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Abstract: The main objective of this paper is to introduce the congruence relations on the set of all fuzzyℓ - ideals ofℓ-group. Let F
be the set of all fuzzyℓ-ideals defined on the lattice ordered group G. We introduce the congruence relations on F and derived some
intresting results on the relation between F and its congruence relations. Also we established some important results on congruence
relations by using the operations on fuzzyℓ-ideals.
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1 Introduction

To generalize the classical notion of set theory, [19]
initiated the study of fuzzy set as a mapping from any non
empty set into the unit interval [0,1]. Then many
algebraists took interest to introduce fuzzy theory in
various algabraic structures by fuzzyfying the formal
theory. [2,3,16] developed the theory of fuzzy groups. In
[1,12] fuzzy lattices were studied. Subsequently [11,18]
introduced fuzzyℓ-idelas and produced some interesting
results. In [7,9,10,11] fuzzy algera was studied. [6]
applied the theory of fuzzy ideals to robotics motion
planning. In [8,21,22] the theory of (ε , ε∨ q ) fuzzy
ideals is applied to medical diagonosis system. Now a
days the study of congruence relations is important for its
applications in the field of logic-based process to
uncertainity. In fuzzy automata theory congruence
relations are widely used. [12,13,14,15] introduced the
concept of idelas inℓ-groups and they discussed about the
concept of congruence relations on the family of fuzzy
ideals. Using the congruence relations they derived a
characterization theorem for distributiveℓ-ideals.Fuzzy
equivalence relations and fuzzy congruence relations are
the main tools in the research area of fuzzy algebra. [17]
initiated the notion of L-Fuzzyℓ-ideals and gave some
prominent results. He proved that the set of all L-Fuzzy
ℓ-ideals of anℓ-group form a complete lattice. Also he
initiated the study of fuzzy congruence inℓ-groups and
derived some main results on the relation between fuzzy

ℓ-ideals and fuzzy congruence. In this paper, we introduce
the congruence relation on the set of all fuzzyℓ-ideals of
ℓ-group. In section 2 , we gave some preliminary
definitions and results. In section 3, we discussed about
the relation between the congruence and the set of all
fuzzy ℓ-ideals. Also we obtained an important result on
the relation between the congruence and fuzzy
congruence on the family of fuzzyℓ-ideals

2 Preliminaries

In this section we presented some preliminary definitions
and results which will be used for subsequent discussions.

Definition 1.[5] A non-empty set G is called aℓ-group iff
(i) (G,+) is a group.
(ii)(G, ≤) is a lattice.
(iii) x ≤ y implies a+x+b≤ a+y+b for all x,y,a,b in G.

Definition 2.[5] A non-empty set G is called aℓ-group iff
(i) (G,+) is a group.
(ii) (G,∨, ∧) is a lattice.
(iii) a +(x∨y)=(a+x)∨ (a+y) and a+(x∧y)=(a+x)∧(a+y)for
all x,y,a,b in G.

Theorem 1.[5] The above two definitions ofℓ-group are
equivalent.
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Definition 3.[19] Let X be any non empty set and let
I=[0,1]. Then the mapµ : X → I is called a fuzzy subset
of X.

Definition 4.[20] Let µ be a fuzzy subset on a non empty
set X and t∈ [0,1].Then the setµt = { x ∈ X / µ (x) ≥ t}
is called the level set ofµ .

Definition 5.[20] Let µ be a fuzzy subset on a non empty
set X. Then the set{µ(x)/x ∈ X} is called the image ofµ
and is denoted by Im(µ).

Definition 6.[20] Let µ be a fuzzy subset on a non empty
set X. The set{ x / x∈ X , µ(x)> 0 } is called the support
of µ and it is denoted by supp(µ).

Definition 7.[4] Let G= (G, +,∧ ,∨ ) be aℓ-group.A fuzzy
setµ : G → [0,1] is called a fuzzyℓ-ideal of G if
(i)µ(x - y ) ≥ µ(x) ∧µ(y)
(ii) µ(x ∨ y ) ≥ µ(x) ∧µ(y)
(iii) µ(x ∧ y ) ≥ µ(x) ∧µ(y)
(iv) 0<x<a⇒ µ(x)≥ µ(a) for x,y,a,b∈ G.

Result[4][Characterization Theorem] Let G be aℓ - group.
A fuzzy setµ of G is a fuzzyℓ-ideal of G if and only if the
set µt={x ∈G/µ(x)≥t } is anℓ-ideal of G for all t∈[0,1]
with µt 6= φ . µt is known as levelℓ-ideal of G.

