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Abstract: In this paper, Differential Evolution with Powell conjugate direction method (DE-Powell) is proposed in order solve a system
of nonlinear equations. A given system of nonlinear equations is formulated as an unconstrained optimization problem.Integrating
Powell conjugate direction method into DE improves the performance of DE and enables DE to optimize effectively the system of
nonlinear equations. For example, applying DE to solve our formulation of the system of nonlinear equations, in some iterations DE
may get trapped in local minima, then Powell conjugate direction method is applied to help DE to overcome local minima by changing
the initial solution for Powell with best obtained one by DE.Our proposed algorithm, DE-Powell, has superiority over Powell Conjugate
Direction (CD) and Differential Evolution (DE), separately, it it overcomes the inaccuracy of Powell conjugate direction method and
DE for solving systems of nonlinear equations. The DE-Powell is tested on nine well known problems and our numerical results show
that the proposed algorithm is solving the highly nonlinearproblems effectively and outperforms over many algorithmsin literature.

Keywords: Optimization methods, Metaheuristics, Nonlinear system of equations, Powell conjugate direction method, Differential
evolution.

1 Introduction

Consider the system of nonlinear equations, that there are
n variables andm nonlinear equations system

f1(x1,x2,x3, . . . ,xn) = 0

f2(x1,x2,x3, . . . ,xn) = 0

...

fn(x1,x2,x3, . . . ,xn) = 0

(1)

where each function fi maps a vector
X = (x1,x2, · · · ,xn) of the n -dimensional spaceRn into
the real lineR .

Many applications in sciences, engineering,
economics, information security, dynamics and so on can
be formulated as a system of nonlinear equations [9], [4].
Solving systems of nonlinear equations is considered one
of the difficult problems in numerical computation. For

most numerical methods such as the Newton’ s method
for solving systems of nonlinear equations, their
convergence and performance may be sensitive to the
initial solutions applied to the methods. Nonetheless, it is
hard to select a good initial point for most systems of
nonlinear equations. Many researchers have been
interested in solving nonlinear equations and developed
several kinds of methods that help to find the optimal
solutions for these problems.

Some algorithms suggest a novel technique for solving
nonlinear systems of equations by converting the problem
into a global optimization problem.

Classical optimization techniques can be classified to
two types: gradient search method and direct search
method. In the gradient search method, the first order
and/or second order derivatives are used for the search
process, whereas the direct search method, only the
objective function and constraints are used for the search
process. Direct search methods require many function
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iterations which cause slowness of these methods,
whereas gradient search methods are faster, but they are
inadequate for discontinuous and non-differentiable
functions. Furthermore, both methods search local
optima, thus starting the search in the closeness of a local
optima causes them to miss the global optima [32].

Metaheuristic algorithms overcome some of the
afore-mentioned difficulties and are quickly replacing the
classical methods in solving practical optimisation
problems. Metaheuristic algorithms typically intend to
find a good solution to an optimisation problem by
trial-and-error in a reasonable amount of computational
time. During the last few decades, several metaheuristic
algorithms have been proposed. These algorithms include
Particle Swarm Optimization Algorithm, Genetic
Programming, Evolutionary Programming, Evolutionary
Strategies, Genetic Algorithms, Differential Evolution,
Harmony Search algorithm, Ant Colony Optimisation,
Particle Swarm Optimisation, and Bee Algorithms [27,
33].

Hybridization of algorithms is the one of success
techniques that utilities to solve the nonlinear equations
systems [11,17,34].

