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Abstract: Recently, modeling many systems in communication and networks produce difference equations characterizing the
dynamics of such systems. A certain class of functional equations arises from such difference equations. The functional equation
of our interest arises from a queueing model for a gateway linking two Ethernet-type local area networks. It stems from a second order
difference equation with boundary conditions reflecting the dynamics of the gateway. The functional equation is not yetsolved to find
the exact system distribution. In this article, on one hand we investigate the possible singularities of the unknowns ofthe two-place
functional equation. On the other hand we introduce some application of computing the possible singularities, and we use the generating
functions of the system distribution to compute some expectations of interest. It is hoped that computing the possible singularities of the
unknowns of such equation will be a step forward in the road towards a general solution theory for this interesting class of equations.
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1 Introduction

Functional equations (FEs) are defined as the equations
where the unknowns are functions rather than variables [1,
2,3,4,5]. They are a relatively old subject of mathematics,
but their theory has flourished principally through the
work of the prolific mathematician J. Aczél [5] who
identified many of their classes, illustrating efficient
methods for their solutions as well as criteria for the
existence and uniqueness of those solutions [6]. FEs arise
abundantly in models of many fields [7], such as
population ethics [8], astronomy [9], neural networks [10],
and wireless networks [11]. Specifically, each of these
models can be formulated so as to eventually lead to a FE
that can yield precise quantitative relationships.

FEs can be in one variable or two variables, depending
on whether the underlying model is one-dimensional or
two dimensional. Specifically, there is no universal
solution technique for these FEs, but rather almost each
equation is solved in another way.

Figure 1 summarizes the process between many
communication and networks systems on one hand and a
certain class of two-place functional equations on the
other hand: Computer scientists who are interested in
some communication elements like switches, and they
want to study some performance measures like the delay

Communication Systems

e.g., Switch, Multiplexer, etc.

✲
✲ Mathematical Modeling

❄❄

Difference Equations
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Generating Function

(PGF)
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Functional Equation

h1(x,y)P(x,y) = h2(x,y)P(x,0)+h3(x,y)P(0,y)+h4(x,y)P(0,0)

Fig. 1: Communication Systems and functional equations–
Relation Summary

or the waiting time. They start by describing their system
mathematically to obtain the mathematical model which in
most cases is consisting of a difference equation
characterizing the dynamics of the underlying systems
together with some boundary conditions. They used a
probability generating function (PGF) to map such
difference equations to challenging functional equations.

In particular, we find out that the following general
class of two-place functional equations

h1(x,y)P(x,y) = h2(x,y)P(x,0)+h3(x,y)P(0,y)

+h4(x,y)P(0,0), (1)
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wherehi(x,y), i = 1,2,3,4, are given polynomials in two
complex variables x,y, arises from different
communication and networks systems. Special cases of
(1) arise from: a 2× 2 switch see [12], a multiplexer see
[13], the gateway see [14], a tandem queueing model with
coupled processors see [15], two coupled processors see
[16], arise in the analysis of stochastic models see [17],
from two parallel queues created by arrivals with two
demands [18], from a queueing model [27], from two
processors [26], from two processors with coupled inputs
[35], and from databases [20].

The current article is mainly concerned with locating
the possible singularities of the unknowns of a two-place
FE arising from two-queue model of a network queueing
system originally published in [14]. The sequel of the
paper is laid as follows: In the next section we recall the
functional equation from the original article [14], and we
introduce the main idea used to find the intersection points
between two polynomials to be used in computing the
possible singularities. In section3 we find the potential
singularities of the first unknownP(x,0), in section4 we
find the potential singularities of the second unknown
P(0,y), in section5 we discuss the singularities obtained
and we give an example in which the marginal distribution
cannot be calculated. In section6 we give pointers to one
possible application of computing the possible
singularities, in section7 we compute some expectations,
and in section8 we conclude our work.

