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Abstract: The present paper proves that given −1/2 < s < 1/2, for any f ∈ L2(R), there is a unique u ∈ Ĥ |s|(R) such that

f = DDD−su+DDDs∗u ,

where DDD−s,DDDs∗ are fractional Riemann-Liouville operators and the fractional derivatives are understood in the weak sense. Furthermore,

regularity of u is addressed, and other versions of the results are established. Consequently, the Fourier transform of elements of L2(R)
is characterized.
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1 Motivation

Fourier analysis is a large branch of mathematics whose point of departure is the study of Fourier series and integrals,
which is one of most fruitful achievements of mathematics. Fourier series may be seen as the decomposition of a periodic
function into sinusoid waves of varying frequencies. Application of such decompositions is naturally abundant and the
importance of these compositions is well-known and incontestable (see for example [1], [2], [3], etc.). Therefore, it is
natural to ask: Is this the unique way to obtain such interesting and useful decompositions?

With this motivation, author discovers other ways to obtain such interesting decompositions from the perspective
of fractional Riemann-Liouville operators, which are somewhat similar to the classical Fourier decompositions despite
showing some new features. The present study proves that every function f ∈ L2(R) could be written as a sum of fractional
R-L integral and fractional R-L derivative of a certain function u belonging to classical Sobolev space. The fractional R-L
derivative is understood in the weak sense defined in section 4. Also other versions of this kind of decomposition are
pointed out and their Fourier transforms are characterized. These results help the author investigate a series of questions
under the context of fractional calculus theory in the subsequent work.

On the other hand, in the analysis of fractional-order differential equations involving both left and right mixed-type
fractional derivatives (see for example [4], [5], [6], [7] and the references therein), it is difficult to establish the existence
of solutions because of the simultaneous presence of the left and right fractional derivatives. The present results provide an
innovative means to prove the existence of solutions to some special cases of the fractional differential equations involving
R-L or Caputo derivatives in R. It is author’s plan that their applications in fractional-order differential equations and
the potential relations between the classical Fourier decompositions and these new decompositions will be extensively
explored in future papers. Review of the present paper indicated that some techniques and results were presented in the
author’s dissertation [9] and archive [8] and were also applied to other works [10].

The present paper is outlined as follows. Section 2 presents notations and conventions. Section 3 addresses the

preliminary knowledge on fractional R-L operators. Section 4 involves the characterization of Ĥs(R) via R-L derivatives,
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which has been obtained in our previous work [5]. Section 5 establishes the main results. Section 6 comprises some
questions.

2 Notations

The present study adopts the following convention:

–All the functions considered in this paper are default to be real valued unless otherwise specified.

–( f ,g) and
∫
R f g shall be used interchangeably. Also, we denote integration

∫
A f on set A without pointing out the

variable unless it is necessary to specify.

–C∞
0 (R) is the set of smooth functions with compact supports in R.

–F (u) represents the Fourier transform of u defined in Definition 6, and û represents the Plancherel transform of u

defined in Theorem 3, which is well known that û is an isometry map from L2(R) onto L2(R) and coincides with
F (u) if u ∈ L1(R)∩L2(R).

–u∨ represents the inverse of Plancherel transform, and ∗ denotes convolution.

3 Preliminary

3.1 Fractional R-L integrals and associated properties

Definition 1.Let σ > 0 and u(x) : R→R. The left and right Riemann-Liouville fractional integrals of order σ are defined

as

(DDD−σ u)(x) :=
1

Γ (σ)

∫ x

−∞
(x− s)σ−1u(s)ds, (1)

(DDD−σ∗u)(x) :=
1

Γ (σ)

∫ ∞

x
(s− x)σ−1u(s)ds, (2)

where Γ (σ) is Gamma function.

Property 1([11], p. 96). Given 0 < σ ,

(φ ,DDD−σ ψ) = (DDD−σ∗φ ,ψ), (3)

for φ ∈ Lp(R), ψ ∈ Lq(R), p > 1,q > 1, 1/p+ 1/q= 1+σ .

