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Abstract: By this work, we construct certain specific assumptions guaranteeing the asymptotic stability (AS) of trivial solutionto a
retarded linear neutral differential equation with periodic coefficients, and we estimate the decay rate of the solutions of the considered
equation. To reach the desirable results, we benefit from a Lyapunov functional. We give an example to show applicabilityof the
constructed assumptions and use MATLAB-Simulink to show the behaviors of the paths of the solutions of the considered equation.
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1 Introduction

When one checks the relative literature, it can be
confirmed that the existence of many interesting results
on the (AS) of the trivial solutions of differential
equations with constant retardation (see [9,11,16] and
[17]). A technique for finding estimates related to the
solutions of the linear differential equation with constant
retardation

d
dt

y(t) = Ay(t)+By(t− τ),

was offered in ([1,12,15,20]), whereA andB are constant
matrices andτ > 0 is a constant retardation. Some similar
results were established in [2] for the case where the
entries ofA and B are periodic functions oft with the
common period. On the other hand, a lot of different
similar investigations for certain nonlinear differential
equations were proceeded in [19].

This paper is a continuation of the former works on the
nature of solutions to functional differential equations with
constant retardation (see [1]-[8], [13,18,21]).

In 2015, Skvortsova [22] considered the neutral linear
differential equation with a variable retardation

d
dt
[y(t)+D(t− τ(t))] = Ay(t)+By(t− τ(t)), (1)

where y ∈ ℜn, A, B and D are constant matrices and
τ(t) ∈ C1([0,∞)). The author described sufficient
conditions for the (AS) of the trivial solution of Eq. (1) by
using a Lyapunov functional like

V(t,y) =〈H(y(t)+D(y− τ(t))),(y(t)+Dy(t− τ(t)))〉

+
∫ t

t−τ(t)
〈K(t − s)y(s),y(s)〉ds, (2)

whereH = H∗ > 0, K(s) = K∗(s) > 0, s∈ [0,τ2].
In this paper, principally motivated by the ideas in

Skvortsova [22] and that in [?], [?]), we consider the
linear neutral differential equation with periodic
coefficients and periodic variable retardation of the from

d
dt
[y(t)+Dy(t− τ(t))] = A(t)y(t)+B(t)y(t− τ(t)), (3)

wheret ≥ 0,y ∈ ℜn, t − τ(t) ≥ 0, D is ann× n-constant
matrix,A(t) andB(t) aren×n- matrices with continuous
T-periodic entries,(T > 0), that is,

A(t +T)≡ A(t), B(t +T)≡ B(t)

and τ(t) ∈ C1([0,∞]), τ(t) is T-periodic variable
retardation, and it fulfills that

τ(t +T) = τ(t),
0< τ1 ≤ τ(t)≤ τ2 < ∞ (4)
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and
τ ′(t)≤ α < 1, α ∈ (0,1), (5)

whereτ1,τ2 andα are some positive constants.
The aim of this paper is to construct new sufficient

conditions to ensure the (AS) stability of the trivial
solution Eq. (3), and we estimate the decay rate of the
solutions of Eq. (3). It is obvious that Eq. (1) is special
cases of Eq. (3). In addition, instead of the constant
matrices, we replace variable matrices with periodic
entries. To come at the desirable results of this paper, we
introduce an auxiliary Lyapunov functional and use it in
the proofs. By the results of this paper, we improve the
results of Skvortsova [22] from the case of the constant
matrices to the case of variable periodic matrices and
retardation. Besides, we do a contribution to the literature
(see the references of [1]-[26]). These facts show the
improvement and newness of the present paper.

