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Abstract: By this work, we construct certain specific assumptions ajieing the asymptotic stability (AS) of trivial solutitma
retarded linear neutral differential equation with pertocbefficients, and we estimate the decay rate of the saolsiod the considered
equation. To reach the desirable results, we benefit fromaguluyov functional. We give an example to show applicabiitythe
constructed assumptions and use MATLAB-Simulink to shosviibhaviors of the paths of the solutions of the consideradtam.
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1 Introduction wherey € 0", A, B and D are constant matrices and
7(t) € C([0,»)). The author described sufficient

When one checks the relative literature, it can peconditions for the (AS) of the trivial solution of Eq. (1) by

confirmed that the existence of many interesting result!Sing & Lyapunov functional like

on the (AS) of the trivial solutions of differential v/t v\ —(H(v(t) + D(v— 1(t t) -+ Dv(t — T(t

equations with constant retardation (sé€e1[,16] and (t.y) = (yt( )+ Dl —1(t), () + Dyt —1())))

[17). A technique for finding estimates related to the + (K(t —9)y(s),y(s))ds 2)

solutions of the linear differential equation with congtan t—1(t)

retardation whereH = H* > 0,K(s) = K*(s) > 0,s€ [0, T2].
d In this paper, principally motivated by the ideas in
&Y(t) = Ay(t) + By(t— 1), Skvortsova 22] and that in P], [?]), we consider the
linear neutral differential equation with periodic
was offered in (I, 12,15,20]), whereA andB are constant  Coefficients and periodic variable retardation of the from
matrices and > 0 is a constant retardation. Some similar
results were established ir2][for the case where the  —[y(t)+ Dy(t— 1(t))] = A(t)y(t) + B(t)y(t— 1(t)), (3)
entries of A and B are periodic functions of with the t
common period. On the other hand, a lot of differentwheret > 0,y e 0", t — (t) > 0, D is ann x n-constant
similar investigations for certain nonlinear differemtia matrix, A(t) andB(t) aren x n- matrices with continuous

equations were proceeded it9]. T-periodic entries(T > 0), that s,
This paper is a continuation of the former works on the
nature of solutions to functional differential equatiorigw At+T)=A(t), B(t+T)=B(t)

constant retardation (seg{[ 8], [13,18,21)).
In 2015, SkvortsovaZZ] considered the neutral linear
differential equation with a variable retardation

and 1(t) € CY[0,]), t(t) is T-periodic variable
retardation, and it fulfills that
d T(t+T)=r1(t),

G0 +D(t—T(1)] = AY(t) + By(t—T(1)), (1) O<n<tt)<ST2<0 4)
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and In this paper, it is assumed thiett) andK(s) satisfy
assumptions (7) and (8), respectively, and the syribd|l
represents the spectral norm of the mabixWe use the
below notations for dot product and vector norm,

respectively:

t)<a<l ae(0,1),

whererts, T anda are some positive constants.

The aim of this paper is to construct new sufficient
conditions to ensure the (AS) stability of the trivial
solution Eqg. (3), and we estimate the decay rate of the
solutions of Eq. (3). It is obvious that Eq. (1) is special
cases of Eqg. (3). In addition, instead of the constant
matrices, we replace variable matrices with periodic o -
entries. To come at the desirable results of this paper, we We now state the definitions of the stability and
introduce an auxiliary Lyapunov functional and use it in asymptotic stability.
the proofs. By the results of this paper, we improve the  Definition 1. The trivial solution of (IVP) (10) is said
results of Skvortsova2P] from the case of the constant Lyapunov stable if for ang > 0 there exists) > 0 such
matrices to the case of variable periodic matrices andhatmaxe|_r, g [|% ()| < do implies|ly(t)|| < & forallt >

()

x9) = 5 x5 4] = VB,
J:

retardation. Besides, we do a contribution to the litetur O-

(see the references ofl]f[26]). These facts show the

improvement and newness of the present paper.

Definition 2. The trivial solution of (IVP) (10) is said
(AS) if the trivial solution of (IVP) (10) is Lyapunov

To discuss the nature of solutions of Eq. (3), we Stable, and in addition there existy > O such that

describe an auxiliary functional by

(8(0)+Dd(-1(0))),
+D3(-1(0))))

V(0,8) =(H(
(3 (

0
+Lr(o)<K(_S)8(S)78(S)>dS
"9 (S) € C[_ T270]7

0)
0)

(6)

whereH € CY(]0,T]) andK € C%([0, 12]) are matrix valued
functions such that

H(t) =H*(t), H{t)=H(t+T)>0, t>0, (7)

EK(s) <0, s€[0,12], (8)

K(s) =K*(s) >0, s

with H* andK* are the conjugate transposed-bindK,
respectively, and, in addition, it is presumed that

Cra(t) Coo(t
SRl Critert)

is a positive definite matrix for atle [0, T|, where

9)

Cua(t) = ~ SHH() ~ H{DA) ~ A (OH() ~K(0),
Cio(t) = —H(t)B(t) +H(t)A(t)D + K(0)D,
Caslt) = —D*K(0)D + (1 — a)K(12).