Property 2([11], Theorem 7.1, p.138). Assume 0 < σ < 1 and u ∈ L1(R), then

F (DDD−σ∗u) = (−2π iξ )−σ
F (u) and F (DDD−σ u) = (2π iξ )−σ

F (u), ξ 6= 0, (4)

where F (·) is the Fourier Transform as defined in Definition 6 .

Remark.The complex power functions are understood as (±iξ )σ = |ξ |σ e±σπ i·sign(ξ )/2.

Property 3([11], pp. 95, 96). Let µ > 0. For a fixed h ∈ R, τh is defined as τhu(x) = u(x− h); similarly for a fixed κ > 0,
Πκ is defined as Πκu(x) = u(κx). Under the assumption that DDD−µu and DDD−µ∗u are well-defined, the following is true:

τh(DDD
−µu) = DDD−µ(τhu), τh(DDD

−µ∗u) = DDD−µ∗(τhu),

Πκ(DDD
−µu) = κ µDDD−µ(Πκ u), Πκ(DDD

−µ∗u) = κ µDDD−µ∗(Πκ u).
(5)

c© 2020 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 6, No. 2, 143-151 (2020) / www.naturalspublishing.com/Journals.asp 145

3.2 Fractional R-L derivatives and associated properties

Definition 2.Let u : R→ R. Assume µ > 0, n is the smallest integer greater than µ (i.e., n− 1 ≤ µ < n), and σ = n− µ .

The left and right Riemann-Liouville fractional derivatives of order µ are defined as

(DDDµu)(x) :=
1

Γ (σ)

dn

dxn

∫ x

−∞
(x− s)σ−1u(s)ds, (6)

(DDDµ∗u)(x) :=
(−1)n

Γ (σ)

dn

dxn

∫ ∞

x
(s− x)σ−1u(s)ds. (7)

Property 4([5]). Let 0 < µ and u ∈C∞
0 (R), then DDDµu,DDDµ∗u ∈ Lp(R) for any 1 ≤ p < ∞.

Property 5([11], p. 137). Let µ > 0,u ∈C∞
0 (R), then

F (DDDµ u) = (2π iξ )µ
F (u) and F (DDDµ∗u) = (−2π iξ )µ

F (u), ξ 6= 0, (8)

where F (·) is the Fourier Transform as defined in Definition 6 and as in Remark 2, the complex power functions are

understood as (∓iξ )σ = |ξ |σ e∓σπ i·sign(ξ )/2.

Property 6([5]). Consider τh and Πκ defined in Property 3 and let µ > 0, n−1≤ µ < n, where n is a positive integer, then

τh(DDD
µu) = DDDµ(τhu), τh(DDD

µ∗u) = DDDµ∗(τhu),

Πκ(DDD
µu) = κ−µDDDµ(Πκ u), Πκ(DDD

µ∗u) = κ−µDDDµ∗(Πκ u).
(9)

Now we unify the notations using DDDµ u and DDDµ∗u for µ ∈ R. Namely, if µ ≤ 0, they are understood as left and right
fractional integrals, and if 0 < µ , as left and right derivatives. We adopt this convention throughout other sections of the
paper.

4 Characterization of Sobolev space Ĥs(R)

This section involves the results of our previous work [5], which characterize the classical Sobolev space Ĥs(R) defined
in 5. This benefits the results of this study.

Definition 3([5]). Assume u,w ∈ L1
loc(R), µ > 0. We say function w(x) is a weak µ-order left fractional derivative of u,

denoted as DDDµu = w, if

(u,DDDµ∗ψ) = (w,ψ), for any ψ ∈C∞
0 (R). (10)

Analogously, w(x) is called a weak µ-order right fractional derivative of u, denoted as DDDµ∗u = w, if

(u,DDDµψ) = (w,ψ), for any ψ ∈C∞
0 (R). (11)

Definition 4([5]). Let s ≥ 0. Define spaces

W̃ s
R(R) = {u(x) ∈ L2(R),DDDs∗u ∈ L2(R)}, (12)

W̃ s
L(R) = {u(x) ∈ L2(R),DDDsu ∈ L2(R)}, (13)

where DDDs∗u and DDDsu are in the weak fractional derivative sense as defined in Definition 3. A semi-norm

|u|L := ‖DDDsu‖L2(R) for W̃ s
L(R) and |u|R := ‖DDDs∗u‖L2(R) for W̃ s

R(R), (14)

is given with the corresponding norm

‖u‖⋆ := (‖u‖2
L2(R)+ |u|2⋆)

1/2, ⋆= L,R. (15)

Remark.Notice that, by convention, W̃ 0
L (R) = W̃ 0

R (R) = Ĥ0(R) = L2(R).
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Now we can characterize Ĥs(R) as follows.