To discuss the nature of solutions of Eq. (3), we
describe an auxiliary functional by

V(0,ϑ) =〈H(0)(ϑ(0)+Dϑ(−τ(0))),
(ϑ(0)+Dϑ(−τ(0)))〉

+
∫ 0

−τ(0)
〈K(−s)ϑ(s),ϑ(s)〉ds,

ϑ(s) ∈C[−τ2,0], (6)

whereH ∈C1([0,T]) andK ∈C1([0,τ2]) are matrix valued
functions such that

H(t) = H∗(t), H(t) = H(t +T)> 0, t ≥ 0, (7)

K(s) = K∗(s)> 0,
d
ds

K(s)< 0, s∈ [0,τ2], (8)

with H∗ andK∗ are the conjugate transposes ofH andK,
respectively, and, in addition, it is presumed that

C(t) =

(

C11(t) C12(t)
C∗

12(t) C22(t)

)

(9)

is a positive definite matrix for allt ∈ [0,T], where

C11(t) =− d
dt

H(t)−H(t)A(t)−A∗(t)H(t)−K(0),

C12(t) =−H(t)B(t)+H(t)A(t)D+K(0)D,

C22(t) =−D∗K(0)D+(1−α)K(τ2).

It is notable thatC∗
12 is the conjugate transpose ofC12. We

consider the initial value problem (IVP)

d
dt
[y(t)+Dy(t− τ(t))] = A(t)y(t)+B(t)y(t− τ(t)), t ≥ 0,

y(t) = ϑ(t), t ∈ [−τ2,0], (10)

y(0+) = ϑ(0),

where ϑ(t) ∈ C1([−τ2,0]) is a given vector-valued
function.

In this paper, it is assumed thatH(t) andK(s) satisfy
assumptions (7) and (8), respectively, and the symbol‖D‖
represents the spectral norm of the matrixD. We use the
below notations for dot product and vector norm,
respectively:

〈x,y〉=
n

∑
j=1

x j ȳ j , ‖x‖=
√

〈x,x〉.

We now state the definitions of the stability and
asymptotic stability.

Definition 1. The trivial solution of (IVP) (10) is said
Lyapunov stable if for anyε > 0 there existsδ0 > 0 such
that maxt∈[−τ2,0] ‖ϑ(t)‖< δ0 implies‖y(t)‖< ε for all t >
0.

Definition 2. The trivial solution of (IVP) (10) is said
(AS) if the trivial solution of (IVP) (10) is Lyapunov
stable, and in addition there existsδ0 > 0 such that
maxt∈[−τ2,0] ‖ϑ(t)‖< δ0 implies‖y(t)‖→ 0 ast → ∞.

Let
yt : θ → y(t +θ ), θ ∈ [−τ2,0].

Then, it follows from (6) that

V(.) = 〈H(0)(yt(0)+Dyt(−τ(0))),(yt(0)+Dyt(−τ(0)))〉

+

∫ 0

−τ(0)
〈K(−θ )yt(θ ),yt(θ )〉dθ

= 〈H(t)(y(t)+Dy(t− τ(t))),(y(t)+Dy(t− τ(t)))〉

+
∫ t

t−τ(t)
〈K(t − s)y(s),y(s)〉ds. (11)

The following lemma is needed for proof of the main
result of this paper.

Lemma 1.We assume thatC(t) given by (9) is positive
definite. Then the spectrum of the matrixD is contained in
the disc{λ ∈ C : |λ |<

√
1−α}.

Proof. The proof of Lemma 1 is similar that of
Skvortsova [22, Lemma 1]. Therefore, we leave it.

In view of (9) and Lemma 1, it follows that there exists
a solutionH̃ to the discrete Lyapunov matrix equation

H̃ − 1
1−α

D∗H̃D = I , (12)

where I is the identity matrix. In addition, we have the
counterpart of the Krein inequality

‖D j‖ ≤
√

‖H̃‖‖H̃−1‖ρ j , j ∈ N, (13)

where

ρ =

√

(1−α)

(

1− 1

‖H̃‖

)

(14)

(see Godunov [10]).
We benefit from this estimate for the proof of the

principal result of this paper.
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Let c(t) be the minimal eigenvalue ofC(t) such that

c(t)> 0,C(t)≥ c(t)

[

H(t) 0
0 0

]

(15)

and byk> 0 the maximal number such that

d
ds

K(s)+ kK(s)≤ 0,s∈ [0,τ2], (16)

ε(t) = min{c(t),k}. (17)

We denote the minimal eigenvalue ofH(t) by hmin(t)> 0.
Let

Φ = max
t∈[−τ2,0]

‖ϑ(t)‖, (18)

µ = max
t∈[0,T]

√

V(0,ϑ)

hmin(t)
, (19)

β (t) = ε(t)/2,β+ = max
t∈[0,T]

β (t),β− = min
t∈[0,T ]

β (t). (20)

2 Nature of solutions

The main result of this paper is formulated by the
following theorem.