2 The functional equation

In [14], the difference equation characterizing the
dynamics of the gateway in steady state together with the
boundary conditions are given by

(

1−ξ1 ξ2

)

p0,0−ξ1r2p0,0− r1 r2p1,1− r1ξ2p0,1 = 0 (2)

(1−ξ1r2s2−ξ1r2)p1,0−ξ1ξ2p0,0−ξ1r2p2,0

− r1 r2p2,1− r1r2s2p1,1 = 0 (3)

(1− r1s1r2s2−ξ1r2− r1ξ2)p1,1−ξ1ξ2p0,0

−ξ1ξ2p1,0− r1s1r2p2,1− r1r2p2,2

−r1r2s2p1,2−ξ1ξ2p0,1 = 0 (4)

(1− r1s1ξ2− r1ξ1)p0,1−ξ1ξ2p0,0− r1ξ2p0,2

−r1 r2p1,2− r1s1 r2p1,1 = 0 (5)

(1−ξ1r2s2−ξ1r2)pm,0−ξ1r2s2pm−1,0

−ξ1r2pm+1,0− r1 r2pm+1,1− r1r2s2pm,1 = 0,

m= 2,3, · · · (6)

(1− r1s1r2s2−ξ1r2− r1ξ2)pm,1−ξ1ξ2pm−1,0

−ξ1ξ2pm,0− r1s1r2pm+1,1− r1r2pm+1,2

−r1r2s2pm,2−ξ1r2s2pm−1,1 = 0,

m= 2,3, · · · (7)

(1− r1s1r2s2−ξ1r2− r1ξ2)pm,n−ξ1ξ2pm−1,n−1

−r1s1ξ2pm,n−1− r1s1r2pm+1,n− r1r2pm+1,n+1

−r1r2s2pm,n+1−ξ1r2s2pm−1,n = 0,

m,n= 2,3, · · · (8)

(1− r1s1r2s2−ξ1r2− r1ξ2)p1,n−ξ1ξ2p0,n−1

−r1s1ξ2p1,n−1−r1s1r2p2,n− r1r2p2,n+1

−r1r2s2p1,n+1−ξ1ξ2p0,n = 0,

n= 2,3, · · · (9)

(1− r1s1ξ2− r1ξ1)p0,n− r1s1ξ2p0,n−1

−r1ξ2p0,n+1− r1r2p1,n+1− r1s1r2p1,n = 0,

n= 2,3, · · · (10)

where 0< r i ,si ,ξi = r isi < 1, i = 1,2 are some operational
parameters,w = 1−w, for w ∈ [0,1], see [14] for more
details. Applying the generating function approach see
e.g., [21] to (2)–(10), the author in [14] ends up after some
nontrivial manipulation with the following challenging
two-place functional equation

(M(x,y)− xy)P(x,y) = (1− y)(M(x,0)

+r1ξ2xy)P(x,0)+ (1− x)(M(0,y)

+r2ξ1xy)P(0,y)− (1− x)(1− y)

M(0,0)P(0,0), (11)

where

P(x,y) =
∞

∑
m,n=0

pm,nxmyn, |x| ≤ 1, |y| ≤ 1

is the probability generating function (PGF) of the
sequencepm,n, which is defined in [14],

P(x,0) =
∞

∑
m=0

pm,0xm, |x| ≤ 1 (12)

is the generating function of the sequencepm,0,

P(0,y) =
∞

∑
n=0

p0,nyn, |y| ≤ 1

is the generating function of the sequencep0,n,

P(0,0) = p0,0,

is the probability that the gateway is empty, and
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M(x,y) = (r1+ r1s1y+ ξ1xy)(r2+ r2s2x+ ξ2xy).

For simplicity reasons (11) can be rewritten as follows

h1(x,y)P(x,y) = h2(x,y)P(x,0)+h3(x,y)P(0,y)

+h4(x,y)P(0,0), (13)

where

h1(x,y) = (r1+ r1s1y+ξ1xy)(r2+ r2s2x+ξ2xy)−xy,

h2(x,y) = (1−y)r1(r2+ r2s2x+ξ2xy),

h3(x,y) = (1−x)r2(r1+ r1s1y+ξ1xy),

and
h4(x,y) = (x−1)(1− y)r1r2.

