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Abstract: In this study, the general transport equation was subjectedto discretization by using the central difference, upwind,hybrid,
power-law, exponential scheme and QUICK scheme methods andthen solved by using a program prepared in Delphi programming
software. In the solution, three different grid systems of 80x100, 160x200 and 320x400 from nodal points were used. The numerical
results obtained for Peclet number values of -2, 0, 2, 10 and 20 we presented graphically. The obtained results indicate that hybrid and
power-law yield better results as compared to the other discretization methods. The GCI analysis was also provided that160 x 200 grid
system is suitable for such a solution.

Keywords: General transport equation, Discretization, GCI analysis.

1 Introduction

Convection deals with molecular and mass flow
movement of a matter. Mass flow transfer refers to
movement of materials within two mixed fluids or in a
single fluid due to differences in concentration in different
areas of the fluid. There is similarity between Fourier
heat transfer law and diffusion. Just as temperature
difference is an effective factor that constrains heat
transfer, so is concentration difference because the latter
hinders mass flow rate in a fluid.

There is a physical similarity between heat transfer by
convection and mass transfer. In nature wherever there is
convection in a medium diffusion (i.e. dispersion of
matter) will also be spoken of. That’s why in most of the
problems regarding fluid flow, convection and diffusion
are investigated together.

In literature, the general transport equation is seen to
have been used in various engineering fields. In a study
by Aslam and De [1] the convection-diffusion equation
was solved by using different solution methods of finite
elements method and the results of the different methods
were compared. Wang and Wen-Qia [2] generated an
alternative solution from the Crank-Nicelson method with
variable coefficients to solve the convection-diffusion

equation. Karaa and Zhang [3], used the fourth order
scheme and iteratively solved a two dimension
convection-diffusion equation with a variable coefficient.
In order to reduce wrong diffusion in numerical solutions,
Virag and Trincas [4] proposed a control volume method
suitable for one dimensional simple difference schemes.
They compared the results of their study with the results
from the exact solution and exponential scheme methods.

Whereas in this study, the general transport equation
which is widely used in heat transfer and mass flow
problems was solved numerically by using different
discretization methods and different grid numbers.

The general transport equation can be expressed as,

∂ (ρφ)
∂ t

+div(ρuφ) = div(Γ gradφ)+Sϕ . (1)

Here, the terms in the equation are respectively, time
dependent term, convection term, diffusion term and
source term. Furtherϕ is a characteristic feature of a
fluid and can hence be chosen in different ways,Γ is
diffusion coefficient,ρ represents fluid density while u is
velocity gradient. In a two dimensional cylindrical
coordinate system with a laminar, incompressible, axially
symmetrical and continuous inner pipe flow having a
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negligible source term and its diffusion coefficient
considered constant, equation 1 above can be written in
the following open format;

ρ
[

∂
∂x

(uφ)+
1
r

∂
∂ r

(rvφ )
]

−Γ
[

∂ 2φ
∂x2 +

1
r

∂
∂ r

(

r
∂φ
∂ r

)]

= 0. (2)

If this equation is applied to the control volume
surfaces on the two dimensional cylindrical coordinates
system at a given grid system (Figure 1) and then
integrated numerically, the equation 3 can be obtained.

ρ {rp [(uφ)e− (uφ)w]∆ r +[(rvφ)n− (rvφ)s]∆x}

−Γ
{

rp

[(

∂ φ
∂x

)
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(
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)
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]
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[(
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∂ φ
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)

n
−

(

r
∂ φ
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)

s

]
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}

= 0. (3)

The e, w, n, and s subscripts in this equation
respectively, denote east, west, north and south and were
used in order to make the equation more suitable to
computer notation. Here, line x is axial direction and r is
radial direction.

Figure 1. Control volume and boundary conditions for two
dimensional cylindrical coordinate’s grid system.

