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Abstract: Recently, modeling many systems in communication and misvproduce difference equations characterizing the
dynamics of such systems. A certain class of functional &opus arises from such difference equations. The functienaation

of our interest arises from a queueing model for a gatewdyngtwo Ethernet-type local area networks. It stems frora@ad order
difference equation with boundary conditions reflecting dynamics of the gateway. The functional equation is nosgkted to find
the exact system distribution. In this article, on one hamdinvestigate the possible singularities of the unknowngheftwo-place
functional equation. On the other hand we introduce somkcapion of computing the possible singularities, and we thhe generating
functions of the system distribution to compute some exiixts of interest. It is hoped that computing the possiinigusarities of the
unknowns of such equation will be a step forward in the roahtds a general solution theory for this interesting cldssjaations.

Keywords: functional equations, difference equations, queueingrihaingularity.

Communication Systems —

1 Introduction e.g., Switch, Multiplexer, etc. - ‘ Mathematical Modeling ‘
i

Functional equations (FEs) are defined as the equations
where the unknowns are functions rather than varialdles [

2,3,4,5]. They are a relatively old subject of mathematics, N

but their theory has flourished principally through the Ge”e"'z‘g“f‘;”"““’”

work of the prolific mathematician J. Aczéb][ who I

identified many of their classes, illustrating efficient Fonciona Equaton

methods for their solutions as well as criteria for the ha(eyIP(%Y) = ha(x y)P(x.0) + hs(x y)P(0.y) + ha(x.y)P(0.0) ‘

existence and unigueness of those soluti@hsHEs arise

abundantly in models of many fields7][ such as

population ethics{], astronomy 9], neural networks10],

and wireless networksl[l]. Specifically, each of these

models can be formulated so as to eventually lead to a FE o o )

that can yield precise quantitative relationships. or the waiting time. They start by describing their system
FEs can be in one variable or two variables, dependinathematically to obtain the mathematical model which in

on whether the underlying model is one-dimensional ofl0St cases is consisting of a difference equation

two dimensional. Specifically, there is no universafharacterizing the dynamics of the underlying systems

solution technique for these FEs, but rather almost eadfgether with some boundary conditions. They used a

equation is solved in another way. probability generating function (PGF) to map such
Figure 1 summarizes the process between man9|ﬁerence_equat|onstp chaIIengmgfunctlona! equations

communication and networks systems on one hand and a !N particular, we find out that the following general

certain class of two-place functional equations on thglass of two-place functional equations

other hand: Computer scientists who are interested in

some communica?ion elements like switches, and they ha(Y)P(Y) = ha(%y)P(X,0) +hs(x Y)P(0.y)

want to study some performance measures like the delay +ha(x,y)P(0,0), (1)

Fig. 1: Communication Systems and functional equations—
Relation Summary
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wherehi(x,y),i = 1,2,3,4, are given polynomials in two
complex variables xy, arises from different
communication and networks systems. Special cases of
(1) arise from: a Z 2 switch see 12], a multiplexer see
[13], the gateway se€lf], a tandem queueing model with
coupled processors se&5, two coupled processors see
[1€], arise in the analysis of stochastic models s&g,[
from two parallel queues created by arrivals with two
demands 18], from a queueing model2[7], from two
processorsZg], from two processors with coupled inputs
[35], and from database&().

The current article is mainly concerned with locating
the possible singularities of the unknowns of a two-place
FE arising from two-queue model of a network queueing
system originally published in1f]. The sequel of the
paper is laid as follows: In the next section we recall the
functional equation from the original articl&4], and we
introduce the main idea used to find the intersection points
between two polynomials to be used in computing the
possible singularities. In sectio® we find the potential
singularities of the first unknowR(x,0), in section4 we
find the potential singularities of the second unknown
P(0,y), in section5 we discuss the singularities obtained
and we give an example in which the marginal distribution
cannot be calculated. In sectiérwe give pointers to one
possible application of computing the possible
singularities, in sectioff we compute some expectatlons
and in sectior8 we conclude our work.