Equation (13) is a functional equation in which one main
unknown function P(x,y) is defined by three other
unknowns namely,P(x,0),P(0,y), P(0,0), and four
known polynomialshi(x,y), i = 1, ...,4. The author in [14]
leaves the equation unsolved, and hence the current article
is seen as a step in the way to solve it. Equation (13)
cannot be solved directly forP(x,y) because it contains
other unknown functions namelyP(x,0), P(0,y), and
P(0,0). In the next subsection we describe the main idea
used in computing the singularities of the unknowns.

2.1 The main idea

The main idea of locating the possible singularities of the
unknowns of the functional equation (13) will be merely
to find the intersection points between two functions. So
that it is reasonable to introduce first the idea of computing
the intersection points between two general polynomials.
Generally speaking, when we have two polynomials in two
variables, say,

f (x,y) = a0(y)+a1(y)x+ · · ·+an1(y)x
n1, (14)

and

g(x,y) = b0(y)+b1(y)x+ · · ·+bn2(y)x
n2, (15)

the resultantResx( f ,g;y) of the polynomialsf andg (see
e.g. [22] in Appendix B) with respect tox is the determinant
of the matrix























an1 an1−1 · · · a0 0 · · · · · ·
0 an1 an1−1 · · · a0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · 0 an1 an1−1 · · · a0
bn2 bn2−1 · · · b0 0 · · · · · ·
0 bn2 bn2−1 · · · b0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · 0 bn2 bn2−1 · · · b0





































n2− rows















n1− rows

(16)

which is a polynomial iny. The resultant with respect tox is
0 aty0 if the polynomialsf andg have a common nontrivial
root(x0,y0) or the leading coefficients are zero. During the

next two sections we will use the idea (16) in computing
the potential singularities of the unknowns of the functional
equation (13). It should be noted that the most important
thing is to check wether the obtained potential singularities
represent removable singularities or not. For this reason a
somehow detailed analysis of the potential singularities is
introduced in section 5.

3 Potential singularity of P(x,0)

Since the main PGFP(x,y) in (13) is an analytic function
in the unit disk, then this means that if

h1(x,y) = 0,

then also

h2(x,y)P(x,0)+h3(x,y)P(0,y)+h4(x,y)P(0,0) = 0,

so

P(x,0)+
h3(x,y)
h2(x,y)

P(0,y)+
h4(x,y)
h2(x,y)

P(0,0) = 0,

which is equivalent to

P(x,0) =−h3(x,y)P(0,y)+h4(x,y)P(0,0)
h2(x,y)

. (17)

We observe from the above equation that the unknown
functionP(x,0) could have a potential singularity at some
point x if for somey, h1(x,y) = 0 andh2(x,y) = 0. This
leads us to study the intersection points of the curves
h1(x,y) = 0 andh2(x,y) = 0. If such a pointx exists, then
y is a root of the resultant Resx(h1,h2;y) in x of the
polynomialsh1(x,y) andh2(x,y). It should be noted that
computing the potential singularities of the function
P(x,0) might be used to estimate the sequencepm,0
defined byP(x,0) in (12) using the theorem below.

3.1 Resultant in x

The two functionsh1(x,y) andh2(x,y) can be written as

h1(x,y) = (r̃1+ r1s̃1y+ ξ1xy)(r̃2+ r2s̃2x+ ξ2xy)− xy

= a0(y)+a1(y)x+a2(y)x
2, (18)

and

h2(x,y) = (1− y)r̃1(r̃2+ r2s̃2x+ ξ2xy)

= b0(y)+b1(y)x, (19)

where
a2(y) = ξ2ξ1y2+ r2s̃2ξ1y,

a1(y) = ξ2r1s̃1y2+ r̃1ξ2y+ r2s̃2r1s̃1y+ r̃2ξ1y− y+ r̃1r2s̃2,

a0(y) = r̃2r1s̃1y+ r̃1r̃2,

b1(y) = r̃1r2s̃2+ r̃1ξ2y− r̃1r2s̃2y− r̃1ξ2y2,
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and
b0(y) = r̃1r̃2− r̃1r̃2y.