Definition 8.[4] The union of two fuzzyℓ-idealsµ1 and
µ2 of a ℓ-group G denoted by (µ1∪ µ2) is a fuzzy subset
of G defined by
(µ1∪µ2) (x) = max{ µ1(x) , µ2(x) } for all x ∈G.
The intersection of two fuzzyℓ-ideals µ1 and µ2 of a
commutativeℓ-group G denoted by (µ1 ∩ µ2) is a fuzzy
subset of G defined by
(µ1∩µ2) (x) = min{ µ1(x) , µ2(x) } for all x ∈G.

Definition 9.[4] Let µ1 andµ2 be any two fuzzyℓ-ideals of
aℓ-group G. Thenµ1 is said to be contained inµ2 denoted
by µ1 ⊆ µ2 if µ1(x) ≤ µ2(x) for all x ∈ G. If µ1(x)=µ2(x)
for all x ∈ G thenµ1 andµ2 are said to be equal and we
can writeµ1 = µ2.

Result[4] Let µ1 and µ2 be any two fuzzyℓ-ideals of a
ℓ-group G. Ifµ1 ⊆ µ2 thenµ1∪µ2=µ2 andµ1∩µ2=µ1.

Definition 10.[4] If µ1 andµ2 are any two fuzzyℓ-ideals
of theℓ-group G thenµ1∨ µ2 is defined by(µ1∨ µ2)(x) =
sup

x=y∨z
{ min { µ1(y) , µ2(z) } } andµ1∧µ2 is defined by

(µ1∧µ2)(x) = sup
x=y∧z

{ min { µ1(y) , µ2(z) } } where x,y z

∈ G.

Result[4] Let µ1 andµ2 be any two fuzzyℓ-ideals of aℓ-
group G.
Then (i)µ1∨µ2 = µ2∨µ1 andµ1∧µ2= µ2∧µ1.
(ii) ( µ1 ∨ µ2) ∨µ3 = µ1∨ (µ2 ∨ µ3) and (µ1 ∧ µ2) ∧µ3 =
µ1∧ (µ2∧µ3)

Definition 11.[4] A Binary Relationθ on aℓ-group G is
called congruence relation if

1.θ is reflexive: x≡x(θ ) for all x ∈ G.
2.θ is symmetric : x≡ y(θ ) ⇒ y ≡ x(θ ) for all x,y ∈ G.
3.θ is transitive: x≡ y(θ ) and y≡ z(θ ) ⇒ x ≡ z(θ )for

all x,y,z∈ G.
4.θ satisfies substitution property:x≡ x1(θ ) and y≡ y1

(θ ) ⇒ x ∧ y ≡ x1 ∧y1 (θ ) and x∨ y ≡ x1 ∨y1 (θ )

Definition 12.[17] Let G be theℓ-group.A Fuzzy relation
µ on G is a mapping from G X G to [0,1].

Definition 13.[17] Let G be the ℓ-group. The fuzzy
relationµ on G is called the fuzzy equivalence relation on
G if the following conditions are satisfied:
(i)µ(a,a) =1[Fuzzy Reflexive].
(ii) µ(a,b)=µ(b,a) [Fuzzy Symmetric].
(iii) ( µ ◦ µ)⊆ µ [Fuzzy Transitive].
Here (µ ◦ µ)(x,y) = sup

z∈G
[Min[ µ(x,z),µ(z,y)]].

Definition 14.[17] Let G be theℓ-group andµ be the fuzzy
equivalence relation on G thenµ is said to be the fuzzy
congruence on G if

1.µ(a - x,b - y)≥ µ(a,b)∧µ(x,y).
2.µ(a∧ x , b∧ y)≥ µ(a,b)∧µ(x,y).
3.µ(a∨ x , b∨ y) ≥ µ(a,b)∧µ(x,y) for all x,y,a,b∈ G..

3 Congruence on lattice of fuzzyℓ-ideals

In this section we initiate the study of congruence
relations on the family of fuzzyℓ-ideals.First we derive the
following proposition to introduce the congruence relation
on the family of fuzzyℓ-ideals of theℓ-group.

Theorem 2.Let G be theℓ-group and F be the set of all
fuzzy ℓ-ideals on G.The binary relationθF defined on F
such thatµ1 ≡ µ2 (θF ) if and only if θ ∧ µ1 = θ ∧ µ2 is a
congruence relation forθ , µ1, µ2 ∈ F andθ ⊆ µ1 , θ ⊆ µ2.