For the point derivative expression

ϕe = (ϕE −ϕP)
/

(δx)e

and moreover, if variableFe = (ρu)e,

De =
(

Γ/δx

)

e
,

Pe= F/
D

is applied to all the control volume and to all the surfaces
then the equation takes the following form;

rP

2
[Fe(φE +φP)−Fw (φP +φW)]∆ r +[rnFn (φN +φP)− rsFs(φP +φS)]∆x− rP

[De(φE −φP)−Dw (φP −φW)]∆ r − [rnDn (φN −φP)− rsDs(φP −φS)]∆x= 0
(4)

and in this way, the equation suits well to the computer
program index notation.

2 Central difference scheme

In this method, the arithmetic mean of the fluid is taken as
a fluid feature of the interface for the control volume of the
interface and centre point considered. According to this;

φe = (φP+φE)/2

φw = (φW +φP)/2

φn = (φP+φN)/2

φs = (φS+φP)/2.

If substituted into equation 4, and if the coefficients aE,
aW, aN, aS are defined for the fluid features at grid points,
the centre difference equation can then be written as;

aPφP = aWφW +aEφE +aSφS+aNφN. (5)

In equation 5 these coefficients were defined as;

aE = De−Fe
/

2

,
aW = Dw+Fw

/

2

,

aN = Dn−Fn
/

2

,
aS= Ds+Fs

/

2

and

aP = aW +aE +aS+aN+(Fe−Fw)+ (Fn−Fs) .

In the literature, it is described that Peclet number in
ranges out of 2 ¡ Pe ¡ 2 do not present accurate results for
the centre difference scheme [5].

3 Upwind Difference Scheme

In this method, depending on flow direction, the fluid
characteristic takes features of the adjacent upper flow
zone neighbour of the control volume. In other words, the
fluid takes properties of the control volume one step

before its own control volume. With this, if ,

, and , then , ,

and . Again if , ,

and if , then , , and

. According to this, for , ,

, in equation 5, the coefficients take these forms
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, , , and

for , , , , they become

, , , . In
order to write these coefficients in more compact forms,
the following notation can be preferred;

.
In this way, the condition of ‘same signs in

coefficients’, which is one of the four basic conditions of
the upwind scheme, will be covered.

4 Hybrid Difference Scheme

Essentially, this method has emerged as a combination of
the centre difference and upwind schemes. Depending on
the condition of the Pe number, the system can sometimes
operate as a centre difference scheme and sometimes as an
upwind scheme. Provided that the basic equation remains
the same, the coefficients change as follows:

5 Power-law Difference Scheme

This is a method that resembles the hybrid difference
scheme but gives more accurate results. In this method,
results that are relatively close to those obtained with the
exact method can be achieved. The coefficients are as
follows:

6 Exponential Scheme

The exponential scheme is developed from the solution of
an exact solution of a differential equation. Actually; this
method is given to show how close the Power-law
Difference Scheme is to the exact solution. As seen in the
graphs of the results of this study, shortly, the difference
between power-law and exponential scheme is so small
that can be neglected. The equation coefficients for this
method are given in exponential form.

.

7 QUICK Scheme

The QUICK (the quadratic upstream interpolation for
convective kinetics) scheme, basically, exhibits some

distinctions as compared to the other methods. In this
method, two adjacent control volumes of the flow zone
are taken into account in the calculations. In this way, a
total of 6 adjacent control volumes (3 horizontal and 3
vertical) become involved in the discretization process. It
is for this reason that changes are observed not only in the
coefficients but also in the main equation itself. Like this;

If

aPϕP = aWϕW +aEϕE +aSϕS

+aNϕN +aWWϕWW+aSSϕSS (6)

The coefficients satisfy the following relations;

, ,

, ,

, and

If; , , , then

aPϕP = aWϕW +aEϕE +aSϕS

+aNϕN +aEEϕEE+aNNϕNN. (7)

Coefficients;

and

Any result beyond Peclet number range of -8/3< Pe
< 8/3 for the QUICK scheme is not accurate [6]. Standard
QUICK scheme was developed by Hayeseet al., [7].

