

The intersection of two fuzzy-ideals u; and u, of a
commutative/-group G denoted byug N ) is a fuzzy
subset of G defined by

(MM p2) (X) = min{ p1(x) , p2(x) } for all x €G.

Definition 9.[4] Let u; andu, be any two fuzzy-ideals of
a(-group G. Thenu is said to be contained i, denoted
by 1 C iz if pa(x) < pa(x) for all x € G. If pa(X)=Li2(x)
for all x € G thenp; and s, are said to be equal and we
can writepy = L.

Resulf4] Let g and iy be any two fuzzyl-ideals of a
¢-group G. If iy C o thenpiy U =gz andpiy N pa={l;.

Definition 10.[4] If u; andp, are any two fuzzy-ideals
of the /-group G thernu; V i is defined by V t2)(x) =
sup { min{ pa(y), t2(z) } } andps A iy is defined by

X=yVz

(A H2)(X) = sup { min { pu(y) , H2(2) } } where x,y z
€G.

Resulf4] Let y; and i, be any two fuzzy-ideals of a/-
group G.

Then (1 V b2 = Y2V iy and g A plo= Lz A Ha.

(i) (M2 V p2) VHg = iV (M2 V pg) and Uy A H2) Apz =
paA (M2 A Hs)

Definition 11.[4] A Binary Relation8 on a/-group G is
called congruence relation if

1.0 is reflexive: x=x(0) for all x € G.

2.0 is symmetric : x= y(0) = y = x(0) for all x,y € G.

3.0 is transitive: x= y(8) and y= z(0) = x = z(0)for
allx,y,ze G.

4.0 satisfies substitution property=xx;(0) and y=y;
(6) = xAy=x1Ayz (B) and XV y = X1 Vy1 (0)

Definition 12[17] Let G be thel-group.A Fuzzy relation
p on G is a mapping from G X G to [0,1].

Definition 13[17] Let G be the /-group. The fuzzy
relationu on G is called the fuzzy equivalence relation on
G if the following conditions are satisfied:
() u(a,a) =1[Fuzzy Reflexive].
(i) u(a,b)7u(b,a) [Fuzzy Symmetric].
(iii) (p o p)C p [Fuzzy Transitive].
Here (o p)(xy) = SEqu[Min[ ux,z), u(z.y)ll-
Z

Definition 14[17] Let G be the/-group andu be the fuzzy
equivalence relation on G thanis said to be the fuzzy
congruence on G if

lpua-xb-y)> p(@b)Au(xy).
2u@Ax, bAy)> p(@ab)Au(x,y).
3.u@vx,bvy) > u@b)Au(xy) forall x,y,a,be G..

3 Congruence on lattice of fuzzy-ideals

In this section we initiate the study of congruence
relations on the family of fuzzg-ideals.First we derive the
following proposition to introduce the congruence relatio
on the family of fuzzy/-ideals of the/-group.

Theorem 2Let G be thel-group and F be the set of all
fuzzy ¢-ideals on G.The binary relatiof defined on F
such thatu; = u (6g) ifand only if AL = O Az is a
congruence relation fd?, 1, pp € Fand C uy, 6 C .

Proof Let g , uo € F.

Then the binary relatiof: on F such thapy; = o (6g) if
and only if 6 A Uy = 6 A i is reflexive,symmetric and
transitive.

Next to prove the substitution property,

Assume thap = Hp(6r) and s = Ha(6k)
=0AMU=0AUandB A 3 =0 A .

= OA(HUL A p3) = (B A H1) A

= (0 A L2) Als.

= OA(H2 A H3).

= OA(H3 A H2).

= (0 A ta) A e

= (6 A pa) Ao

= ONA(Ha A Ho).

= OA(H2 A Ha).

= 1A U3 = H2 A Ha(6F)

= 6 is a congruence relationExample 1. Let
G={0,a,b,3 where 0< a< b < 1 and + is defined as
follows:

R A
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Then (G,+A,V) is al-group.

Define 1 : G —[0,1] by p(0) = 0.7 and ui(a)
=pa(b)=1(1)=0.5.

pz : G —[0,1] by 2(0) = 0.6 andpz(a) =Ho(b)=H2(1)=
0.4.

ps + G —[0,1] by uz(0) = 0.5 anduz(a) =Hs(b)=Hs(1)=
0.3.

Ha : G —[0,1] by a(0) = 0.4 andua(a) =Ha(b)=Ha(1)=
0.2.

6 : G —[0,1] by 6(0) = 0.3 andd(a) =8(b)=6(1)=0.1.
Let F={ p1 , U2, U3, Ha, 6.} Then the binary relatiofe
on F such thati; = i, (6g) ifand only if 6 A g = 6 A o
is a congruence relation.

= H1N p2 = pa(6F)

Theorem 5Let g, po € F anduy = to(6g).
Thenpa V iz = pa N pz ( 68).