Theorem 1([5]). Given s ≥ 0, W̃ s
R(R) = W̃ s

L(R) = Ĥs(R) with equal semi-norms and norms.

We also use the following fact.

Corollary 1([5]). Given s ≥ 0. u ∈ Ĥs(R) if and only if there exists a Cauchy sequence {un} ⊂C∞
0 (R) in L2(R) so that

limn→∞ un = u and {DDDsun} is also a Cauchy sequence in L2(R). Consequently, we have limn→∞ DDDsun = DDDsu.

Likewise,

u ∈ Ĥs(R) if and only if there exists a Cauchy sequence {un} ⊂ C∞
0 (R) in L2(R) so that limn→∞ un = u and {DDDs∗un} is

also a Cauchy sequence in L2(R). Consequently, we have limn→∞ DDDs∗un = DDDs∗u.

5 Main results

In this section, under weak fractional derivative sense defined in Section 4, the following result is established:

Theorem 2.(1). Given −1/2 < s < 1/2, for ∀ f ∈ L2(R), there is a unique u ∈ Ĥ |s|(R) such that the following

decomposition holds:

f = DDD−su+DDDs∗u. (16)

Furthermore, f ∈ Ĥt(R) iff u ∈ Ĥs+t(R), where 0 < t.

(2). Given −1/2 < s < 1/2, for any f ∈ L2(R), there exists a unique u ∈ Ĥ |s|(R) such that the following decomposition

holds:

f = DDD−su+DDDsu. (17)

Furthermore, f ∈ Ĥt(R) iff u ∈ Ĥs+t(R), where 0 < t.

Remark.If s is positive, DDDs∗u,DDDsu are understood as the weak fractional derivative of u and DDD−su,DDD−s∗u are understood
in the usual sense, namely, the R-L integrals of u. Also, we could derive other variants or generalizations of Theorem 2,
such as:

f = pDDD−su+ qDDDs∗u, (18)

where p,q ∈ R are suitable numbers (for example, p > 0,q > 0).

In the following, we focus only on Theorem 2.

5.1 Several lemmas

Toward the proof of Theorem 2 several necessary lemmas are first established. First, we point out that the proof for the case
0 < s < 1/2 and the case −1/2 < s ≤ 0 in Theorem 2 have no essential differences, because the sign change of s results
only in the exchange of notations of derivatives and integrals. For simplicity and preservation of generality, we establish
the proof of Theorem 2 only for the case 0 < s < 1/2, and the proof for the case −1/2 < s ≤ 0 follows analogously
without essential obstacle.

Lemma 1.Given 0 < s < 1/2, then the sets M = {w : w = DDD−sψ +DDDs∗ψ , ∀ψ ∈ C∞
0 (R)} and M̃ = {w : w = DDD−sψ +

DDDsψ , ∀ψ ∈C∞
0 (R)} are dense in L2(R), respectively.

Proof.The proof is established by invoking the theorem in 5. First we check the conditions for the application of the
theorem, and consider the set M.

Since 0 < s < 1/2, for ψ ∈C∞
0 (R), it is true that DDD−sψ ∈ L2(R) by applying Theorem 5.3 ([11], p. 103). By Property 4

we have DDDs∗ψ ∈ Lp(R), p ≥ 1. Thus M ⊂ L2(R). Then it could be directly verified that M is a subspace of L2(R) by
checking closeness of addition and scalar multiplication.

Consequently, all conditions are met to allow the utilization of 5. Suppose now g ∈ L2(R) satisfies (g,w) = 0 ∀w ∈ M,
then the set M is dense in L2(R) and proved if this last equation implies that g = 0, namely g is a zero function on R.