Theorem 1. Let the assumption given by (9) holds.
Then the following assertions are true:

1) If ρ < e−β+τ2, whereρ andβ+ are defined in (14)
and (20), respectively, then the solutiony(t) of (IVP) (10)
satisfies the estimate

‖y(t)‖ ≤
√

‖H̃‖‖H̃−1‖[µ(1−ρeβ+τ2)−1e−
∫ t
0 β (s)ds

+ρmax{t/τ2,1}Φ], (21)

whereH̃,Φ,µ andβ (t) are defined by (12), (18), (19) and
(20), respectively.

2) If ρ = e−β+τ2, then the solutiony(t) of (IVP) (10)
satisfies the estimate

‖y(t)‖ ≤
√

‖H̃‖‖H̃−1‖[µ(t/τ1+1)e−
∫ t
0 β (s)ds

+ρmax{t/τ2,1}Φ]. (22)

3) If e−β+τ2 < ρ < e−(β+τ2−β−τ1), whereβ− is defined
in (20), then the solutiony(t) of (IVP) (10) satisfies the
estimate

‖y(t)‖ ≤
√

‖H̃‖‖H̃−1‖[µ(1− (ρeβ+τ2)−1)−1

× (ρeβ+τ2−β−τ1)t/τ1 +ρmax{t/τ2,1}Φ]. (23)

We now start with auxiliary assertions.
The next lemma is also needed in the proof of main

result of this paper.

Lemma 2.Let assumption (9) holds. Then the solution
y(t) of (IVP) (10) satisfies the inequality

‖y(t)+Dy(t−τ(t))‖ ≤
√

V(0,ϑ)

hmin(t)
e−

∫ t
0 β (s)ds, t > 0, (24)

where V(0,ϑ) and β (t) are defined in (6) and (20),
respectively,hmin(t) > 0 is the minimal eigenvalue of the
matrixH(t).

Proof We follow the strategy proceeded in
Demidenko and Matveeva [1]. Let y(t) be a solution of
(IVP) (10). Let y(.) = y(t − τ(t)). Differentiating the
functionalV(t,yt) along the solutions of the equation in
(10), one can obtain

d
dt

V(t,yt) = 〈 d
dt

H(t)(y(t)+Dy(.)),(y(t)+Dy(.))〉

+ 〈H(t)
d
dt
(y(t)+Dy(.)),(y(t)+Dy(.))〉

+ 〈H(t)(y(t)+Dy(.)),
d
dt
(y(t)+Dy(.))〉

+ 〈K(0)y(t),y(t)〉− (1− τ ′(t))〈K(τ(t))y(.),y(.)〉

+

∫ t

t−τ(t)
〈 d
dt

K(t − s)y(s),y(s)〉ds

= 〈 d
dt

H(t)(y(t)+Dy(.)),(y(t)+Dy(.))〉

+ 〈H(t)(A(t)y(t)+B(t)y(.)),(y(t)+Dy(.))〉
+ 〈H(t)(y(t)+Dy(.)),(A(t)y(t)+B(t)y(.))〉
+ 〈K(0)y(t),y(t)〉− (1− τ ′(t))〈K(τ(t))y(.),y(.)〉