(1—r157r2% — &112 —T1&2) Pm1 — 1&2Pm-1.0
—&182Pmo — 11S172Pm+1,1 — 1172Pm+1.2
—T1r25Pm2 — €112 Pm-1,1 =0,

(1—r151r0% — €112 —T182) Pmn — €1&2Pm-1.n—1
—T1151&2Pmn—1 — 15172 Pme-1,n — T1M2Pms-1n+1
—T1r2S%Pmn+1 — €112 Pm-1n =0,

mn=23,--- (8)
(L—ry51r2% — €112 —1182) P1n — €1€2Pon-1
—T1151&2P1n-1—T151r2P2n — F12P2n 1

—T1r2%P1ni1 — E1&2P0n =0,
n=23 )

(1—r157& —T181)Pon — r151&2Pon-1

~T1&2P0n+1 —T172P1n+1 — M1S172P1n =0,
n=23... (10)

where 0< ri,s,& =ris < 1,i = 1,2 are some operational
‘parametersw = 1 —w, for w e [0 1], see 4] for more

details. Applying the generating function approach see
e.g., R1] to (2—(10), the author in 14] ends up after some
nontrivial manipulation with the following challenging

2 The functional equation two-place functional equation

In [14],

the difference equation characterizing the
dynamics of the gateway in steady state together with the (MOGY) —xy) P(xy) = (1 —y)(M(x,0)
boundary conditions are given by +7182xy)P(x,0) + (1 —X)(M(0,y)
+1281xy)P(0,y) — (1-x)(1-y)

(1—55) P00 — &1M2P00 —T1T2P11 —T1é2Pp01 =0 (2

o o o where
(1—&1r25 — E112)pro — €1€2P0,0 — E1T2P20 -
~T1T2p21—T1r2%pL1 =0 &) Pxy)= % pmaX™y", X <Lly<1
0

mn=

is the probability generating function (PGF) of the
sequencgmn, which is defined in14],

X, 0) = z pm,OXm7
m=0

is the generating function of the sequemag,

(1—rys1r25 — &1r2 —11&2) pra — E1&2p00
—&1&P1o—15TM2P21 — 1T2P22

—T1r25P12 — E182p01 =0 4) X <1 (12)

—T1é1)Po1 — E1&2P0,0 — T1€2P02
—T1T2p12—r1S12p1,1 =0 (5)

(1-r1s1é

)= pony", <1
n=0

is the generating function of the sequernge,

P(0,0) = poo

is the probability that the gateway is empty, and

(1—&1r25 — &172) Pmo — €1122Pm-1,0

—&112Pm+1,0 — 1 12Pmi11 — 111252 Pm1 = 0,
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M(X,y) = (F7+ riSty + &1xy) (f2 + raSex + &axy). next two sections we will use the ide&a6] in computing
the potential singularities of the unknowns of the functibn
For simplicity reasonsl(l) can be rewritten as follows  equation £3). It should be noted that the most important
thing is to check wether the obtained potential singulesiti
h1(X,Y)P(x,y) = ha(x,y)P(x,0) + hs(x,y)P(0,y) represent removable singularities or not. For this reason a
+ ha(x,y)P(0,0), (13) somehow detailed analysis of the potential singulariges i

introduced in section 5.
where

Ma(6Y) = (FL+ 1151y + o) (T2 + Famx+ £209) = 3 Potential singularity of P(x,0)
ha(%,y) = (1= y)ri(rz+raSx+&2xy), . _ _ . . .
ha(X,y) = (1— X)T3(FT + 31y + E1xy), Since the main PGP(x,y) in (13) is an analytic function

in the unit disk, then this means that if
and

ha(x,y) = (x=1)(1—y)rr2. hi(x,y) =0,

Equation {3) is a functional equation in which one main
unknown function P(x,y) is defined by three other
unknowns namely! P(Xa O)7P(07y)7 P(Oa O)a and four ho (%, y)P(x,0 h X, y)P 07 h X,y)P 070 :07
known polynomial(x,y),i = 1,...,4. The author in 14] 2YIPGC0) (6 YIP(0,Y) a3 Y)P(0.0)
leaves the equation unsolved, and hence the current artiske