In this work, the equations system (1) is transformed
into an optimization problem as follows.

minΨ(X) =

√

m

∑
i=1

f 2
i (X). (2)

Differential evolution with Powell conjugate direction
method (DE-Powell) is proposed to solve nonlinear
system as an optimization problem. DE-Powell is
developed in which the advantages of Powell Conjugate
Direction method and Differential Evolution (DE) are
combined. The numerical computations show that
DE-Powell could overcome the problem of Powell and
DE of getting easily trapping into local minima. The
method resulted gives accurate solution when it applies to
solve systems of nonlinear equations. The DE-Powell is
tested on nine well known problems and our numerical
results show that the proposed algorithm is solving the
highly nonlinear problems effectively and outperforms
over many algorithms in literature such as Chaotic
Quantum Particle Swarm Optimization (LQPSO) [28],
Intelligent Tuned Harmony Search algorithm (ITHS)
[32], Imperialist Competitive Algorithm (ICA) [1],
Quantum behaved Particle Swarm Optimization (QPSO)
[25], [26], multiobjective approach for nonlinear systems
[4], fuzzy adaptive simulated annealing [18],
Weighted-Newton method [23], Combined method based
on Grobner bases [8], and filled function method [31],
Gravitational Search Algorithm (GRAV) [22].

.
The paper is organized as follows: Section2 outlines

the differential evaluation algorithm and describes the
conjugate direction method. Section3 presents the
proposed algorithm, DE-Powell. Sections4 and 5 show
the performance of DE-Powell on test problems nine case

studies of systems of nonlinear equations and compare
with other existing algorithms in the literature. Finally
Section6 gives the conclusions and future work.

2 Related works

In this section, some of the optimization algorithms such
as differential evolution algorithm (DE) and Powell
conjugate direction method are discussed which are use
din the literature

2.1 The differential evolution algorithm

Storn and Price [24] proposed the differential evolution
(DE) algorithm in order to solve complex continuous
nonlinear functions. DE is known that it is a simple
powerful evolutionary algorithm for various global
optimization problems.

The classical DE algorithm starts with initializing a
population of NP, target individuals
Pt = {Xt

1,X
t
2, . . . ,X

t
NP}, where t denotes the current

iteration, individual Xt
i = (xt

i,1,x
t
i,2, . . . ,x

t
i,n),

i = 1,2, . . . ,NP, is an n-dimensional vector with
parameter values determined randomly and uniformly
between predefined search ranges[Xmin,Xmax], where
Xmin = (xmin,1,xmin,2, . . . ,xmin,n) and
Xmax = (xmax,1,xmax,2, . . . ,xmax,n). Then mutation and
crossover operators are utilized to generate new candidate
vectors, and a selection scheme is applied to determine
whether the offspring or the parent survives to the next
generation [2]. The above process is repeated until a
termination criterion is reached.

2.1.1 Mutation

A mutant individual, denoted byVt
i = (vt

i,1,v
t
i,2, . . . ,v

t
i,n),

i = 1,2, . . . ,NP, is generated by using a mutation operator.
There are many mutation strategies in the literature [19].
Among them, the commonly used operator is ‘DE/rand/1’,
which is described as

Vt
i = Xt

a+DW(Xt
b−Xt

c) (3)

wherea,b andc are three randomly chosen indices in
the range[1,NP] such thata,b,c and i are pairwise
different (a 6= b 6= c 6= i ∈ 1, . . . ,NP). DW ∈ [0,1] is a
mutation scaling factor which affects the differential
variation between two individuals.

2.1.2 Crossover

After the mutation phase, a crossover operator is applied
to each mutant individual and its corresponding target
individual to yield a trial vector,U t

i = (ut
i,1,u

t
i,2, . . . ,u

t
i,n).
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Binomial and exponential crossovers are two commonly
used as crossover schemes [21]. The binomial crossover
is represented as follows:

ut
i, j =

{

vt
i, j , if r j ≤CRor j = R;

xt
i, j , otherwise. (4)

where the indexR refers to a randomly chosen dimension
in the set 1,2, . . . ,n, which is used to ensure that at least
one dimension of the trial individual,U t

i, j , differs from its
target vector,Xt

i . CR is a crossover rate in the range[0,1],
and r j ∈ [0,1] is a uniform random number. If the
parameter values of the obtained trial individuals exceed
the pre-specified upper bound or lower bound, we can set
them equal to upper bound or lower bound, respectively.