Pick a non-zero function ϕ ∈ C∞
0 (R), which is possible. Then Plancherel Theorem in 3 guarantees that ϕ̂ is also a

non-zero function. Taking into account the continuity of ϕ̂ , we know ϕ̂(ξ ) 6= 0 on a certain non-empty open (a,b)⊂ R.
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Now set v(x) = ϕ(εx), with any fixed ε > 0. It is clear that v ∈ C∞
0 (R). Using Property 2 and Property 5 (Fourier

transform properties) for w = DDD−sv+DDDs∗v gives

ŵ(ξ ) = v̂(ξ )
(
(2π iξ )−s+(−2π iξ )s

)
=

1

ξ
ψ̂(

ξ

ε
)
(
(2π iξ )−s+(−2π iξ )s

)
. (19)

Following the practice stated in Remark 2, it is easy to see that (2π iξ )−s +(−2π iξ )s 6= 0 a.e. on R by observing that

|(2π iξ )−s| 6= |(−2π iξ )s| a.e.. This implies ŵ 6= 0 a.e. on (εa,εb) since ψ̂(
ξ

ε
) 6= 0 a.e. on (aε,bε).

Now for y ∈ R, we set the cross-correlation function

G(−y) :=
∫

R

g(x)w(x− y)dx =
∫

R

g(x)τyw(x)dx.

Using Property 3 and 6 gives τyw ∈ M. Hence G(−y) = 0 ∀y ∈ R by our assumption. Therefore by Plancherel Theorem

Ĝ = 0. Notice G(y) = g(−x) ∗w(x). Since g,w ∈ L2(R), using convolution theorem ([12], Theorem 1.2, p.12) gives

Ĝ = ĝ(−x) · ŵ(x) = 0.

Since ŵ 6= 0 a.e. on (εa,εb), it is concluded that ĝ(−x) = 0 a.e. on (εa,εb). Notice ε > 0 is arbitrary, i.e. ĝ = 0 a.e.
on R. In view of Plancherel Theorem in 3 we see that g(x) = 0 a.e. on R, which confirms that M is dense in L2(R).

Finally, the same conclusion is true for M̃ by repeating the similar foregoing calculations.

Lemma 2.Given 0 < s < 1/2,ψ ∈C∞
0 (R), then

(DDD−sψ ,DDDs∗ψ) = ‖ψ‖2
L2(R), (DDD−sψ ,DDDsψ) = cos(sπ)‖ψ‖2

L2(R). (20)

Proof.Consider the first equality.

From the proof of Lemma 1, we already know, for 0 < s < 1/2, DDD−sψ ∈ L2(R) and DDDs∗ψ ,DDDsψ ∈ Lp(R), p ≥ 1. This
allows us to use Parseval Formula 4 and Fourier Transform Properties 2, 5 to obtain

(DDD−sψ ,DDDs∗ψ) = (D̂DD−sψ, D̂DDs∗ψ)

= (F (DDD−sψ),F (DDDs∗ψ))

= ((2π iξ )−sψ̂ ,(−2π iξ )sψ̂).

(21)

Invoking Remark 3.1, we find

((2π iξ )−sψ̂ ,(−2π iξ )sψ̂) = ‖ψ‖2
L2(R)

. (22)

For the second equality, similarly we have

(DDD−sψ ,DDDsψ) = (D̂DD−sψ, D̂DDsψ)

= (F (DDD−sψ),F (DDDsψ))

= ((2π iξ )−sψ̂ ,(2π iξ )sψ̂).

(23)

By invoking Remark 3.1, this becomes

((2π iξ )−sψ̂,(2π iξ )sψ̂)

= eisπ
∫ 0

−∞
(−2πξ )−sψ̂ · (−2πξ )sψ̂ dξ + e−isπ

∫ 0

−∞
(2πξ )−sψ̂ · (2πξ )sψ̂ dξ

= eisπ
∫ 0

−∞
|ψ̂ |2 dξ + e−isπ

∫ 0

−∞
|ψ̂ |2 dξ

= cos(sπ)‖ψ‖2
L2(R).