is seen as a step in the way to solve it. Equatid8) ( P(x,0) + ha(x,y) P(0,y) + ha(xy) P(0,0) = 0,
cannot be solved directly foP(x,y) because it contains ha(xy) ha(xy)

other unknown functions namel(x,0), P(0,y), and which is equivalent to
P(0,0). In the next subsection we describe the main idea

then also

used in computing the singularities of the unknowns. P(x,0) = — h3(x’y)P(0’%/)g(:‘;(X’y)P(O’ 0 . 17)
2(A,
o We observe from the above equation that the unknown
2.1 The main idea functionP(x,0) could have a potential singularity at some

point x if for somey, hi(x,y) = 0 andhy(x,y) = 0. This
The main idea of locating the possible singularities of théeads us to study the intersection points of the curves
unknowns of the functional equatiod3) will be merely h;(x,y) = 0 andhy(x,y) = 0. If such a poink exists, then
to find the intersection points between two functions. Sg is a root of the resultant Re#s, hy;y) in x of the
that it is reasonable to introduce first the idea of computingolynomialsh; (x,y) andhz(x,y). It should be noted that
the intersection points between two general polynomialsomputing the potential singularities of the function
Generally speaking, when we have two polynomials in tw@®(x,0) might be used to estimate the sequermgo
variables, say, defined byP(x,0) in (12) using the theorem below.

f(xy) =ao(y) +as(y)x+---+an (y)x™, (14)

3.1 Resultant in x
and

g(x,y) = bo(y) + by (y)x+ -+ by (y)x,  (15) The two functionsy (x,y) andhy(x,y) can be written as
the resultanRes(f,g;y) of the polynomialsf andg (see M (%Y) = (FL+ T8y + &ixy) (P + raSx+ Eoxy) —xy
e.g.R2 in Appendix B) with respect ta is the determinant = ag(y) + a1 (y)x+ ax(y)*2, (18)
of the matrix

A a1 - @ o - ... and

O Fna B 0| bremrows ho(x.y) = (1 y)Fa(F2 + r2x-+ Eaxy)

0 an, 8,1 a (16) = bo(y) —|—b1(y)X, (19)

b, bp,—1 -+ bg 0 e - A

0 by b1~ by 0O - where

O Ny —rows a(y) = EE12 + 1SELY,

0 bpbn_1---b ~ o o~ o o~
e a1(y) = Ear181y? + P&y + 128181y + Fobry — y + Far o,

which is a polynomial iry. The resultant with respect fos Ty FoF
0 atyj if the polynomialsf andg have a common nontrivial 2o(y) = Faridiy+ faf,
root (Xo, Yo) or the leading coefficients are zero. During the ba(y) = F1r2% + F1&ay — FiraSy — F1é2y7,
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and
bo(y) = F1I72 — F1I72y.

Using (16), (18), (19) we can write the resultant ir of
h1(x,y) andhy(x,y) as the determinant of the matrix,

a a1 q
M1 = bl bo 0 .
0 by bg
From (16) and @O0), the resultant oh;(x,y) andhy(x,y) in
x as a function iry is given by

(20)

Re&(hl, hz;y) = det(Ml)

= b?ag + b3a, — asbs by, (21)
after some algebraic manipulations we get
Resi(hy,hz;y) = Fifaray(y — 1)
(V2 + (1-25)y+s—1}. (22)

We conclude that the resultantirof the functionshy (x,y)
andhy(x,y) as a function ofy is zero at the zeros oRp)
which are

ly:1=0
2y,=1
3ys=1
4y, =1— %

3.2 Resultantiny

In order to find the resultant iy of the two functions

hi(x,y) and hy(x,y) we start by rewriting them as

functions iny with some coefficients inx. The two
functionshy (x,y) andhy(X,y) can be written as

hi(X,y) = (F1 +r181y + &1xy) (2 + ro5x + &o2xy) — Xy

= Co(X) + C1(X)y + C2(X)Y?, (23)
and
ha(x,y) = (1 —y)F1(F2 + ra%x+ &oxy)
= do(X) + di(X)y + da(X)y?, (24)
where

Ca(X) = &6 + &Er1&1X,
C1(X) = 1251 + 182X+ 128r 181X+ F281X — X+ Far18],
Co(X) = F1ra8x+F1f2,
dz(X) = —F1é2X,
da(X) = F1éoX — P12 — Fara$px,

and
do(X) = F1f2 + FiraSx.