It is notable thaC;, is the conjugate transpose©f,. We
consider the initial value problem (IVP)

gi YO +Dy(t—1())] = Alt)y(t) + B()y(t — 7(1)), t = 0,
y(t) =3 (t),t € [-12,0], (10)
y(07) =9(0),

where 9(t) € Cl([-12,0]) is a given vector-valued
function.

MaXe(—r,,0 |7 (1)[| < & implies||y(t)|| — 0 ast — oo.
Let
Vi: 0 —y(t+0), 8e[-12,0].

Then, it follows from (6) that

V() = (H(0)(t(0) + Dyt (=1(0))), (%2 (0) + Dyt (—7(0))))
0
+ (K(=8)%(6),%(6))d8

—71(0)
= (H{®)(y(t) + Dy(t — 7(1))), (y(t) + Dyt — 1(1))))

[0 K- sye.y(e)ds (1)

t—1(t)

The following lemma is needed for proof of the main
result of this paper.

Lemma 1.We assume th&(t) given by (9) is positive
definite. Then the spectrum of the matixs contained in
the disc{A e C: |A| <v1—a}.

Proof. The proof of Lemma 1 is similar that of
Skvortsova [22, Lemma 1]. Therefore, we leave it.

In view of (9) and Lemma 1, it follows that there exists
a solutionH to the discrete Lyapunov matrix equation

H ! bip=i (12)
1-a o
wherel is the identity matrix. In addition, we have the
counterpart of the Krein inequality

D < JIAIIA o), jen,  (3)
where
1
P \/( ‘”( ||H|) a4

(see GodunoviQ).
We benefit from this estimate for the proof of the
principal result of this paper.
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Letc(t) be the minimal eigenvalue €f(t) such that

oft) > 0,C(t) > c(t) [Hét) 8] (15)
and byk > 0 the maximal number such that

dEsK(S) +kK(s) <0,s5€ [0, 1], (16)

£(t) = min{c(t), k}. a7)

We denote the minimal eigenvalueldft) by hmin(t) > 0.
Let

® = max ||19()H (18)

te[—1g,
_ V(0,9)
H _tg[]‘%)'(] Pmin(t) ’ (19)
Bt)=et)/2,p" =tg[13%<]3(t),ﬁ‘ =tg[10|g B(t). (20)

2 Nature of solutions

The main result of this paper is formulated by the
following theorem.

Theorem 1. Let the assumption given by (9) holds.
Then the following assertions are true:

Dif p< e P wherep andB* are defined in (14)
and (20), respectively, then the solutigft) of (IVP) (10)
satisfies the estimate

IVON < /I A=) [u(1— pe? 72)~Le~ loP(S1ds
+pmax{t/T271} (D]7 (21)

whereH, @, 1 and(t) are defined by (12), (18), (19) and
(20), respectively.

2) If p =e P2, then the solutiory(t) of (IVP) (10)
satisfies the estimate

~ ~ it
V@) < /IHIA2 [k (t/ 72+ L) 0P

+ pmax{t/.[Zvl} (D] (22)

3)IfeP 2 <p<e BB 1) whereB~ is defined
in (20), then the solutiory(t) of (IVP) (10) satisfies the
estimate

A2 (1= (peP 72) 12
% (peBﬁz—B*rl)t/rl +pmax{t/rz71} (D].

ly®l <
(23)

We now start with auxiliary assertions.

The next lemma is also needed in the proof of main

result of this paper.

Lemma 2.Let assumption (9) holds. Then the solution
y(t) of (IVP) (10) satisfies the inequality

V(0,9)
hmin(t)

where V(0,9) and B() are defined in (6) and (20),
respectivelymint) > 0 is the minimal eigenvalue of the
matrix H (t).