2.1.3 Selection

In order to decide whether or not the trial individualU t
i

should become a member of the target population in the
next generation, a one-to-one greedy selection between a
parent and its corresponding offspring is employed in DE.
This strategy enhances diversity in comparison to other
selection strategies such as tournament selection, rank
based selection and fitness proportional selection. The
one-to-one selection scheme is based on the survival of
the fitter between the trial individualU t

i and its target
counterpartXt

i . For minimization problem, it can be
defined as follows [21]:

Xt+1
i =

{

U t
i , if F(U t

i )≤ F(Xt
i );

Xt
i , otherwise. (5)

whereF(U t
i ) andF(Xt

i ) are the objectives ofU t
i andXt

i ,
respectively.Xt

best is the best ofXt+1
i , i = 1, . . . ,NP, which

has a minimumF(Xt+1
i ).

2.2 Conjugate direction method

In 1964, Powell [20] proposed a conjugate direction (CD)
method where the function does not need to be
differentiable, and no derivatives are taken. Various
conjugate gradient methods use different techniques for
constructing conjugate directions. The so-called
zero-order methods work withΨ(X) only, whereas the
first-order methods utilize bothΨ(X) and∇Ψ . Powell’s
method is a zero-order method because it requiring the
evaluation ofΨ (X) only [10]. If the problem involvesn
design variables, the basic algorithm is

Algorithm 1: Conjugate direction algorithm.

Step 1 Choose a pointx0 in the design space.
Step 2 Choose the starting vectorsvi , i = 1,2, . . . ,n.
Step 3 Evaluate minΨ(x) along the line throughxi−1 in

the direction ofvi for each elementi. Let the minimum
point bexi .

Step 4 Calculatevn+1 = x0 − xn (this vector is conjugate
to vn+1 produced in the previous step) MinimizeΨ(x)
along the line throughx0 in the direction ofvn+1. Let
the minimum point bexn+1.

Step 5 Comparexn+1− x0, if |xn+1− x0|< ε then exit.
Step 6 Update the position of vectorsvi+1 = vi (v1 is

neglected and the other vectors are reused).
Step 7 Repeat Step3 to Step6 until termination criteria are

met.

3 The proposed algorithm

CD gets a better solution for the optimization problem in
(2) than the initial solution [10,16]. When CD has a good
initial solution, it gives a good optimal solution and
converges fast. It is known that it is hard to select a good
initial solution. In general, initial solution is randomly
given, so CD may take a long time. Indeed, If the intial
solution is not goof, CD may fail to give a good
optimization solution. DE is a stochastic algorithm, and is
similar to hill climbing algorithm. The initial solutions
are more than one solution, so the optimization value of
the objective function will decline fast at first when DE is
applied to optimization problem. But with the
development of the calculation, the mutant individualVi,G
is stable at the same solutionsXi, and sometimes it gets
trapped into local minima. To overcome this problem,
conjugate direction differential evaluation (DE-Powell)is
proposed. When DE gets trapped into local minima, by
the property of conjugate direction “Powell” method,
conjugate direction method is applied on the initial
solutionXbest, then a new solutionX∗

best is obtained which
s better thanXbest (it helps DE to jump over local
minima). ReplacedXbest by X∗

best, DE is applied again and
into a new loop, and so on, until termination criterion is
reached.

During our experiments with DE-Powell, in some
cases that there are no improvement happens after
applying the best solutionX∗

best “local minimum”
obtained from Powell method in Section2.2, because of
the trapping local minima for the inability of the way to
avoid it. To solve this problem, the parameterF in DE
algorithm is changed from 0.6 (the better choice value
[15]) to become a random numberF = rand at each
iteration after applying Powell method. The improved
results are shown in Table1 and represented in Figures
1–2. In Algorithm ??, the detailed algorithm explains the
various steps involved in the DE-Powell algorithm and is
written for easier implementation and understanding of
the proposed algorithm.
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Algorithm 2: Pseudo code for DE-Powell algorithm.

1 Step 1: Initialise DE-Powell Parameters
2 Ψ (X): Objective function (2)
3 n: Number of variables
4 lb: Lower bound
5 ub: Upper bound
6 F : Differential weight = 0.6
7 CR: Crossover probability = 0.3
8 NP: Population size = 20
9 Maxiter: Maximum number of iterations = 8000.