Proof Let µ1 , µ2 ∈ F.
Then the binary relationθF on F such thatµ1 ≡ µ2 (θF ) if
and only if θ ∧ µ1 = θ ∧ µ2 is reflexive,symmetric and
transitive.
Next to prove the substitution property,
Assume thatµ1 ≡ µ2(θF ) andµ3 ≡ µ4(θF )
⇒ θ ∧µ1 = θ ∧µ2 andθ ∧µ3 = θ ∧µ4.
⇒ θ∧(µ1∧µ3) = (θ ∧µ1) ∧µ3.
⇒ = (θ ∧µ2) ∧µ3.
⇒ = θ∧(µ2∧µ3).
⇒ = θ∧(µ3∧µ2).
⇒ = (θ ∧µ3)∧µ2.
⇒ = (θ ∧µ4)∧µ2.
⇒ = θ∧(µ4∧µ2).
⇒ = θ∧(µ2∧µ4).
⇒ µ1∧µ3 ≡ µ2∧µ4(θF )
⇒ θF is a congruence relation.Example 1. Let
G={0,a,b,1} where 0< a< b < 1 and + is defined as
follows:
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+ 0 a b 1
0 0 a b 1
a a 0 1 1
b b 1 0 1
1 1 1 1 0

Then (G,+,∧,∨) is aℓ-group.
Define µ1 : G →[0,1] by µ1(0) = 0.7 and µ1(a)
=µ1(b)=µ1(1)= 0.5.
µ2 : G →[0,1] by µ2(0) = 0.6 andµ2(a) =µ2(b)=µ2(1)=
0.4.
µ3 : G →[0,1] by µ3(0) = 0.5 andµ3(a) =µ3(b)=µ3(1)=
0.3.
µ4 : G →[0,1] by µ4(0) = 0.4 andµ4(a) =µ4(b)=µ4(1)=
0.2.
θ : G →[0,1] by θ (0) = 0.3 andθ (a) =θ (b)=θ (1)= 0.1.
Let F= { µ1 , µ2, µ3, µ4, θ .} Then the binary relationθF
on F such thatµ1 ≡ µ2 (θF ) if and only if θ ∧µ1 = θ ∧µ2
is a congruence relation.

Throughout this section G be theℓ-group and F be the
set of all fuzzy ℓ-ideals defined on G.We derive the
following propositions to establish some interesting
results on congruence relation by using the operations on
fuzzyℓ-ideals.

Theorem 3.Let θ , µ1, µ2 ∈ F.If µ1 ≡ µ2 (θF ) then F is
distributive.

Proof Let µ1, µ2 ∈ F.
Define the congruence relationθF on F such thatµ1 ≡ µ2
(θF ) if and only if θ ∧µ1 = θ ∧µ2 for θ ⊆ µ1 andθ ⊆ µ2.
Now θ ∧ µ1 =(θ ∧ θ ) ∧µ1 = θ∧ (θ ∧ µ1) andθ ∧ µ2 = (
θ ∧θ ) ∧µ2 = θ∧ (θ ∧µ2)
⇒ µ1 ≡ θ ∧µ1(θF ) andµ2 ≡ θ ∧µ2(θF )
⇒ µ1∨µ2 ≡ (θ ∧µ1) ∨ (θ ∧µ2) (θF )
⇒ θ∧ ( µ1∨µ2)= θ∧ ((θ ∧µ1) ∨ ((θ ∧µ2)
⇒ θ∧ ( µ1∨µ2)=((θ ∧µ1) ∨ (θ ∧µ2)
⇒ F is distribitive.

Theorem 4.Let µ1 , µ2 ∈ F. Assume thatµ1 ≡ µ2(θF ). If
µ1 ⊆ µ2 thenµ1∪µ2 ≡ µ2(θF) andµ1∩µ2 ≡ µ1(θF).

Proof Given thatµ1 ≡ µ2(θF ).
⇔θ ∧µ1 = θ ∧µ2 for θ ⊆ µ1 andθ ⊆ µ2.
⇔(θ ∧µ1) (x) = (θ ∧µ2(x)) for x ∈ G.
Now µ1 ⊆ µ2 ⇒ µ1 (x) ≤ µ2 (x).
We have (µ1∪µ2) (x) = max{ µ1(x) , µ2(x) = µ2(x)

(µ1∩µ2) (x) = min{ µ1(x) , µ2(x) = µ1(x).
Now (θ∧ (µ1∪µ2))(x) = sup

x=y∧z
{ min{θ (y),(µ1∪µ2)(z)}}

⇒ = sup
x=y∧z

{min{θ (y),µ2(z)}}

⇒ = [θ ∧µ2](x)
⇒ (θ∧(µ1∪µ2))(x) = [θ ∧µ2](x)
⇒ µ1∪µ2 ≡ µ2(θF)
Also (θ∧ (µ1 ∩ µ2)) (x) = sup

x=y∧z
{min{ θ (y) ,

(µ1∩µ2)(z)}}
⇒ = sup

x=y∧z
{ min { θ (y) , µ1(z)}}

⇒ = [θ ∧µ1] (x)
⇒ (θ∧ (µ1∩µ2)) (x) = [θ ∧µ1] (x)

⇒ µ1∩µ2 ≡ µ1(θF)

Theorem 5.Let µ1 , µ2 ∈ F andµ1 ≡ µ2(θF ).
Thenµ1∨µ2 ≡ µ1∩µ2 ( θF ).