8 Computational Method

By using a computer program prepared by using Delphi
software, solutions for grid network system formed of
80x100 (coarse grid), 160x200 (medium grid) and
320x400 (fine grid) nodal points were generated by using
the above described discretization methods. Gauss-Siedal
iteration method was used for solution of the equations.
To achieve more accurate graphic printouts, Lagrange
interpolation method was used to concentrate the values
in between the main points. The results obtained directly
in graphic forms were compared with each other.
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Computations were made by using values
corresponding to Peclet numbers -2, 0, 2, 10, 20 and some
of the results were given. Results for any selected Peclet
number can be obtained.

In this study, u=2 m/s and v=0.8 m/s were used.ϕ
was assumed to vary between 0 and 100 and the r and x
lines were set at 1 unit and 10 unit distances respectively.
Assumptions were made such that, for x=0ϕ=0, for r=0,
ϕ=100, for x=L ϕ=100, and for r=R ϕ=0. The values
given are not specific values and can be selected as
required for a given physical problem.

9 Results and Discussion

Numerical solutions are verified by means of a transient
post processing tool based on the generalized Richardson
extrapolation and the Grid Convergence Index (GCI) [8].
Sample solutions were made by using coarse and fine
grids assuming the selected grid system as medium. A
second order method is used in GCI analysis by taking
the grid refinement ratio as 2.0 [8] and therefore the grid
sizes are doubled in coarse and halved in fine grid
systems in both axial and radial coordinates. The
quantities of interest for comparison are general solution
values at half of axial size. Root mean square values of
general solution values in terms of grid size are given
Table 1. The parameter values used in the sample
calculations and the results of GCI analysis are given in
Table 2. The relatively low values of relative errors,ε,
and of GCI between medium and fine grids suggest that
the 160x200 grid resolution is quite acceptable. The
computations may be assumed within the asymptotic
range and no further grid refinement is necessary.

Table 1.Root mean square values of general solution values.

Grid Grid size ϕrms
Coarse 80 x 100 68.6104
Medium 160 x 200 72.4061
Fine 320 x 400 74.3972

Table 2.The relative errors and Grid Converge Index measures
for all grid schemes.

Grid ε GCI
Coarse-Medium -0.052422 0.173519
Medium-Fine -0.026763 0.088586

In Figure 2, variation of x- axis and r-axis for the
obtained ϕ values is shown from each discretization
method for Pe=2. Variation ofϕ starts from a far distant
point along the x-axis. This condition can be explained
that the effects of convection are slow at the beginning.
The variation in the radial direction is relatively

proportional. Just as it can be seen from the graphs, the
results obtained from each method are close to each other.
However; the results from the upwind scheme method are
somehow different. It is normal for the curves to take a
horizontal trend in low Peclet number values. Beside this,
the event does not necessarily make the upwind scheme to
yield more accurate results as compared to the other
methods.

Figure 2. Variation of average values ofϕ along x- and r- axes
for each discretization method (Pe=2).

In Figure 3, the overall results obtained for three
different grid systems along x-axis are shown. The
number of nodes in the coarse grid system was 80x100,
for the medium grid system, the number was 160x200,
while for fine grid system 320x400 was used. These
values were obtained through trial and error method.

In Figure 4. The overall results obtained for three
different grid systems along r-axis are shown. It is clearly
seen in both figures that as the number of nodes increases
exact solution is approached more closely. In addition, the
curves for upwind scheme in both figures are clearly seen
to differ from the other methods. Together with this,
attention is drawn from similarities of the results from the
central difference method and those from the hybrid
solution. Similar trend is observed between the power-law
and exponential scheme methods.

According to figure 5, the effects of various Pe
number values on the axial direction were investigated
separately for each method. The study was made on
values corresponding to Pe numbers -2, 0, 2, 10 and 20
and the results obtained were presented on the graphs.
The Central difference method does not give correct
results for Pe values less than -2 and greater than +2. It is
for this reason that only values for Pecletin -2, 0 and +2
are seen on the Central difference scheme. Similarly, the
Quick discretization method does not yield results for
Pecletin values smaller than -8/3 and larger than, +8/3;
and this is why there are no higher Pe values on the graph

of Quick scheme. Given that and
negative Pe values show that the flow moves towards the
opposite direction. For this reason, the curves obtained at
Pe=-2 are located at the far right of the graphs because the
flow moves from right to left. Pe=0 means the flow is
stagnant. In other words, the effect of convection is zero.
This makes the variation inϕ to follow parabolic path.
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Figure 3. Variation ofϕ for every discretization method along
x-axis (Pe=2).