The resultant ity of hy(x,y) andhy(x,y) is using 6), (23),
(24) the determinant of the matrix

C2C1C O
O0crcico
dodyidg O
0 dy di dg

Mz = (25)

From @5) after some algebraic manipulations we can write
that
Reg(hy, hy; x) = det(My),
= & X (T1r2Sx-+11f2)
{&arX + (Earo+ &2 — D)X+ T2é1}.  (26)

We conclude that the resultantyrof the functiongh; (x,y)
andhy(x,y) as a function ok is zero at the zeros oR6)
which are:

1x, =0,

2% =0, _

3X3= —é,
4x4=1,

5.X5 = 1—51—r2+51r2’

ra2é1

the obtained values are possible singularities of the
functionP(x,0).

4 Potential singularity of P(0,y)

Since in the main functional equation ih3) of this paper
we have two unknown functions namel(x,0) and
P(0,y) then it is reasonable also to investigate the
potential singularities of the other unknow(0,y). Since
the main PGRP(x,y) in (13) is an analytic function in the
unit disk, then this means that if

hi(x,y) =0,
then also
ha(x, y)P(x,0) + ha(x,y)P(0,y) + ha(x,y)P(0,0) = 0,
so that

h2 (Xa y)
hs(x,y)

which is equivalent to

ho(X, Y)P(x,0) + ha(x,y)P(0,0)
h3 (Xa y) .

We observe from the above equation that the unknown
functionP(0,y) could have a singularity at some poinif

for somex, hi(x,y) = 0 andhs(x,y) = 0. This leads us to
study the intersection points between the two functions

hy(x,y) andhs(x,y).

h4(Xa y)

PO.Y)+ hs(x,y)

P(x,0) +

P(0,0)=0,

P(Oa y) =

(@© 2017 NSP
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4.1 Resultantiny Using (L6), the resultant ohy(x,y) andhz(x,y) in x as a
function iny is the determinant of the matrix,

The two functionsy (x,y) andhz(x,y) can be written as

cCiCc O
hy(X,y) = (FL+ 181y + &1Xy) (F2 + r28pX + EoXy) — Xy My = O? Ce L co (28)
2 U1 Yo
=ap(X) +a1(x)y+a2(x)y2, 0 dy dy do

and where

. ~ c = +r25&1y,
ha(x,y) = (1 — X)Fa(F1+ F180y + E1xy), 2(y) = E1&ay° + 2%y
= bo(X) + by (X)y. Ca(y) = 11818y + F1&y + 1250181y + Faéry — y+ Firo,

Using (L6), the resultant ohy(x,y) andhz(x,y) in y as a Coly) = Para&ry +if2,

function inx is the determinant of the matrix, da(y) = —(F281y),
a ay a di(y) = 281y —F1f2 — 1125y
M3z = by by O (27) and
0 by bg do(y) =r1fo&y+ 1.
where From @28) we can write that
_ 2 &
aZ(X) = &16X° +r1851.862X, Re&(Cl,C3;y) _ det(M4)
a1(X) = 12581 + F1&X+ 125015 X+ F2€1X — X+ 2181, = &1y (Tarid1y + faf1)
ap(X) = F1roSx+f1f2, {&ar1y? + (ngl + &M —1y+ FlEZ}a
by (X) = r1F28) + Fa&1X — rifodx — Fof1x?, so we can conclude that the resultankiof the functions
q h1(x,y) andhz(x,y) as a function oy is zero at the zeros
an o of the above equation which are:
bo(x) = 1y — F1fox.
. 1ly1 =0,
From @7) we can write that 2y, =0,
: 3ys=—t
Reg(C1,Cs;x) =detMs) dya—1 131
Y4 =
= X(X— 1)F3riry {sp@ + (1—251)x+ 5. — 1}, Bys = L&t
Y5 rié2

so we conclude that the resultant ynof the functions the obtained values are possible singularities of the
hi(x,y) andhz(x,y) as a function ok is zero at functionP(0,y).