(24)

In the last step we have used the fact that ψ̂(−ξ ) = ψ̂(ξ ) for real valued function ψ .
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Lemma 3.Given 0 < s < 1/2, ψ ∈C∞
0 (R), then

‖DDD−sψ +DDDs∗ψ‖2
L2(R) = ‖DDD−sψ‖2

L2(R)+ ‖DDDs∗ψ‖2
L2(R)+ 2‖ψ‖2

L2(R), (25)

‖DDD−sψ +DDDsψ‖2
L2(R) = ‖DDD−sψ‖2

L2(R)+ ‖DDDsψ‖2
L2(R)+ 2cos(sπ)‖ψ‖2

L2(R). (26)

Proof.This is a direct consequence of Lemma 2.

Now we are in the position to prove Theorem 2 for 0 < s < 1/2.

Proof.The proof is shown only for Case (1) in Theorem 2, since Case (2) could be established analogously without
obstacle. It will be convenient to keep in mind the fact of Theorem 1 in the following.
Step 1.

Given 0 < s < 1/2, f ∈ L2(R). By Lemma 1, there is a sequence {ψn} ⊂C∞
0 (R) so that

f = lim
n→∞

(DDD−sψn +DDDs∗ψn) , in L2(R). (27)

It is clear that {DDD−sψn +DDDs∗ψn} is a Cauchy sequence in L2(R). Equation (25) implies that {DDD−sψn},{DDDs∗ψn} and {ψn}
are Cauchy sequences separately because each term on the right hand side has a positive coefficient, namely, 1,1,2.

Denote limit function u = limn→∞ ψn and by invoking Corollary 1, we know u ∈ Ĥs(R) and limn→∞ DDDs∗ψn = DDDs∗u in
the weak fractional derivative sense.

Then denote limit function v = limn→∞ DDD−sψn, and we claim v = DDD−su, where DDD−su is to be understood in usual
sense, namely, R-L integral of u (which is well-defined). To see this, the condition 0 < s < 1/2 allows to use Property 1
to obtain

(DDD−su,φ) = (u,DDD−s∗φ), ∀φ ∈C∞
0 (R). (28)

On the other hand,
(v,φ) = lim

n→∞
(DDD−sψn,φ) = lim

n→∞
(ψn,DDD

−s∗φ) = (u,DDD−s∗φ). (29)

Thus, (DDD−su− v,φ) = 0,∀φ ∈C∞
0 (R), which deduces v = DDD−su a.e.. Therefore, f = DDD−su+DDDs∗u.

Step 2.
Uniqueness of u is from the norm estimate in Equation (25). Suppose that f = DDD−su1 +DDDs∗u1 = DDD−su2 +DDDs∗u2,

u1,u2 ∈ Ĥs(R), then it is deduced that ‖u1 − u2‖
2
L2(R)

= 0. Thus u1 = u2 in L2(R).

Step 3.

Now suppose f ∈ Ĥt(R), where 0 < t, we intend to show u ∈ Ĥs+t(R). Suppose t ≤ 2s. First note the fact that

DDD−su ∈ Ĥ2s(R). Using Property 1, which is permissible here, gives

(DDD−su,DDD2s∗φ) = (u,DDD−s∗DDD2s∗φ) = (u,DDDs∗φ) = (DDDsu,φ) ,∀φ ∈C∞
0 (R). (30)

The last equality above was by u ∈ W̃ s
L(R). Therefore, by definition, DDD−su ∈ W̃ 2s

L (R), namely DDD−su ∈ Ĥ2s(R) by

Theorem 1. Then DDDs∗u = f − DDD−su ∈ W̃ t
L(R) by noticing our assumption t ≤ 2s and the fact that Ĥ2s(R) ⊂ Ĥt(R).