ProofGiven thatu; = us(6r).
= (0 A p1) = (O A H2)
Now (k1 A H2) (X) = Xil;Apz { min{6(y),(L1U 12)(2)} }

> min[ muy(x), tz2(X)] for x= xVx.
= (p1N H2)(X)

= M1 A\ Hz > H1M H2.

Sincef C py andf C Ly,

ON (1A L) > OA (ML N pg)....(1)

Let x = pAQ.

=x<pandxq.

Sincep is a fuzzyl-ideal, U1 (x) > pa(p).

Throughout this section G be tiiegroup and F be the Sincep, is a fuzzyf-ideal, tia(x) > pi2(q).
set of all fuzzy (-ideals defined on G.We derive the _ min {1, (x), pa(x) } > min{ pa(p), pa(a)}-
following propositions to establish some interesting _, (N H2) (X) > min{ El(p), Lio(q)}-
results on congruence relation by using the operations on., (N ) (X) N sup [ min{ pa(p), H2(a)}-

fuzzy ¢-ideals.

Theorem 3Let 6 , 1, o € FIf p1 = o (6) then Fis
distributive.

Proof Let g, up € F.

Define the congruence relati®a on F such thati, = L
(Be)ifandonly if O Ay = 6 A pp for 6 C g and6 C L.
Now 6 Ay =(6AB) A = A (B A ) andB A o = (
OAO) AUz = 0N (BA L)

= 1 = 0 p1(6F) andpz = 6 A Lp(6F)

= WV = (0 ) V(0 1) (B)

= OA (p1V p2)= A (B A1) Vv (6 A L)

= OA (H1V H2)=((O A t1) V (B A )

= F is distribitive.

Theorem 4Let 1y , pp € F. Assume thaty = Lx(6). If
py C pz thenpy U pp = pa(6F ) and g M pe = [y (6F).

Proof Given thatuy = u(6F).
SOAUL =0 AUy for 8 C pp andB C .
S(OAU) (X) = (8 A (X)) forx € G.
Now i1 C iz = g (X) < 2 (X).
We have [11 U pi2) () = max{ t1(X) , Hz2(X) = Hz(X)
(M2 p2) (X) = min{ p1(X) , p2(X) = pa(X).
Now (B (H1U H2))(X) = XS;'APZ { min{6(y),(L1U k2)(2)} }

= =X§LylApz{min{6(y),uz(z)}}
= =[6 A p2](x)

= (OA(HLU U2))(X) = [6 A p2](X)

= U1 U Ho = po(6F)

Also (BN (W1 N H2) (X) = Xily’f’z {min{  6(y)
(LN )(2)}} .

= = ngJApZ{ min { 6(y) , u1(2)}}
= =[0A ] (x)

= (O (N p2)) (X) = [6 A ] (%)

X=YAZ
= (H1N H2) (X) > pa A Mo
Sincef C iy andf C Uy,
OAULN ) (X) > O A 1N Ho......(2)
From (1) and (2)6 A pp N p2) (X) = 6 A pa N Lo
= WV 2 = N (Be).

The following proposition shows the existence of

fuzzy congruence on the family of fuzzyideals.

Theorem 6Let 13 , U € F and 6 be the congruence
relation on F. Ifu; = o (6:) for 6 C ug , 6 C up then
there exist a fuzzy congruenéeon 6 for t € [0,1] such

- {20790 127

Proof Assume thap; = o (6r).

=There exist® €F such thab A y; = 6 A up for 6 €F.

Letg ={xe G/06(x) >t} andXx,y,ze &.

Let Min{ 8(x,z),0(z,y) } =t.

Now 8(x,x) = 1.

= 0 is fuzzy reflexive. _

B(x.y) = 6 (x) B (y) = 8 (y) A6 (X) = B(y.X).

= 0 is fuzzy symmetric.

Now 6(x,y) = 6(x)AB(y)>t. _ _

(60 0)(X,y)=supMin[6(x,z),0(z,y)] =t < B(x,y).
€6

= (6006) CA.
= 0 is fuzzy transitive.
Now B(a - x , b - y) =6(a-x) AB(b-y)
> B(@)AB(X)AB(b)AB(Y)
=0(a)AB(b)AB(X)AB(y)
,sincef is an fuzzy/-ideal. _
_ _ _=6 (a,b)AB (x,y).
= 60(a-x,b-yP> 6 (a,bne (xy). _
Similarly 8(a A x, b A y)> 0 (a,b)\0 (x,y) and
6(avx,bvy)>0 (a,b)o (xy).
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In this paper we initiated the study of congruence
relations on the set of all fuzzy§-ideals of /-group G.
Also we showed the existence of fuzzy congruence on the
family of fuzzy /-ideals. In future the study of relation
between congruence and fuzzy congruence on the family
of fuzzy (-ideals can be extended.
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