1x,=0

gz - i 5 Discussion of the singularities

-1-21
4x=1 s Here we discuss the (potential) singularities we have

obtained so far for the unknowns. In the table in fig@re
) below we show the set of ordered pairs that represents the
4.2 Resultantin x intersection points oh;(x,y) = 0 and ha(x,y) = 0. In
other words the set of ordered pairs at which the unknown
The two functionshy(x,y) andhs(x,y) can also be written function P(x,0) has potential singularities. Since it is
as follows well-known that the unknown functioR(x,0) e.g. is by
definition an analytic function in the unit disk, then such
hy(X,y) = (F1+ra&1y + &1xy) (F2 + ra8x+ &2xy) —xy unknown cannot have a singularity &;,y;) that lie
_ 2 inside the unit disk. If it happens that such unknown has
= Coly) + Caly)x+ c2y)x, singularities that lie inside the unit disk, then it must be a
and removable singularity, i.e. the numerator of the equation
(13) must be zero at sucfxj,yj). Then we have to test
ha(X,y) = (1 — X)Fo(F1+ 18y + E1Xy), whether the obtained potential singularities that liedesi
2 the unit disk represent removable singularities or not. For
= do(y) + da(y)x+ da(y)x". instance, it is easy to see that the pdr0) in the table

@© 2017 NSP
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(%, ¥i) y1=0|yo=1|ys=1-2 | yu=—;1 | y5= 71752:1?;”&
X1 =0 & [}
Xo=1 ® ®
X3 = 1- % * ® ®
X =~ & *
Xe — 1-&—rp+r2és
5~ r2é1

The signé corresponds to the ordered pairs that lie or may lie insideuttit disk while the sigm® corresponds to the pairs that lie or
may lie on the disk

Fig. 2: The set of ordered paifs;, Vi) at which the functioriP(x,0) has potential singularities

represents a removable singularity since it easy to chetlecause such pairs lie inside the unit disk even for some

that the numerator ofl(7) is zero or special values of the system parameters. The ordered pairs
for which the corresponding cells are highlighted by the
h3(x,y)P(0,y) + ha(x,y)P(0,0) = 0 (29) sign @ represent the pairs that lie or may lie on the disk

. ) ) o . itself. Other ordered pairs outside the disk for any values
at this pair. But in the mean time it is interesting to Not&yf the parameters. If the functio(x,0) has some
that the pair(0,0) is not a common zero of the functions singylarity either on the circle of convergence or outstde i
hi(x,y) and ha(x,y). On the other hand, the paid,1)  then we don't have problems. An example of the potential
represents a zero o29) and in the mean time it is a gjngularities that lie outside the unit disk for any system

common zero of the functionbi(x,y) and ha(x,y). It parameters satisfying3Q) is xs in the table. This is
should also be noted that the paik,1) for any X pecause

represents a zero of the functidn(x,y). Similarly the

pair (1,y) for any value ofy represents a zero for the X5 = 1-§—ra+r2és
function hz(x,y). Also, it is interesting to find out that raé1
either the pair(x,1) or (1,y) for any values ofx andy 1-r,— &
respectively represents zeros of the functig(x,y). =1+ hEa >1,
Now, since in the table some of the ordered pairs are 261
given as functions of the system parameters and according to the stability conditior8@) we have
r,s,&;i = 1,2, then it is reasonable to discuss suchl —r, > & thenxs is always outside the unit disk. In a