That is, no turning point is observed here as seen in the
other curves. It is also clear that larger Pecletin values
cause extensive convection effects. It can thus be said that
progress was previously achieved for large Pe values.
However; this effect is not obvious for Peclet values
greater than 10. And this can be seen clearly on the
graphs. The curves for Power-law, Exponential and
Hybrid scheme solutions overlap each other at Pe=10 and
Pe=20.

In figure 6, effects of various Pe values on radial
direction for every method are shown. Here the most
remarkable aspect is the fact that, for positive Pe
numbers, theϕ does not undergo any significant changes
from the pipe axis up to areas close to the pipe wall and
that near the wall, theϕ value drops abruptly. And this
gives a hint that there are profound convection effects
nearby the pipe wall due to strong Pe number on the inner
parts.

The parabolic curve obtained at Pe=0 exhibits a
horizontal trend on areas near the pipe axis. Theϕ value
drops sharply at the rate of about 15% along the areas
very near to the pipe axis. Due to the fact that no
convection effects are observed at Pe=0, then these
changes can be said to have been imposed by diffusion. It
can be said that diffusion effects are weak on the areas
where the curve undergoes a horizontal trend.

10 Conclusions

By evaluating this study as a whole, it is clear that the
most ideal method among the differential equations
discretization methods is the power-law difference
scheme. In this method, different coefficients between Pe

Figure 4. Variation ofϕ for every discretization method along
r-axis (Pe=2).

values of -10 and +10 are used, and by using various
coefficients out of these values for Pe values between -∞
and +∞, results very close to the exact solution can be
obtained. Hybrid discretization operates like the central
difference method between -2≤Pe≤2 and out of this
ranges, it works like the upwind discretization method
(Patankar, 1980). Because it is a discretization method
formed by combining two methods after covering their
respective weaknesses, it becomes a strong discretization
method. In order to obtain more accurate results from
these two methods, it is important that the method with
the larger absolute Pe value be used.

Number of nodes in the grid system affects the
solution results. In this study, the lowest nodal number
was considered as 80x100. Solution accuracies obtained
with nodal points lower than this value are not reliable.
On average, the study was conducted with nodal number
of 160x200. This number is sufficient for reliable results.
However; more accurate results were obtained from a grid
system formed from 320x400 nodal points. However,
with this point, it takes much time to accomplish that
solution.

In addition, a study similar to this can also be
conducted for cylindrical coordinates where the source
term is considered. Moreover; another study can be made
with a three dimensional Cartesian coordinates system.
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Figure 5. Comparison of variations ofϕ for every discretization
method along x-direction drawn for Pe values of Pe=-2, Pe=0,
Pe=2, Pe=10 and Pe=20.

Figure 6. Comparison of variations ofϕ for every
discretization method along r-direction drawn for Pe values of
Pe=-2, Pe=0, Pe=2, Pe=10 and Pe=20.

NOMENCLATURE
a Coefficients of discretization equation

D Coefficient
E,e East

F Coefficient
Fs Safety factor
GCI Grid Convergence Index

h Grid spacing ( )
L Total axial length (m)
N,n North
p Spatial order of accuracy
Pe Peclet number, Pe=F/D
R Radius (m)
r Radial direction
r Grid refinement factor
S Source term
S,s South
u Velocity gradient
u Axial velocity component (m.s−1)
v Radial velocity component (m.s−1)
W,w West

x Axial direction
∆ r Radial step size (m)
δ r Radial position difference (m)
∆x Axial step size (m)
δx Axial position difference (m)
ε Relative error
ϕ General solution variable
Γ Diffusion coefficient
ρ Density (kg.m−3)
Subscripts
3, 2,1 Subscripts of coarse, medium and fine (or mesh

level course to fine)
rms Root mean square
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