10 Step 2: Initialise a population P
11 Initialize all individualsXi ∈ P, i = 1, . . . ,NPwith

random positions in the search-space[lb,ub].
12 Step 3: Improvise DE-Powell
13 while (not Maxiter or find the optimal solution)do
14 Update differential weightF = rand after applying

Powell method, Step 4 in Section2.2.
15 for i = 1 to number of population size NPdo
16 Randomly select three agents from the

populationP.
17 if F < 0.95 then
18 DE/best/1:Vi = Xbest+F(Xr2−Xr3)
19 else
20 DE/rand/1:Vi = Xr1+F(Xr2−Xr3)

21 Select a random indexR∈ {1,2, . . . ,n}.
22 Pick a uniformly distributed numberr ∈ [0,1].
23 for j = 1 to number of decision variables ndo
24 if r <CR or j= R then
25 setu j

i =V j
i . Otherwise setu j

i = X j
i .

26 Swap a randomly two variables in{1,2, . . . ,n} of
currentui if rand< 0.5.

27 Evaluate the objective functionΨ for a trial vector
U = {ui , . . . ,uNP}.

28 Replace the individual in the populationP with the
improved candidate solution ifΨ(ui)<Ψ (Xi).

29 Compute the minimum fitness ofΨ(Xi) as the best
solutionXbest.

30 Step 4: Conjugate Direction Method (Powell)
31 if Ψ(Xbest) does not change much over several

iterations (generally it is 15 iterations)then
32 SetXbest as an initial solution for Powell method.
33 Apply Powell method in Section2.2.
34 Update the positionXbestby X∗

best which obtained
from the Powell ifΨ(X∗

best)<Ψ (Xbest).

35 Solution= Xbest for Ψ(Xbest).

4 Test problems and performance

Our aim is to improve the quality of the solution by
combine DE algorithm and Powell method introduced in
Section3. The success rate is compare on well known test
functions of each algorithm Powell, DE and DE-Powell
and the best results are recorded to show best
performance for our algorithm. These functions are listed
in the following subsections. The algorithms are run for
50 times and maximum iteration is set to 3000 with

0 0.5 1 1.5 2 2.5 3

x 10
4

0

10

20

30

40

50

60

Number of function evaluations

O
b
je

c
ti
v
e
 f

u
n
c
ti
o
n
 

DEPowell, F=0.6

DEPowell, F=rand

Fig. 1: This is an example for trapped into local minima. DE-
Powell (F = rand) is able to overcome DE-Powell (F = 0.6)
and jump over local minima in this test problem Eq. (10), the
objective function stays on 10.1616 (local minimum) for many
iteration without improving during using DE-Powell (F = 0.6),
in contrast DE-Powell (F = rand) was able to achieve the
objective function 9.39406E-06 after 30680 function evaluations.
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Fig. 2: This is another example for trapped into local minima.
DE-Powell (F = rand) is able to overcome DE-Powell (F = 0.6)
and jump over local minima in this test problem Eq. (12), the
objective function stays on 0.4004 (local minimum) for many
iteration without improving during using DE-Powell (F = 0.6),
in contrast DE-Powell (F = rand) is able to achieve the objective
function 7.482E-09 after 23260 function evaluations.

population size 20. Successful run criterion is considered
when the fitness function tends to 10−6. To evaluate
performance of each algorithm, the success rate is defined
as the number of solutions which are found to be
successful out of the number of all trials (50 for this
study).

In order to evaluate performance, a minimum, mean,
maximum and stranded division for successful runs are
calculated and recorded.

The performance of the algorithms Powell, DE,
DE-Powell (F = 0.6) and DE-Powell (F = rand) are
presented in Table1.
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Test 1. The nonlinear system of dimension 10 [16] is
defined by







f1(x) = (3−5x1)+ x1+1−2x2,
fi(x) = (3−5xi)xi − xi−1−2xi+1, i=2,. . . ,9;
f10(x) = (3−5x10)x10+1− x9.