Proof We follow the strategy proceeded in
Demidenko and Matveevdy] Let y(t) be a solution of
(IVP) (10). Lety(.) = y(t — 1(t)). Differentiating the
functionalV(t,y;) along the solutions of the equation in
(10), one can obtain

Ily(t) +Dy(t — T(t))|| < e loBEdst 5 0 (24)

Let us consider the expression

(1= T O)K(T®))Y(),¥())-
By (5) and the conditioi(s) = K*(s) > 0,s€ [0, T2}, itis
clear that
(1= O)K(T1)y(),¥()
= (1= a){K(T()y(),y())-
(t) <

Using the assumptiongK (s) <0 andr(t
K(z(t)) > K(12). Hence, it is obvious that
)

it
(1= O)(K(T®)y(). Y.
= (1= a){(K(t2)y(.),y(-))-

Tp, we have
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By (25), we may have

%V(t,yt) g(dEH(t (y(t) +Dy(.)),(
( (

L+ o+ o+

We now estimate||y(t)||. Let t > 0. Consider the

functions

W) =t,
yi(t) =t—1(t),

W) =y-a(t) —t(y-a(t),l > 1

or, in the equivalent form,

(t) =t,
yu(t) =t—1(%(1)),
(26)
-1
o) =t—> t(yt),1 > 1
J; J
Letme N be the minimal number such that
Ym(t) € [—T2,0). (27)

Taking into account the matrix given by (9) and its Lemma 3. Let C(t) in (9) be positive definite. Then the

positiveness, it is easy to obtain

- y(t)+Dy()) (¥(t)+Dy()

av(t,yt)+<C(t)< o0 )( i >>
t o d
‘/Haﬁa‘“t—S>y<s>,y<s>>dsgo.

Using (15) and (16), we find

%V(Lyt) +c(t)(H(t)(y(t) + Dy(.)). (y(t) + Dy(.)))
k[ (GKEsy.ye)ds <0
Taking into account (11) and (17), we can obtain

d
aV(LYt) +e(t)V(t,w) <0

so that -t
V(t, %) <V(0,yo)e &S,

In addition, it can be arrived &t(0,yp) =V (0,9),

(H®) (1) +Dy()), (y(t) + Dy(.))) <V(t:»)

and

|y(t)+Dy(,)||<\/V(tht)<\/V(0ﬂ9)e—jés<s)/2ds

hmin(t) o hmin(t)

by (20) and (6), respectively, whelg,,(t) > 0 is the
minimal eigenvalue of (t). This is the desired result.

solutiony(t) of (IVP)(10) satisfies the estimate

m-1 )
[IHIH=2 (1 Zo(pe’ﬁTZ)Je*féﬁ(s)ds
J:

4 pmadt/r2d} gy, (28)

ly(t)[| <

whereH,p, ®, u, and B+ and B(t) are defined in (12),
(14), (18), (19) and (20), respectively.

Proof. Using{y (t) }|>1, we represenj(t) as

y(t) = [y(y(t)) + Dy(va(t))] — Dly(a(t)) + Dy(ya(t))]
+o+ (D)™™ (Y1 (1)) + DY(¥n(t))]
+(=1)"D"y(ym(t))

which implies that

YOI < [ly(vo(t)) +Dy(ya (1) |+ [DI[[[y(ya(t)) + Dy(y2(t) |
+oc D™ [Y(yn-1(t)) + DY(Yn(D))
+IDTy(y(t))]
= [ly(yo(t)) +Dy(v(t) — (v (1))
+IBIly(ya(®) +Dy(va(t) = T(ya W) + -

+ D™ [[1y(¥n-1(t)) + DY(ym-1(t) = T(¥m-1.(1)))
+1ID™y(ym(D))]].

It is now notable that

Iy(t)]] < pe B PS4 pjj e M B9

Ym—1()
+||Dm—1||ue—./o B<S>d5+||Dmy(Vm(t))||

e Y Bsds
= Z)HDJHHG 0 +1IDMY(ym(1))||
J:

by (19) and (24).
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In view of (13), it may be followed that

@)1 < /IIHI[[[H=2]

e 1Y Bds, om
x [u Zop el +p"®]
i=

= \/IIAIlIIA=]

m-1
X [u ZO p]erj <t)ﬁ(s)dse*fép(s)ds+,Dm(D].
J:

We note that (26) and (4) imply thaj(t) >t — j.
In particular, by (27), 0> ym(t) > t — mtp, which implies
m> t/T,. Hence, we can reach that

@)1 < \/IIH[[[[H-2]

m-1 .
« [ lEOPJeBJr(t—yj(t))e—j(‘,B(s)ds_’_pmax{t/rz,l}cp]
=

<\ IA[HA]

m-1
x [ 20 plef itg foB(S)ds | pmaxt/ta1} ).
J:

Using inequality (28), it is easy to prove estimates given

by (21)-(23). Indeed, lgp < e P 2. By the estimate

m-1

(b )i < 5 (pef )] = (1 pef’T2) L
JZO jZO

and inequality (28), we can arrive at inequality (21).
Let p = e B’ By (27), we haveyy 1(t) > 0.