ProofGiven thatµ1 ≡ µ2(θF ).
⇒ (θ ∧µ1) = (θ ∧µ2)
Now (µ1∧µ2) (x) = sup

x=y∧z
{ min{θ (y),(µ1∪µ2)(z)}}

≥ min[ mu1(x), µ2(x)] for x= x∨x.
= ( µ1∩µ2)(x)

⇒ µ1∧µ2 ≥ µ1∩µ2.
Sinceθ ⊆ µ1 andθ ⊆ µ2,
θ∧ (µ1∧µ2) ≥ θ∧ (µ1∩µ2)....(1)
Let x = p∧q.
⇒ x ≤ p and x≤ q.
Sinceµ1 is a fuzzyℓ-ideal,µ1(x) ≥ µ1(p).
Sinceµ2 is a fuzzyℓ-ideal,µ2(x) ≥ µ2(q).
⇒ min { µ1 (x) , µ2(x) } ≥ min{ µ1(p), µ2(q)}.
⇒ ( µ1∩µ2) (x) ≥ min{ µ1(p), µ2(q)}.
⇒ ( µ1∩µ2) (x) ≥ sup

x=y∧z
[ min{ µ1(p), µ2(q)}.

⇒ ( µ1∩µ2) (x) ≥ µ1∧µ2.
Sinceθ ⊆ µ1 andθ ⊆ µ2 ,
θ ∧µ1∩µ2) (x) ≥ θ ∧µ1∩µ2.....(2)
From (1) and (2)(θ ∧µ1∩µ2) (x) = θ ∧µ1∩µ2.
⇒ µ1∨µ2 ≡ µ1∩µ2 ( θF ).

The following proposition shows the existence of
fuzzy congruence on the family of fuzzyℓ-ideals.

Theorem 6.Let µ1 , µ2 ∈ F and θF be the congruence
relation on F. Ifµ1 ≡ µ2 (θF ) for θ ⊆ µ1 , θ ⊆ µ2 then
there exist a fuzzy congruencēθ on θt for t ∈ [0,1] such

thatθ̄ (x,y) =

{

θ (x)∧θ (y) i f x 6= y
1 i f x = y

Proof Assume thatµ1 ≡ µ2 (θF ).
⇒There existθ ∈F such thatθ ∧µ1 = θ ∧µ2 for θ ∈F.
Let θt = { x ∈ G / θ (x) ≥ t } and x,y,z∈ θt .
Let Min{ θ̄ (x,z) , θ̄ (z,y)} = t.
Now θ̄ (x,x) = 1.
⇒ θ̄ is fuzzy reflexive.
θ̄ (x,y) = θ (x) ∧θ (y) = θ (y) ∧θ (x) = θ̄ (y,x).
⇒ θ̄ is fuzzy symmetric.
Now θ̄ (x,y) = θ (x)∧θ (y)≥ t.
(θ̄ ◦ θ̄ )(x,y)= sup

z∈θt

Min[ θ̄(x,z),θ̄(z,y)] = t ≤ θ̄ (x,y).

⇒ (θ̄ ◦ θ̄) ⊆ θ̄ .
⇒ θ̄ is fuzzy transitive.
Now θ̄ (a - x , b - y) =θ (a-x)∧θ (b-y)

≥ θ (a)∧θ (x)∧θ (b)∧θ (y)
=θ (a)∧θ (b)∧θ (x)∧θ (y)

,sinceθ is an fuzzyℓ-ideal.
=θ̄ (a,b)∧θ̄ (x,y).

⇒ θ̄ (a - x , b - y)≥ θ̄ (a,b)∧θ̄ (x,y).
Similarly θ̄ (a∧ x , b∧ y)≥ θ̄ (a,b)∧θ̄ (x,y) and

θ̄ (a∨ x , b∨ y)≥ θ̄ (a,b)∧θ̄ (x,y).
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Henceθ̄ is Fuzzy Congruence.

4 Conclusion

In this paper we initiated the study of congruence
relations on the set of all fuzzyℓ-ideals of ℓ-group G.
Also we showed the existence of fuzzy congruence on the
family of fuzzy ℓ-ideals. In future the study of relation
between congruence and fuzzy congruence on the family
of fuzzyℓ-ideals can be extended.
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