(6)

wherex∈ [−5,5]. In this test the solution is unknown.

Test 2. Consider the following nonlinear system [13]







x1+ x2−2x3 = 0,
x1x2 = 0,
x2

1+ x2
2 = 2.

(7)

where 0 ≤ x1,x2,x3 ≤ 10. The best result is
x∗ = (1,1,1)T .

Test 3. Three dimension system of nonlinear equations
[13] is given as







821y−263yz+661= 0,
613xz−977xy−268= 0,
977xz+373x−647yz−811= 0.

(8)

where 0≤ x,y,z≤ 10. The best result isx∗ = (2,3,5)T .

Test 4. The nonlinear system of dimension three is given
as







3x2+2yz−
√

2x−6= 0,
xz− y−

√
2+1= 0,

xy− z−
√

2+1= 0.
(9)

where 0≤ x,y,z≤ 2. The best result isx∗ = (
√

2,1,1)T .

Test 5 Consider the following nonlinear system [13]







−94x15−64+90x2−38xy3 = 0,
64−22y2z20−37xy= 0,
−20x−7y+4y20+1+ z= 0.

(10)

where−5≤ x,y,z≤−5. The best result is unknown.

Test 6. The following nonlinear system is defined by

{

f1(x) = x2
1− x2+1,

f2(x) = x1− cos(0.5πx2).
(11)

wherex∈ [−2,2]. The best result isx∗ = (−1/
√

2,1.5)T ,
x∗ = (0,1)T , x∗ = (−1,2)T .

Test 7. Consider the following nonlinear system







(x1−5x2)
2+40(sin2(10x3)) = 0,

(x2−2x3)
2+40(sin2(10x1)) = 0,

(3x1+ x3)
2+40(sin2(10x2)) = 0.

(12)

where 1≤ x1,x2,x3 ≤ 1. The best result isx∗ = (0,0,0)T .
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Fig. 3: The convergence to the optimum solution for our
algorithm and LQPSO [28] within number iterations

5 Illustrative examples and simulation results

In this section, the performance of DE-Powell is
investigated on nine case studies of systems of non linear
equations. 100 consecutive algorithm runs are performed
for each case and best results are compared with the
obtained by Chaotic Quantum Particle Swarm
Optimization (LQPSO) [28], Intelligent Tuned Harmony
Search algorithm (ITHS) [32], imperialist competitive
algorithm (ICA) [1], Quantum behaved Particle Swarm
Optimization (QPSO) [25], [26], multiobjective approach
for nonlinear systems [4], fuzzy adaptive simulated
annealing [18], weighted-Newton method [23], combined
method based on Grobner bases [8], and filled function
method[31], Gravitational Search algorithm (GRAV)
[22]. In order to be consistent and fair in our
computations and comparisons, the parameters in these
algorithms are adopted the same in this paper. For
example, the values of the parameters used in ITHS,
harmony memory size = 20 and harmony memory
consideration rate = 0.95 [28], are considered in our
experiments. The statistical results in terms of minimum
value, standard deviation value, mean deviation value and
maximum value for each algorithm for each problem are
reported in Table2. Numerical results show the accuracy
and robustness of the proposed algorithm. Also, the
proposed algorithm is efficient and outperforms other
algorithms in most of cases with regard to the minimum
objective function values.

In addition, our algorithm converges to the optimum
solution within minimum numbers of iterations for all the
nine case studies of systems of non linear equations
compared to LQPSO which was better than the other
algorithms during the experiments as shown in Figure3.
The systems of non linear equations problems are
described in the following subsections.
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Table 1: Statistical results obtained after 50 runs

algorithms min mean max Std Suc

Test 1

Powell 3553 5422.194 7601 812.7172 31
DE - - - - 0
DE-Powell (F = 0.6) 10380 16479.07 24875 3256.237 28
DE-Powell (F = rand) 16046 17934.57 19942 1054.27537

Test 2

Powell 254 793.6 1204 184.4521 50
DE 1060 1828.4 2640 305.222350
DE-Powell (F = 0.6) 624 1194.5 1613 225.9470 50
DE-Powell (F = rand) 571 1011 1431 178.9323 50