Using (16), (18), (19) we can write the resultant inx of
h1(x,y) andh2(x,y) as the determinant of the matrix,

M1 =





a2 a1 a0
b1 b0 0
0 b1 b0



 . (20)

From (16) and (20), the resultant ofh1(x,y) andh2(x,y) in
x as a function iny is given by

Resx(h1,h2;y) = det(M1)

= b2
1a0+b2

0a2−a1b1b0, (21)

after some algebraic manipulations we get

Resx(h1,h2;y) = r̃2
1r̃2r2y(y−1)

{s2y2+(1−2s2)y+ s2−1}. (22)

We conclude that the resultant inx of the functionsh1(x,y)
andh2(x,y) as a function ofy is zero at the zeros of (22)
which are

1.y1 = 0
2.y2 = 1
3.y3 = 1
4.y4 = 1− 1

s2
.

3.2 Resultant in y

In order to find the resultant iny of the two functions
h1(x,y) and h2(x,y) we start by rewriting them as
functions in y with some coefficients inx. The two
functionsh1(x,y) andh2(x,y) can be written as

h1(x,y) = (r̃1+ r1s̃1y+ ξ1xy)(r̃2+ r2s̃2x+ ξ2xy)− xy

= c0(x)+ c1(x)y+ c2(x)y
2, (23)

and

h2(x,y) = (1− y)r̃1(r̃2+ r2s̃2x+ ξ2xy)

= d0(x)+d1(x)y+d2(x)y
2, (24)

where
c2(x) = ξ2ξ1x2+ ξ2r1s̃1x,

c1(x) = r2s̃2ξ1x2+ r̃1ξ2x+ r2s̃2r1s̃1x+ r̃2ξ1x− x+ r̃2r1s̃1,

c0(x) = r̃1r2s̃2x+ r̃1r̃2,

d2(x) =−r̃1ξ2x,

d1(x) = r̃1ξ2x− r̃1r̃2− r̃1r2s̃2x,

and
d0(x) = r̃1r̃2+ r̃1r2s̃2x.

The resultant iny of h1(x,y) andh2(x,y) is using (16), (23),
(24) the determinant of the matrix

M2 =







c2 c1 c0 0
0 c2 c1 c0
d2 d1 d0 0
0 d2 d1 d0






. (25)

From (25) after some algebraic manipulations we can write
that

Resy(h1,h2;x) = det(M2),

= ξ2r̃1x2(r̃1r2s̃2x+r̃1r̃2)

{ξ1r2x2+(ξ̃1r2+ ξ1r̃2−1)x+ r̃2ξ̃1}. (26)

We conclude that the resultant iny of the functionsh1(x,y)
andh2(x,y) as a function ofx is zero at the zeros of (26)
which are:

1.x1 = 0,
2.x2 = 0,
3.x3 =− r̃2

r2s̃2
,

4.x4 = 1,
5.x5 =

1−ξ1−r2+ξ1r2
r2ξ1

,

the obtained values are possible singularities of the
functionP(x,0).

4 Potential singularity of P(0,y)

Since in the main functional equation in (13) of this paper
we have two unknown functions namely,P(x,0) and
P(0,y) then it is reasonable also to investigate the
potential singularities of the other unknownP(0,y). Since
the main PGFP(x,y) in (13) is an analytic function in the
unit disk, then this means that if

h1(x,y) = 0,

then also

h2(x,y)P(x,0)+h3(x,y)P(0,y)+h4(x,y)P(0,0) = 0,

so that

P(0,y)+
h2(x,y)
h3(x,y)

P(x,0)+
h4(x,y)
h3(x,y)

P(0,0) = 0,

which is equivalent to

P(0,y) =−h2(x,y)P(x,0)+h4(x,y)P(0,0)
h3(x,y)

.

We observe from the above equation that the unknown
functionP(0,y) could have a singularity at some pointy if
for somex, h1(x,y) = 0 andh3(x,y) = 0. This leads us to
study the intersection points between the two functions
h1(x,y) andh3(x,y).

c© 2017 NSP
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4.1 Resultant in y

The two functionsh1(x,y) andh3(x,y) can be written as

h1(x,y) = (r̃1+ r1s̃1y+ ξ1xy)(r̃2+ r2s̃2x+ ξ2xy)− xy

= a0(x)+a1(x)y+a2(x)y
2,

and

h3(x,y) = (1− x)r̃2(r̃1+ r1s̃1y+ ξ1xy),

= b0(x)+b1(x)y.