ordered pairs with respect to the parameters values. It issamplete symmetric way one can find easily tiat> 1.
well-known fact in queueing theory (see e.gg]) that for  |n the table it is interesting to find out that the rest of the
a queueing system with arrival raleand service rat@, ordered pairs even if they lie inside the unit disk and
the stability condition is that the arrival rate does notepresent singularities that are not removable they will no
exceed the service rate, that is to day. y. In the current  make any problems. This is because they are not common
case of this paper the system producing the functionakros of the function$y(x,y) and ha(x,y). This means
equation {3 is a network gateway modeled as twothat we will not care about them. For instance, the pair
back-to-back interfering queues seef|[ The arrival rate  (0,1) is not a common zero of the functiohg(x,y) and
of the first queue i§; and the service rate of such queue ish,(x,y).
1-r2, and similarly the arrival rate of queue 24§s and It should be noted that the paifl,1) represents a
the service rate is +ry. For the current functional removable singularity also it is easy to show that on the set
equation the system is stable only if the parameter§x,y): hy(x,y) = 0} the limit
ri,s,&;i = 1,2 satisfy the following requirement 1
. —X
§1<1l-r2,8<1—r. (30) (x,y;ml,l) 1-y

One can conclude that the parameters values should notédsts. This can be shown easily using the Taylor's
selected in a random fashion. In other words, in selectingxpansion oh;(x,y) around the poin{1,1). It should be
values of the parameters in the table we must select themoted that since we have a complete symmetric equation,
in accordance to30). then a similar analysis can be obtained for the other
Having a look at the table we can conclude that thenknown function P(0,y). The main reason behind
pairs that need to be checked are those whicbomputing the possible singularities is to estimate the
corresponding cells are highlighted by the s@nThis is sequences defined by such unknowns as introduced by
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theorem 1 below. We also hope that computing the5.1.2 Resultant iy of h; andhz
potential singularities of the unknowns will help us in the

future to solve such a challenging class of equations.

Example IThe following equation arose ir2§] from two
parallel queues with the customer joining the shorter

(X(2px+ 1) — 2(1+ p)xy+Y)P(X,y)
=y(y—x)P(0,y) + (x(2px+1)
— (14 p)xy— pxy?)P(x,0),

wherep < 1. In order to use the ided ) we first rewrite
the above equation in the form

hl(X7 y)P(Xa y) = h2(X7 y)P(X? 0) + h3(Xa y)P(an)v

where

(31)

hy(xy) = X(20X+1) — 2(1+ p)Xy+Y?,

ha(x,y) = X(2px+1) — (14 p)xy— pxy’,
and
ha(X,y) = y(y — ).

5.1 Singularity of P(0,y)

Following the same argument as in the previous two

sections to find that

5.1.1 Resultant ix of hy andhs
First we write the two functionk; andhz as

h1(x,y) = X(2px+ 1) = 2(1+ p)xy+Y?,
=Y+ (1— 2y — 2py)x+2px°

= ap+ apxX+ axx?, (32)
and
hs(x,y) = y(y —X),
=y*—yX
=bg + bix. (33)

The resultanRes(hy, hs,y) of the two functiondy; andhs
is the determinant of the matrix

az ai ag
A= [biby O],
0 by by

which can be rewritten as:
Res(hy,hz,y) = detA)
—aph3 — by (atho —aght) = y3(1—y). (35)

The zeros of the above equation gre 0 with multiplicity
3,andy=1.

(34)

Rewrite the two functionb; andhs as

hi(xy) = x(2px+1) = 2(1+ p)xy+Y’,
=20%% 4+ Xx—2X(1+ p)y+y?

= Co+ Cay+ Coy?, (36)
and
ha(X,y) = y(y —x),
= —xy+y?
= dyy + dpy?. (37)

The resultanReg(hy, hs, x) of the two functionsh; andhs
is the determinant of the matrix

C2CC O
0cocrc
dodydg O
0 dy d; dg

B= (38)
From (38) we get
Reg(hy, h3,x) = detB)

=cod?co — Zdhdp + coc103,  (39)

the zeros of the above equation are- 0 of multiplicity
two, and

‘e —4p—54/(4p+5)2+8p(2+2p)
= Py
Combining the results of the two previous subsections

to conclude that the unknown functioR(0,y) has a
potential singularity at

1y = 0 of multiplicity three
2y=1
3y— —4p—5+4/(4p+5)2+8p(2+2p) '

ap

6 Application of the singularity

Generally speaking, asymptotic analysis endeavors are to
find a solution that closely approximates the exact solution
[24]. One possible application of computing the possible
singularities of the unknowns of functional equations is to
obtain the asymptotic behavior of the sequences defined
by such unknowns. The relation between the singularities
and the asymptotic expansion comes from the fact that an
asymptotic expansion of a function near some singularity
is mapped to matching asymptotic expansion of its
coefficients p4]. There are many techniques for deriving
tail asymptotics for random walks in the first quarter plane
see P2,24], each technique depends on some properties of
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the function defining sequences. The functional equation
of our interest is in fact an equation in which theTherefore by applying de I'Hdpital’'s rule we get
unknowns are generating functions, nameR(x,y), 26(1— &)+ &