Test 3

Powell 544 1064.43 2701 456.8366 42
DE 12760 17122.4 23620 1994.558 50
DE-Powell (F = 0.6) 1027 2880.08 16920 2987.294 50
DE-Powell (F = rand) 1131 1963.64 5873 962.4363 50

Test 4

Powell 406 772.229 1080 148.7187 48
DE 3120 5649.6 9320 1328.63150
DE-Powell (F = 0.6) 922 1544.98 5001 567.798550
DE-Powell (F = rand) 764 1149.68 1630 196.6570 50

Test 5

Powell 808 3915.583 14345 5096.96 12
DE 5980 7641.429 11240 1285.347 28
DE-Powell (F = 0.6) 1246 7295.162 22515 6325.193 37
DE-Powell (F = rand) 1344 7158.927 22594 6309.73141

Test 6

Powell 197 288.5 448 52.87808 50
DE 420 1846 4040 579.2219 50
DE-Powell (F = 0.6) 513 748.16 994 122.1423 50
DE-Powell (F = rand) 473 624.28 840 83.53981 50

Test 7

Powell - - - - 0
DE 1160 1650.714 2100 245.5821 28
DE-Powell (F = 0.6) 1288 4180.022 9804 2203.875 45
DE-Powell (F = rand) 828 4020.128 20585 4763.09447

Table 2: Statistical results obtained after 100 runs

min std mean max min std mean max

DE-Powell LQPSO

case1 0 0 0 0 0 0 0 0
case2 0 8.0229347E-15 3.1237356E-15 5.7392517E-14 3.2107537E-08 7.5730680E-02 2.5461613E-02 7.5262288E-01
case3 0 0 0 0 0 4.2459467E-33 1.4061158E-33 2.4651903E-32
case4 0 2.3966456E-13 3.8014094E-14 1.8645581E-120 2.9964896E-73 2.3914591E-74 3.7785053E-72
case5 5.2146631E-17 5.6952638E-17 7.2556415E-17 4.0913034E-16 0 0 0 0
case6 1.1157657E-16 1.2095720E-08 2.7101581E-09 9.0895608E-08 6.4752361E-16 5.9929806E-02 2.4977839E-02 0.25783943858
case7 6.3689982E-08 4.0739966E-05 4.8095697E-06 4.0811123E-04 6.2083149E-06 2.0622932E-04 6.4420291E-04 1.1372704E-03
case8 5.5648201E-17 2.4796804E-14 4.3438963E-15 2.3681532E-13 2.6020852E-18 3.1857439E-15 8.4696820E-16 1.9212860E-14
case9 0 4.7468116E-13 2.5396348E-13 1.5007093E-12 1.6298215E-10 102.025240148 168.705483779 551.460632344

GRAV ITHS

case1 6.7103563E-04 5.1351410E-03 6.2169245E-03 1.7282111E-02 1.4157747E-08 1.6631394E-02 1.2369408E-02 1.1531520E-01
case2 2.8569775E-03 8.6720012E-04 4.6682424E-03 6.2627827E-03 8.8894196E-04 6.3627454E-02 8.8435649E-02 3.0142225E-01
case3 1.1483009E-10 7.1629484E-08 6.7357006E-08 3.0755886E-07 0 2.1482566E-03 4.6780060E-04 1.8213222E-02
case4 4.1591101E-08 2.9752350E-04 2.5507443E-04 8.3065113E-04 7.3957098E-05 7.2097385E-03 6.8963583E-03 5.4154614E-02
case5 2.3215168E-05 9.2757904E-05 1.6472379E-04 3.8186114E-04 8.6436797E-03 1.2961480E-02 2.8485105E-02 8.8232708E-02
case6 2.0045736E-04 1.4585813E-02 1.3579944E-02 8.5368317E-02 1.0355349E-01 1.8684471E-01 0.39870851563 1.2277557987
case7 5.3454898E-04 1.5998926E-03 2.6490305E-03 5.6091875E-03 3.7720668E-04 2.3264434E-02 2.0104330E-02 0.1620341415
case8 2.8720052E-04 8.8975401E-02 0.13831108452 0.29177988077 2.3452928E-02 7.1914483E-02 0.15654934659 0.4159781524
case9 7.47089935933 17.8057247481 37.1556293303 130.470752028 4.15504414694 338.294665653 312.651184712 5555.0798892
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5.1 Case study 1