Another use of Theorem 1 concludes DDDs∗u ∈ W̃ t
R(R), which implies by definition of weak fractional derivative that

(DDDt(DDDs∗u),φ) = (DDDs∗u,DDDtφ), ∀φ ∈C∞
0 (R). (31)

Observe that
(DDDs∗u,DDDtφ) = lim

n→∞
(DDDs∗ψn,DDD

tφ) = lim
n→∞

(ψn,DDD
s+tφ), ∀φ ∈C∞

0 (R), (32)

which concludes u ∈ W̃ s+t
R (R), namely u ∈ Ĥs+t(R). Thus we actually raise the regularity of u to Ĥs+t(R) from Ĥs(R).

For t > 2s, we just need to rewrite t = 2s+RRReeesssiiiddduuueee, and repeat the above-mentioned procedure to gradually raise the

regularity of u from Ĥs(R) to Ĥ2s(R), and repeat the same procedure again for RRReeesssiiiddduuueee, all the way to Ĥs+t(R).
Step 4.

Now suppose u ∈ Ĥs+t(R), where 0 < t, we intend to show f ∈ Ĥt(R). By definition, it is easy to verify that f −

DDD−su = DDDs∗u ∈ W̃ t
R(R), and DDD−su ∈ W̃ 2s+t

L (R). Hence, DDD−su+DDDs∗u = f ∈ Ĥt(R) using Theorem 1 and the fact that

Ĥt1(R)⊂ Ĥt2(R) for t1 ≥ t2. This completes the proof for the case 0 < s < 1/2.
The case −1/2 < s ≤ 0 could be established analogously to complete the whole proof of Theorem 2.

Utilizing Theorem 2, Fourier transforms of the functions of L2(R) can be characterized as follows:
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Corollary 2.(1). Given f ∈ L2(R), −1/2 < s < 1/2, there exists a unique u ∈ Ĥs(R) satisfying

f̂ (ξ ) =
(
(2π iξ )−s+(−2π iξ )s

)
û(ξ ). (33)

(2). Given f ∈ L2(R), −1/2 < s < 1/2, there exists a unique u ∈ Ĥs(R) satisfying

f̂ (ξ ) =
(
(2π iξ )−s+(2π iξ )s

)
û(ξ ). (34)

The complex power functions are understood as (±iξ )σ = |ξ |σ e±σπ i·sign(ξ )/2.

Proof.Again, the proof is shown only for the case 0 < s < 1/2 and part (1), the case −1/2 < s ≤ 0 and part (2) could be
established analogously without essential difference.

Fix f ∈ L2(R), from Theorem 2 and the proof, there is a unique u ∈ Ĥs(R) and a Cauchy sequence {ψn} ⊂ C∞
0 (R)

such that

f = DDD−su+DDDs∗u, (35)

and

lim
n→∞

DDD−sψn = DDD−su, lim
n→∞

DDDs∗ψn = DDDs∗u, lim
n→∞

ψn = u, in L2(R). (36)

Then we know

f̂ = D̂DD−su+ D̂DDs∗u ,and{D̂DD−sψn} ,{D̂DDs∗ψn} ,{ψ̂n} converge in L2(R). (37)

On one hand, there is a subsequence {ψ̂ni} that converges pointwise almost everywhere to û (6). Consequently,
(2π iξ )−sψ̂ni converges pointwise to (2π iξ )−sû a.e. and (−2π iξ )sψ̂ni converges pointwise to (−2π iξ )−sû a.e. On the

other hand, in L2(R)

D̂DD−su = lim
n→∞

D̂DD−sψni = lim
n→∞

(2π iξ )−sψ̂ni ,

D̂DDs∗u = lim
n→∞

D̂DDs∗ψni = lim
n→∞

(−2π iξ )sψ̂ni .
(38)

Therefore by another use of 6, we know that there is a subsequence of {(2π iξ )−sψ̂ni} converging pointwise almost

everywhere to D̂DD−su and that there is a subsequence of {(−2π iξ )sψ̂ni} converging pointwise almost everywhere to D̂DDs∗u.
Hence

D̂DD−su = (2π iξ )−sû a.e., D̂DDs∗u = (−2π iξ )−sû a.e.. (39)

Thus

f̂ (ξ ) =
(
(2π iξ )−s+(−2π iξ )s

)
û(ξ ), a.e.. (40)

This completes the whole proof.