P(x,0), P(0,y) with interesting coefficient®mn, Pmo, Pon E[Ny] = ST Te2 (42)
respectively, that have no simple closed form. In this 2(f2—é&1)

section we give pointers to a technique for obtaining thesimilarly, the generating function of the number of packets
asymptotic of the marginal distributiopno for largem,
given P(x,0) = S0 Pmox". If the functionP(x,0) has
singularities, then Darboux’s theorem can use these
singularities to estimate the sequemgg. The statement

of the theorem is due t@p] chapter 1 as follows:

Theorem 1(Darboux’s method). Suppose

P(X) = ¥ m-oPmoX™ with positive real coefficientspfy is
analytic near0 and has only algebraic singularitieg on 12¢
its circle of convergencéx| = R, in other words, in a
neighborhood of xwe have

18

16r

14t

101

sl

E[Nl](packets)

P(X) ~ (1 =) "*Gi(x), |
Xk ol
where w € {1,2,3,---} and G(x) denotes a nonzero ol
analytic function near x Let w= maxd(wy) denote the e ‘ ‘ ‘
maximum of the real parts of thgwrhen we have R s
_ Gj (XJ) -1,-m W-1gp-m . .
Pmo = z Tw W) m"=ox "+ o(m ) Fig. 3: The expected number of packets in queue | vs. the
]

arrival rateé; for fixedr, = 0.3, s, = 0.7, and&, = 0.21

with the sum taken over all j withi (wj) =w andl” (w) the
Gamma function of w (with (n) = (n— 1)! for n a positive

integer). in the second queue is

P(Ly) = iPF(Nz )y’

(A y)f(fa+ra%+ &y f(1,0)
In this section we find the expected number of customers  (Fotridy+ &y)(Fa+ 2%+ &y) — Y
(packets) in both queues of the gateway using the . ,
corresponding generating functions. It is easy to see usif§'€reéNz is the number of packets in the second queue.
(13) that the generating function of the number of packetEollowing the same way to end up with the expected

7 Expectations

in the first queue is given by number of packets in the other queue namely,
® _25(1-8&)+&
P(x,1) = WZOP(Nl = m)x" BN ==
(1= X)T3(TrT+ 1157+ E1X)P(0, 1) In figure 3 we used 42) to plot the expected number of

=— —— , (40) packets in queue [B]N;]) versus the queue | arrival rate
(L4 181+ Eax) (T2 + 125X+ £2X) — X for fixed values of queue Il parameters namely, for

where N; is the number of packets in the first queuer, =0.3,s, = 0.7 andé, = 0.21. It is clear from the figure
Using the normalization conditioR(1,1) = 1 in (40) to  that the higher the arrival rate the higher the expected

find P(0, 1) by applying de I'Hopital’s rule to get number of packets in queue | which clearly makes perfect
_ sense. We also notice from the figuBehat the expected

P(0, 1):r2;£1. (41) number of packets increases almost linearly with the

2 arrival rate. This is the typical behavior of queues in

Using @1) in (40) we will compute the expected numbergeneral (see Woodward®§| chapter 4.). On the other
of packets in queue 1. Itis well known see eXfthatthe hand, in Figure4 below, we plot the expected number of

expected number of packets in queue 1 is given by packets in queue [H[Ny]) versus the queue | arrival rate
whenever there are no packets in LAN II. In other words
E[N = iP(x 1) o1 when queue | service rate is 1. From figdrés a perfect
ax 7 B linear relation meaning that the higher the arrival rate the
0 higher the expected number of packets. This clearly makes
o perfect sense.
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