Using (16), the resultant ofh1(x,y) andh3(x,y) in y as a
function inx is the determinant of the matrix,

M3 =





a2 a1 a0
b1 b0 0
0 b1 b0



 (27)

where
a2(x) = ξ1ξ2x2+ r1s̃1ξ2x,

a1(x) = r2s̃2ξ1x2+ r̃1ξ2x+ r2s̃2r1s̃1x+ r̃2ξ1x− x+ r̃2r1s̃1,

a0(x) = r̃1r2s̃2x+ r̃1r̃2,

b1(x) = r1r̃2s̃1+ r̃2ξ1x− r1r̃2s̃1x− r̃2ξ1x2,

and
b0(x) = r̃1r̃2− r̃1r̃2x.

From (27) we can write that

Resy(C1,C3;x) =det(M3)

= x(x−1)r̃2
2r̃1r1{s1x2+(1−2s1)x+ s1−1},

so we conclude that the resultant iny of the functions
h1(x,y) andh3(x,y) as a function ofx is zero at

1.x1 = 0
2.x2 = 1
3.x3 = 1
4.x4 = 1− 1

s1
.

4.2 Resultant in x

The two functionsh1(x,y) andh3(x,y) can also be written
as follows

h1(x,y) = (r̃1+ r1s̃1y+ ξ1xy)(r̃2+ r2s̃2x+ ξ2xy)− xy

= c0(y)+ c1(y)x+ c2(y)x
2,

and

h3(x,y) = (1− x)r̃2(r̃1+ r1s̃1y+ ξ1xy),

= d0(y)+d1(y)x+d2(y)x
2.

Using (16), the resultant ofh1(x,y) andh3(x,y) in x as a
function iny is the determinant of the matrix,

M4 =







c2 c1 c0 0
0 c2 c1 c0
d2 d1 d0 0
0 d2 d1 d0






(28)

where
c2(y) = ξ1ξ2y2+ r2s̃2ξ1y,

c1(y) = r1s̃1ξ2y2+ r̃1ξ2y+ r2s̃2r1s̃1y+ r̃2ξ1y− y+ r̃1r2s̃2,

c0(y) = r̃2r1s̃1y+ r̃1r̃2,

d2(y) =−(r̃2ξ1y),

d1(y) = r̃2ξ1y− r̃1r̃2− r1r̃2s̃1y

and
d0(y) = r1r̃2s̃1y+ r̃1r̃2.

From (28) we can write that

Resx(C1,C3;y) = det(M4)

= ξ1r̃2y2(r̃2r1s̃1y+ r̃2r̃1)

{ξ2r1y2+(ξ̃2r1+ ξ2r̃1−1)y+ r̃1ξ̃2},

so we can conclude that the resultant inx of the functions
h1(x,y) andh3(x,y) as a function ofy is zero at the zeros
of the above equation which are:

1.y1 = 0,
2.y2 = 0,
3.y3 =− r̃1

r1s̃1
4.y4 = 1
5.y5 =

1−r1−ξ2+r1ξ2
r1ξ2

the obtained values are possible singularities of the
functionP(0,y).

5 Discussion of the singularities

Here we discuss the (potential) singularities we have
obtained so far for the unknowns. In the table in figure2
below we show the set of ordered pairs that represents the
intersection points ofh1(x,y) = 0 and h2(x,y) = 0. In
other words the set of ordered pairs at which the unknown
function P(x,0) has potential singularities. Since it is
well-known that the unknown functionP(x,0) e.g. is by
definition an analytic function in the unit disk, then such
unknown cannot have a singularity at(x j ,y j) that lie
inside the unit disk. If it happens that such unknown has
singularities that lie inside the unit disk, then it must be a
removable singularity, i.e. the numerator of the equation
(13) must be zero at such(x j ,y j). Then we have to test
whether the obtained potential singularities that lie inside
the unit disk represent removable singularities or not. For
instance, it is easy to see that the pair(0,0) in the table
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(xi ,yi) y1 = 0 y2 = 1 y3 = 1− 1
s2

y4 =− r̃1
r1s̃1

y5 =
1−ξ2−r1+r1ξ2

r1ξ2

x1 = 0 ♣ ♣
x2 = 1 ⊛ ⊛

x3 = 1− 1
s1

♣ ⊛ ⊛

x4 =− r̃2
r2s̃2

♣
x5 =

1−ξ1−r2+r2ξ1

r2ξ1

The sign♣ corresponds to the ordered pairs that lie or may lie inside the unit disk while the sign⊛ corresponds to the pairs that lie or
may lie on the disk