6 Conclusion

We have constructed a bunch of maps Ts : f 7→ u from L2(R) to Ĥ |s|(R) in Theorem 2, which depends on s. The main
questions are as follows “ Is the map Ts onto? Can we extend the results in Theorem 2 to the case of |s| = 1/2?”, “what
are the algebraic structures underlying these operators? what is the potential relationship between these decompositions
and the classical Fourier decompositions?”. Further discussions and applications are explored in separate work.
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Definition 5(Sobolev Spaces Via Fourier Transform). Let µ ≥ 0. Define

Ĥµ(R) =

{
w ∈ L2(R) :

∫

R
(1+ |2πξ |2µ)|ŵ(ξ )|2 dξ < ∞

}
, (A.1)

where ŵ is the Plancherel transform defined in Theorem 3. The space is endowed with semi-morn

|u|
Ĥµ (R) := ‖|2πξ |µ û‖L2(R), (A.2)

and norm

‖u‖
Ĥµ (R) :=

(
‖u‖2

L2(R)+ |u|2
Ĥµ (R)

)1/2

. (A.3)

Definition 6(Fourier Transform). Given a function f : R→R, the Fourier Transform of f is defined as

F ( f )(ξ ) :=

∫ ∞

−∞
e−2π ixξ f (x) dx ∀ξ ∈ R.

Theorem 3(Plancherel Theorem, [13], p. 187).

One can associate to each f ∈ L2(R) a function f̂ ∈ L2(R) such that each of the following is valid:

–If f ∈ L1(R)∩L2(R), then f̂ is the defined Fourier transform of f in Definition 6.

–For every f ∈ L2(R), ‖ f‖2 = ‖ f̂‖2.

–The mapping f → f̂ is a Hilbert space isomorphism of L2(R) onto L2(R).

Theorem 4([14], p. 189 ). Assume u,v ∈ L2(Rn). Then

–

∫

Rn
uv =

∫

Rn
ûv̂.

–u = (û)∨.

Theorem 5([15], Theorem 4.3-2, p. 191). Assume that (Y,(·, ·)) is a Hilbert space and X is a non-empty subspace of

Y . Then X is dense in Y , namely X = Y if and only if the following is true: if y ∈ Y satisfies (x,y) = 0 for all x ∈ X, then

y = 0.

Theorem 6([16]). If 1 ≤ p ≤ ∞ and if { fn} is a Cauchy sequence in Lp(R) with limit f (x), then { fn} has a subsequence

which converges pointwise almost everywhere to f (x).
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[7] R. Stern, F. Effenberger, H. Fichtner and T. Schäfer, The space-fractional diffusion-advection equation: analytical solutions and

critical assessment of numerical solutions, Fract. Calc. Appl. Anal. 17(1), 171–190, (2014).

[8] Y. Li, Symmetric decompositions of f ∈ L2(R) via fractional Riemann-Liouville operators, arXiv:1807.01847, (2018).

[9] Y. Li, On fractional differential equations and related questions, Ph.D. thesis, ProQuest Dissertations and Theses, 2019.

[10] Y. Li, Characterizations of fractional Sobolev spaces from the perspective of Riemann-Liouville operators, J. Fract. Calc. Appl.

11(2), 102–110 (2020).

c© 2020 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 6, No. 2, 143-151 (2020) / www.naturalspublishing.com/Journals.asp 151

[11] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers,

Yverdon, 1993.

[12] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204 of North-

Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006.

[13] W. Rudin, Real and complex analysis, 3rd Edition, McGraw-Hill Book Co., New York, 1987.

[14] L. C. Evans, Partial differential equations, 2nd Edition, Vol. 19 of Graduate Studies in Mathematics, American Mathematical

Society, Providence, RI, 2010.

[15] L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Vol. 3 of Lecture Notes of the Unione Matematica Italiana,

Springer, Berlin; UMI, Bologna, 2007.

[16] W. Rudin, Functional analysis, 2nd Edition, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York,

1991.

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	 Motivation
	 Notations
	 Preliminary
	 Characterization of Sobolev space H"0362Hs(R)
	 Main results
	 Conclusion
	 Several definitions and theorems