+
∫ t

t−τ(t)
〈 d
dt

K(t − s)y(s),y(s)〉ds

= 〈 d
dt

H(t)(y(t)+Dy(.)),(y(t)+Dy(.))〉

+ 〈H(t)A(t)y(t),(y(t)+Dy(.))〉
+ 〈H(t)B(t)y(.),(y(t)+Dy(.))〉
+ 〈H(t)(y(t)+Dy(.)),A(t)y(t)〉
+ 〈H(t)(y(t)+Dy(.)),B(t)y(.)〉
+ 〈K(0)y(t),y(t)〉− (1− τ ′(t))〈K(τ(t))y(.),y(.)〉

+

∫ t

t−τ(t)
〈 d
dt

K(t − s)y(s),y(s)〉ds. (25)

Let us consider the expression

(1− τ ′(t))〈K(τ(t))y(.),y(.)〉.
By (5) and the conditionK(s) = K∗(s)> 0,s∈ [0,τ2], it is
clear that

(1− τ ′(t))〈K(τ(t))y(.),y(.)〉
≥ (1−α)〈K(τ(t))y(.),y(.)〉.

Using the assumptionsddsK(s)< 0 andτ(t)≤ τ2, we have
K(τ(t))≥ K(τ2). Hence, it is obvious that

(1− τ ′(t))〈K(τ(t))y(.),y(.)〉
≥ (1−α)〈K(τ2)y(.),y(.)〉.
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By (25), we may have

d
dt

V(t,yt)≤〈 d
dt

H(t)(y(t)+Dy(.)),(y(t)+Dy(.))〉

+ 〈H(t)A(t)(y(t)+Dy(.)),(y(t)+Dy(.))〉
− 〈H(t)A(t)Dy(.),(y(t)+Dy(.))〉
+ 〈H(t)B(t)y(.),(y(t)+Dy(.))〉
+ 〈A∗(t)H(t)(y(t)+Dy(.)),(y(t)+Dy(.))〉
− 〈A∗(t)H(t)(y(t)+Dy(.)),Dy(.)〉
+ 〈B∗(t)H(t)(y(t)+Dy(.)),y(.)〉
+ 〈K(0)(y(t)+Dy(.)),(y(t)+Dy(.))〉
− 〈K(0)Dy(.),(y(t)+Dy(.))〉
− 〈D∗K(0)(y(t)+Dy(.)),y(.)〉
+ 〈D∗K(0)Dy(.),y(.)〉
− (1−α)〈K(τ2)y(.),y(.)〉

+

∫ t

t−τ(t)
〈 d
dt

K(t − s)y(s),y(s)〉ds.

Taking into account the matrix given by (9) and its
positiveness, it is easy to obtain

d
dt

V(t,yt)+

〈

C(t)

(

y(t)+Dy(.)
y(.)

)

,

(

y(t)+Dy(.)
y(.)

)〉

−
∫ t

t−τ(t)
〈 d
dt

K(t − s)y(s),y(s)〉ds≤ 0.

Using (15) and (16), we find

d
dt

V(t,yt)+ c(t)〈H(t)(y(t)+Dy(.)),(y(t)+Dy(.))〉

+ k
∫ t

t−τ(t)
〈 d
dt

K(t − s)y(s),y(s)〉ds≤ 0.

Taking into account (11) and (17), we can obtain

d
dt

V(t,yt)+ ε(t)V(t,yt)≤ 0

so that
V(t,yt)≤V(0,y0)e

−∫ t
0 ε(s)ds.

In addition, it can be arrived atV(0,y0) =V(0,ϑ),

〈H(t)(y(t)+Dy(.)),(y(t)+Dy(.))〉 ≤V(t,yt)

and

‖y(t)+Dy(.)‖ ≤
√

V(t,yt)

hmin(t)
≤
√

V(0,ϑ)

hmin(t)
e−

∫ t
0 ε(s)/2ds

=

√

V(0,ϑ)

hmin(t)
e−

∫ t
0 β (s)ds,

by (20) and (6), respectively, wherehmin(t) > 0 is the
minimal eigenvalue ofH(t). This is the desired result.

We now estimate||y(t)||. Let t > 0. Consider the
functions

γ0(t) = t,

γ1(t) = t − τ(t),

. . .