Fig. 2: The set of ordered pairs(xi ,yi) at which the functionP(x,0) has potential singularities

represents a removable singularity since it easy to check
that the numerator of (17) is zero or

h3(x,y)P(0,y)+h4(x,y)P(0,0) = 0 (29)

at this pair. But in the mean time it is interesting to note
that the pair(0,0) is not a common zero of the functions
h1(x,y) and h2(x,y). On the other hand, the pair(1,1)
represents a zero of (29) and in the mean time it is a
common zero of the functionsh1(x,y) and h2(x,y). It
should also be noted that the pair(x,1) for any x
represents a zero of the functionh2(x,y). Similarly the
pair (1,y) for any value ofy represents a zero for the
function h3(x,y). Also, it is interesting to find out that
either the pair(x,1) or (1,y) for any values ofx and y
respectively represents zeros of the functionh4(x,y).

Now, since in the table some of the ordered pairs are
given as functions of the system parameters
r i ,si ,ξi ; i = 1,2, then it is reasonable to discuss such
ordered pairs with respect to the parameters values. It is a
well-known fact in queueing theory (see e.g. [28]) that for
a queueing system with arrival rateλ and service rateµ ,
the stability condition is that the arrival rate does not
exceed the service rate, that is to sayλ < µ . In the current
case of this paper the system producing the functional
equation (13) is a network gateway modeled as two
back-to-back interfering queues see [14]. The arrival rate
of the first queue isξ1 and the service rate of such queue is
1− r2, and similarly the arrival rate of queue 2 isξ2 and
the service rate is 1− r1. For the current functional
equation the system is stable only if the parameters
r i ,si ,ξi ; i = 1,2 satisfy the following requirement

ξ1 < 1− r2, ξ2 < 1− r1. (30)

One can conclude that the parameters values should not be
selected in a random fashion. In other words, in selecting
values of the parameters in the table we must select them
in accordance to (30).

Having a look at the table we can conclude that the
pairs that need to be checked are those which
corresponding cells are highlighted by the sign♣. This is

because such pairs lie inside the unit disk even for some
special values of the system parameters. The ordered pairs
for which the corresponding cells are highlighted by the
sign⊛ represent the pairs that lie or may lie on the disk
itself. Other ordered pairs outside the disk for any values
of the parameters. If the functionP(x,0) has some
singularity either on the circle of convergence or outside it
then we don’t have problems. An example of the potential
singularities that lie outside the unit disk for any system
parameters satisfying (30) is x5 in the table. This is
because

x5 =
1− ξ1− r2+ r2ξ1

r2ξ1

= 1+
1− r2− ξ1

r2ξ1
> 1,

and according to the stability condition (30) we have
1− r2 > ξ1 then x5 is always outside the unit disk. In a
complete symmetric way one can find easily thaty5 > 1.
In the table it is interesting to find out that the rest of the
ordered pairs even if they lie inside the unit disk and
represent singularities that are not removable they will not
make any problems. This is because they are not common
zeros of the functionsh1(x,y) and h2(x,y). This means
that we will not care about them. For instance, the pair
(0,1) is not a common zero of the functionsh1(x,y) and
h2(x,y).

It should be noted that the pair(1,1) represents a
removable singularity also it is easy to show that on the set
{(x,y) : h1(x,y) = 0} the limit

lim
(x,y)→(1,1)

1− x
1− y

exists. This can be shown easily using the Taylor’s
expansion ofh1(x,y) around the point(1,1). It should be
noted that since we have a complete symmetric equation,
then a similar analysis can be obtained for the other
unknown function P(0,y). The main reason behind
computing the possible singularities is to estimate the
sequences defined by such unknowns as introduced by
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theorem 1 below. We also hope that computing the
potential singularities of the unknowns will help us in the
future to solve such a challenging class of equations.