Moreover, by

Ym-1(t) <t—(m—1)711, which implies

t
m< — 41

o (29)

Hence,
m-1

%(peﬁw)j —m< i
=

71

The former equality and inequality (28) imply (22).
Finally, lete "2 < p < e~ (B'2-B 1) By (29), we
have

m-1 eﬁ+T j_mfl
3 (o = 3

m-1
peﬁﬁz)mflﬂ' < (peﬁﬁz)t/TrJ
- 2

< 3 (0T I (pd T

2

= (1= (pe? %)) (pe? ),

(26) and 4), we get

By (20) and inequality (28), we have

y(t) < /IAIA-Y k- (pef =)

% (peBﬁz—B*rl)t/rl +pmax{t/rz71} (D].

Hence, we obtain inequality (23). This completes the proof
of Theorem 1.

Example. Forn = 2 as a special case of Eq. (3), we
consider the following a time-varying delay system of
linear neutral differential equations with periodic
coefficients

(] [ e e )

10
_ {—84—0.2003 1—0.4cog

ya(t)
2+0.3cod —16—0.1cost} 8 [yz(t)]

n [ 0.4sint 0

yﬁ—%{f‘”)
—0.5sint 0.2cog | *

yo(t — =5

fort > 0. When we compare Eg. (30) with Eq. (3), it can
be seen that

D:( 0.1 0.14)7 A(t):(—8+0.2005t 1—0.4cod )

—-0.03012 2+0.3cod —16—0.1cog
0.4sint 0
B(t) = <—O.55int O.Zcost>
and 2
1 1+sirrt 1
= — < t = < —_ = .
n=ppst=—"5 =5-"

In addition, it can be followed that

Ht) = 4—-0.2sint 1—1.2sint
“\1-12sint 6+3.2sint

and

K(s) = e Ko, k=0.07, Ko = (cl)g)

Lethmin(t) > 0 be the minimal eigenvalue of the matrix
H(t). Hence, it is notable that

1.2 < hmin(t) < 3.86, 5.8 < ||H(t)|| < 9.2.

Therefore, for the former particular choices, one can
easily check that the matriX(t) is positive definite for all
t € [0,2r1] and the minimal eigenvaluemin(t) of the
matrix C(t) satisfies cmin(t) > 0.0945 by
MATLAB-Simulink. Finally, we have

e(t) = min{c(t),k} =k, Bt) =BT =B~ = g =0.035

and
p < e_E+T2
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so that [5] Demidenko, G. V., Vodop'yanov, E. S., Skvortsova, M. A,
Estimates for the solutions of linear differential equas®f
lyt)|| <r max0||y(s)|\e‘°'°35‘, t>0 neutral type with several deviations of the argument. Sfib. Z
—Tp<s<

Ind. Mat. 16 (2013), no. 3, 5360. ; translation in J. Appl..Ind

. Math. 7 (2013), no. 4, 472-479.
for a proper positive constant

[6] Demidenko, G. V., Matveeva, I. I, On the exponential
As a result, it is seen that all the assumptions of  stability of solutions of a class of systems of differential
Theorem 1 can be held. equations of neutral type. J. Appl. Indust. Math., 8 (2014),
Let 510-520.
1+ siré(t) [7] Demidenko, G. V., Matveeva, I. I., On estimates for siolns

t>0. of systems of differential equations of neutral type with

T(t) ;
_ 10 ) . ] periodic coefficients. Siberian Math. J., 55 (2014), 866-88
Benefited from by MATLAB-Simulink, the desired [8] Demidenko, G. V., Matveeva, I. |., Estimates for soluco

result for the behaviors of the orbits of solutions of the  to a class of nonlinear time-delay systems of neutral type.
considered differential system is shown by the following  Electron. J. Differential Equations 2015, No. 34, 14 pp.
graph. [9] El'sgol'ts, L. E., Norkin, S. B., Introduction to the tbey
and application of differential equations with deviating
arguments. Translated from the Russian by John L.
Casti. Mathematics in Science and Engineering, Vol. 105.
' Academic Press, New York-London, (1973).
::;g‘*l‘ [10] Godunov, S. K., Modern aspects of linear algebra.
Hr Translated from the 1997 Russian original by Tamara

i Rozhkovskaya. Translations of Mathematical Monographs,

35"\ 175. American Mathematical Society, Providence, RI,
(1998).

[11] Hale, J., Theory of functional differential equations
Seecond edition. Applied Mathematical Sciences, Vol. 3.
Springer-Verlag, New York-Heidelberg, (1977).

[12] Kharitonov V. L., Hinrichsen, D.: Exponential estineatfor
time delay systems. Systems Control Lett. 53 (2004), no. 5,

4 T : . T 395-405.
N " Yo b " [13] Kharitonov, V., Mondi'e, S., Collado, J., Exponential
estimates for neutral time-delay systems: an LMI approach.
IEEE Trans. Automat. Control 50 (2005), no. 5, 666-670.
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