γl (t) = γl−1(t)− τ(γl−1(t)), l ≥ 1

or, in the equivalent form,

γ0(t) = t,

γ1(t) = t − τ(γ0(t)),

... (26)

γl (t) = t −
l−1

∑
j=0

τ(γ j (t)), l ≥ 1.

Let m∈ N be the minimal number such that

γm(t) ∈ [−τ2,0). (27)

Lemma 3. Let C(t) in (9) be positive definite. Then the
solutiony(t) of (IVP)(10) satisfies the estimate

||y(t)|| ≤
√

||H̃||||H̃−1||(µ
m−1

∑
j=0

(ρeβ+τ2) je−
∫ t
0 β (s)ds

+ρmax{t/τ2,1}Φ), (28)

whereH̃,ρ ,Φ,µ , and β+ and β (t) are defined in (12),
(14), (18), (19) and (20), respectively.

Proof. Using{γl (t)}l≥1, we representy(t) as

y(t) = [y(γ0(t))+Dy(γ1(t))]−D[y(γ1(t))+Dy(γ2(t))]

+ . . .+(−1)m−1Dm−1[y(γm−1(t))+Dy(γm(t))]

+ (−1)mDmy(γm(t))

which implies that

||y(t)|| ≤ ||y(γ0(t))+Dy(γ1(t))||+ ||D||||y(γ1(t))+Dy(γ2(t))||
+ . . .+ ||Dm−1||||y(γm−1(t))+Dy(γm(t))||
+ ||Dmy(γm(t))||
= ||y(γ0(t))+Dy(γ0(t)− τ(γ0(t)))||
+ ||D||||y(γ1(t))+Dy(γ1(t)− τ(γ1(t)))||+ . . .

+ ||Dm−1||||y(γm−1(t))+Dy(γm−1(t)− τ(γm−1(t)))||
+ ||Dmy(γm(t))||.

It is now notable that

||y(t)|| ≤ µe−
∫ γ0(t)
0 β (s)ds+ ||D||µe−

∫ γ1(t)
0 β (s)ds+ . . .

+ ||Dm−1||µe−
∫ γm−1(t)
0 β (s)ds+ ||Dmy(γm(t))||

=
m−1

∑
j=0

||D j ||µe−
∫ γ j (t)

0 β (s)ds+ ||Dmy(γm(t))||

by (19) and (24).
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In view of (13), it may be followed that

||y(t)|| ≤
√

||H̃||||H̃−1||

× [µ
m−1

∑
j=0

ρ je−
∫ γ j (t)

0 β (s)ds+ρmΦ]

=
√

||H̃||||H̃−1||

× [µ
m−1

∑
j=0

ρ je
∫ t

γ j (t)
β (s)ds

e−
∫ t
0 β (s)ds+ρmΦ].

We note that (26) and (4) imply thatγ j (t) ≥ t − jτ2.
In particular, by (27), 0> γm(t)≥ t −mτ2, which implies
m> t/τ2. Hence, we can reach that

||y(t)|| ≤
√

||H̃||||H̃−1||

× [µ
m−1

∑
j=0

ρ jeβ+(t−γ j (t))e−
∫ t
0 β (s)ds+ρmax{t/τ2,1}Φ]

≤
√

||H̃||||H̃−1||

× [µ
m−1

∑
j=0

ρ jeβ+ jτ2e−
∫ t
0 β (s)ds+ρmax{t/τ2,1}Φ].

Using inequality (28), it is easy to prove estimates given
by (21)-(23). Indeed, letρ < e−β+τ2. By the estimate

m−1

∑
j=0

(ρeβ+τ2) j ≤
∞

∑
j=0

(ρeβ+τ2) j = (1−ρeβ+τ2)−1

and inequality (28), we can arrive at inequality (21).
Let ρ = e−β+τ2. By (27), we haveγm−1(t) ≥ 0.

Moreover, by (26) and (4), we get
γm−1(t)≤ t − (m−1)τ1, which implies

m≤ t
τ1

+1. (29)

Hence,
m−1

∑
j=0

(ρeβ+τ2) j = m≤ t
τ1

+1.