Example 1.The following equation arose in [23] from two
parallel queues with the customer joining the shorter

(x(2ρx+1)−2(1+ρ)xy+y2)P(x,y)

= y(y− x)P(0,y)+ (x(2ρx+1)

−(1+ρ)xy−ρxy2)P(x,0), (31)

whereρ < 1. In order to use the idea (16) we first rewrite
the above equation in the form

h1(x,y)P(x,y) = h2(x,y)P(x,0)+h3(x,y)P(0,y),

where

h1(x,y) = x(2ρx+1)−2(1+ρ)xy+y2,

h2(x,y) = x(2ρx+1)− (1+ρ)xy−ρxy2,

and
h3(x,y) = y(y− x).

5.1 Singularity of P(0,y)

Following the same argument as in the previous two
sections to find that

5.1.1 Resultant inx of h1 andh3

First we write the two functionsh1 andh3 as

h1(x,y) = x(2ρx+1)−2(1+ρ)xy+y2,

= y2+(1−2y−2ρy)x+2ρx2

= a0+a1x+a2x
2, (32)

and

h3(x,y) = y(y− x),

= y2− yx

= b0+b1x. (33)

The resultantResx(h1,h3,y) of the two functionsh1 andh3
is the determinant of the matrix

A=





a2 a1 a0
b1 b0 0
0 b1 b0



 , (34)

which can be rewritten as:

Resx(h1,h3,y) = det(A)

=a2b2
0−b1(a1b0−a0b1) = y3(1− y). (35)

The zeros of the above equation arey= 0 with multiplicity
3, andy= 1.

5.1.2 Resultant iny of h1 andh3

Rewrite the two functionsh1 andh3 as

h1(x,y) = x(2ρx+1)−2(1+ρ)xy+y2,

= 2ρx2+ x−2x(1+ρ)y+ y2

= c0+ c1y+ c2y2, (36)

and

h3(x,y) = y(y− x),

=−xy+ y2

= d1y+d2y
2. (37)

The resultantResy(h1,h3,x) of the two functionsh1 andh3
is the determinant of the matrix

B=







c2 c1 c0 0
0 c2 c1 c0
d2 d1 d0 0
0 d2 d1 d0






. (38)

From (38) we get

Resy(h1,h3,x) = det(B)

=c0d2
1c2− c2

1d1d2+ c0c1d2
2, (39)

the zeros of the above equation arex = 0 of multiplicity
two, and

x=
−4ρ −5±

√

(4ρ +5)2+8ρ(2+2ρ)
4ρ

Combining the results of the two previous subsections
to conclude that the unknown functionP(0,y) has a
potential singularity at

1.y= 0 of multiplicity three
2.y= 1

3.y=
−4ρ−5±

√
(4ρ+5)2+8ρ(2+2ρ)

4ρ .

6 Application of the singularity

Generally speaking, asymptotic analysis endeavors are to
find a solution that closely approximates the exact solution
[24]. One possible application of computing the possible
singularities of the unknowns of functional equations is to
obtain the asymptotic behavior of the sequences defined
by such unknowns. The relation between the singularities
and the asymptotic expansion comes from the fact that an
asymptotic expansion of a function near some singularity
is mapped to matching asymptotic expansion of its
coefficients [24]. There are many techniques for deriving
tail asymptotics for random walks in the first quarter plane
see [22,24], each technique depends on some properties of
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the function defining sequences. The functional equation
of our interest is in fact an equation in which the
unknowns are generating functions, namelyP(x,y),
P(x,0), P(0,y) with interesting coefficientspm,n, pm,0, p0,n
respectively, that have no simple closed form. In this
section we give pointers to a technique for obtaining the
asymptotic of the marginal distributionpm,0 for largem,
given P(x,0) = ∑∞

m=0 pm,0xm. If the functionP(x,0) has
singularities, then Darboux’s theorem can use these
singularities to estimate the sequencepm,0. The statement
of the theorem is due to [28] chapter 1 as follows:

Theorem 1.(Darboux’s method). Suppose
P(x) = ∑∞

m=0 pm,0xm with positive real coefficients pm,0 is
analytic near0 and has only algebraic singularities xk on
its circle of convergence|x| = R, in other words, in a
neighborhood of xk we have

P(x)≈ (1− x
xk
)−wkGk(x),

where wk ∈ {1,2,3, · · ·} and Gk(x) denotes a nonzero
analytic function near xk. Let w= maxkℜ(wk) denote the
maximum of the real parts of the wk. Then we have

pm,0 = ∑
j

G j(x j)

Γ (wj)
mw j−1x−m

j +o(mw−1R−m)

with the sum taken over all j withℜ(wj) =w andΓ (w) the
Gamma function of w (withΓ (n) = (n−1)! for n a positive
integer).

7 Expectations

In this section we find the expected number of customers
(packets) in both queues of the gateway using the
corresponding generating functions. It is easy to see using
(13) that the generating function of the number of packets
in the first queue is given by

P(x,1) =
∞

∑
m=0

P(N1 = m)xm

=
(1− x)r2(r1+ r1s1+ ξ1x)P(0,1)

(r1+ r1s1+ ξ1x)(r2+ r2s2x+ ξ2x)− x
, (40)

where N1 is the number of packets in the first queue.
Using the normalization conditionP(1,1) = 1 in (40) to
find P(0,1) by applying de l’Hôpital’s rule to get

P(0,1) =
r2− ξ1

r2
. (41)

Using (41) in (40) we will compute the expected number
of packets in queue 1. It is well known see e.g. [13] that the
expected number of packets in queue 1 is given by

E[N1] =
∂
∂x

P(x,1) |x=1

=
0
0
.

Therefore by applying de l’Hôpital’s rule we get

E[N1] =
2ξ1(1− ξ1)+ ξ2

2(r̃2− ξ1)
. (42)

Similarly, the generating function of the number of packets
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Fig. 3: The expected number of packets in queue I vs. the
arrival rateξ1 for fixed r2 = 0.3, s2 = 0.7, andξ2 = 0.21

in the second queue is

P(1,y) =
∞

∑
n=0

Pr(N2 = n)yn

=
(1− y)r̃1(r̃2+ r2s̃2+ ξ2y) f (1,0)

(r̃1+ r1s̃1y+ ξ1y)(r̃2+ r2s̃2+ ξ2y)− y
,

whereN2 is the number of packets in the second queue.
Following the same way to end up with the expected
number of packets in the other queue namely,

E[N2] =
2ξ2(1− ξ2)+ ξ1

2(r̃1− ξ2)
.

In figure 3 we used (42) to plot the expected number of
packets in queue I (E[N1]) versus the queue I arrival rate
for fixed values of queue II parameters namely, for
r2 = 0.3, s2 = 0.7 andξ2 = 0.21. It is clear from the figure
that the higher the arrival rate the higher the expected
number of packets in queue I which clearly makes perfect
sense. We also notice from the figure3 that the expected
number of packets increases almost linearly with the
arrival rate. This is the typical behavior of queues in
general (see Woodward [25] chapter 4.). On the other
hand, in Figure4 below, we plot the expected number of
packets in queue I (E[N1]) versus the queue I arrival rate
whenever there are no packets in LAN II. In other words
when queue I service rate is 1. From figure4 its a perfect
linear relation meaning that the higher the arrival rate the
higher the expected number of packets. This clearly makes
perfect sense.
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Fig. 4: The expected number of packets in queue I vs. the
arrival rateξ1 whenr2 = 0, s2 = 0, andξ2 = 0

8 Conclusions

We have computed the potential singularities of the
unknown functions of a challenging functional equation
which is not yet solved. The potential singularities of the
unknowns of this equation are obtained by finding the
intersection points between the kernel function and the
corresponding coefficient of each unknown. As one
application of computing the possible singularities we
state, and give some pointers to an estimation of the
sequences defined by the two unknowns. Another
contribution is computing some expectations of interest.
Possible extension of this work could be to find an
analytical solution of the functional equation by utilizing
the knowledge of the singularities of the unknowns of the
equation.
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