The former equality and inequality (28) imply (22).
Finally, let e−β+τ2 < ρ < e−(β+τ2−β−τ1). By (29), we

have

m−1

∑
j=0

(ρeβ+τ2) j =
m−1

∑
j=0

(ρeβ+τ2)m−1− j ≤
m−1

∑
j=0

(ρeβ+τ2)t/τ1− j

≤
∞

∑
j=0

(ρeβ+τ2)− j(ρeβ+τ2)t/τ1

= (1− (ρeβ+τ2)−1)−1(ρeβ+τ2)t/τ1.

By (20) and inequality (28), we have

y(t)≤
√

‖H̃‖H̃−1|‖[µ(1− (ρeβ+τ2)−1)−1

× (ρeβ+τ2−β−τ1)t/τ1 +ρmax{t/τ2,1}Φ].

Hence, we obtain inequality (23). This completes the proof
of Theorem 1.

Example. For n = 2 as a special case of Eq. (3), we
consider the following a time-varying delay system of
linear neutral differential equations with periodic
coefficients

d
dt

([

y1(t)
y2(t)

]

+

[

0.1 0.14
−0.03 0.12

]

×
[

y1(t − 1+sin2(t)
10 )

y2(t − 1+sin2(t)
10 )

]

)

=

[

−8+0.2cost 1−0.4cost
2+0.3cost −16−0.1cost

]

×
[

y1(t)
y2(t)

]

+

[

0.4sint 0
−0.5sint 0.2cost

]

×
[

y1(t − 1+sin2(t)
10 )

y2(t − 1+sin2(t)
10 )

]

(30)

for t > 0. When we compare Eq. (30) with Eq. (3), it can
be seen that

D =

(

0.1 0.14
−0.03 0.12

)

, A(t) =

(

−8+0.2cost 1−0.4cost
2+0.3cost −16−0.1cost

)

,

B(t) =

(

0.4sint 0
−0.5sint 0.2cost

)

and

τ1 =
1
10

≤ τ(t) =
1+ sin2 t

10
≤ 1

5
= τ2.

In addition, it can be followed that

H(t) =

(

4−0.2sint 1−1.2sint
1−1.2sint 6+3.2sint

)

and

K(s) = e−ksK0, k= 0.07, K0 =

(

1 0
0 2

)

.

Lethmin(t)> 0 be the minimal eigenvalue of the matrix
H(t). Hence, it is notable that

1.2≤ hmin(t)≤ 3.86, 5.8≤ ‖H(t)‖ ≤ 9.2.

Therefore, for the former particular choices, one can
easily check that the matrixC(t) is positive definite for all
t ∈ [0,2π ] and the minimal eigenvaluecmin(t) of the
matrix C(t) satisfies cmin(t) ≥ 0.0945 by
MATLAB-Simulink. Finally, we have

ε(t) = min{c(t),k}= k, β (t) = β+ = β− =
k
2
= 0.035

and
ρ < e−β+τ2
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so that

‖y(t)‖ ≤ r max
−τ2≤s≤0

‖y(s)‖e−0.035t , t ≥ 0

for a proper positive constantr.
As a result, it is seen that all the assumptions of

Theorem 1 can be held.
Let

τ(t) =
1+ sin2(t)

10
, t > 0.

Benefited from by MATLAB-Simulink, the desired
result for the behaviors of the orbits of solutions of the
considered differential system is shown by the following
graph.

Fig. 1: Trajectories of solutionsy(t) of system (30) whenτ(t) =
1+sin2(t)

10 , t > 0.

Remark 1. For the choice ofτ(t) = 1+sin2(t)
10 , t > 0, it

is obvious that the solutiony(t) of Eq. (30) is asymptotic
stable.
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in Yes.ilöz Köyü (Kalbulas),
Horasan-Erzurum, Turkey,
in 1958. He received
PhD degree in Applied
Mathematics from Erciyes
University, Kayseri, in
1993. His research interests
include qualitative behaviors
to differential and integral

equations. At present he is Professor of Mathematics at
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