This example is Brown’s almost linear system [3], is given
by



















2x1+ x2+ x3+ x4+ x5 = 6,
x1+2x2+ x3+ x4+ x5 = 6,
x1+ x2+2x3+ x4+ x5 = 6,
x1+ x2+ x3+2x4+ x5 = 6,
x1x2x3x4x5 = 1,

(13)

where−2 ≤ xi ≤ 2, i = 1, . . . ,5. There are two optimal
solutions for this system asx∗ = (1,1,1,1,1)T and
x∗ = (0.916,0.916,0.916,0.916,1.418)T. Table 3 gives
the optimum results by DE-Powell and compares the
results with other metaheuristic algorithms. DE-Powell
algorithms obtains the two optimum solutions #1 and #2,
as shown in Table3 and LQPSO obtained the same
optimum solutions [28]. FPWOA and LQPSO get the
optimum solution over 100 runs with standard division
zero since DE-Powell and LQPSO outperform the other
methods.

5.2 Case study 2

This system of dimension 6 is given in [12,16]






























x1+
1
4x4

2x4x6+0.75= 0,
x2+0.405exp(1+ x1x2)−1.405= 0,
x3− 1

2x4x6+1.5= 0,
x4−0.605exp(1− x2

3)−0.395= 0,
x5− 1

2x2x6+1.5= 0,
x6− x1x5 = 0.

(14)

where−2≤ xi ≤ 2, i = 1, . . . ,6. The optimal solution
of this system isx∗ = (−1,1,−1,1,−1,1)T. Table 4
compares the optimum results that obtained by
DE-Powell and others concerned methods. As shown in
Table 4, DE-Powell surpass other algorithms, namely,
LQPSO, QPSO, GRAV and ITHS. DE-Powell gets the
optimum solution within 100 runs on all aspects of
performance, while the other methods are not able to get
the optimal solution over all 100 runs.

5.3 Case study 3

The system of four nonlinear equations is given in [7,23].

xi − cos

(

2xi −
4

∑
j=1

x j

)

= 0, 1≤ i ≤ 4. (15)

This system has been solved by our proposed algorithm
DE-Powell and other algorithms, the best known solution
of this case study is shown in Table5. Table5 compares
the best results recorded in [23,28], all algorithms except
GRAV obtained the optimal solution for this case.

5.4 Case study 4

Neurophysiology application example is proposed in [1,
4,?,30] and utilized to test the effectiveness and
robustness of our algorithm. Problem consists of six
nonlinear equations described as































x2
1+ x2

3 = 1,
x2

2+ x2
4 = 1,

x5x3
3+ x6x3

4 = c1,
x5x3

1+ x6x3
2 = c2,

x5x1x2
3+ x6x2x2

4 = c3,
x5x3x2

1+ x6x4x2
2 = c4,

(16)

where−10 ≤ xi ≤ 10, i = 1, . . . ,6. The constantsci is
randomly chosen. In our experiments,ci = 0, i = 1, . . . ,4
are considered. The best known solution with different
solutions has been shown in Table6. Table6 compares
the best known solution with different solutions in [1,28]
and other algorithms with our proposed algorithm.
DE-Powell, LQPSO, QPSO and imperialist competitive
algorithm (ICA) [1] algorithms obtained four different
optimum solutions.

5.5 Case study 5

10-dimensional interval arithmetic benchmark [4,5,18,
28], The problem is described as






















































x1−0.25428722−0.18324757x4x3x9 = 0,
x2−0.37842197−0.16275449x1x10x6 = 0,
x3−0.27162577−0.16955071x1x2x10 = 0,
x4−0.19807914−0.15585316x7x1x6 = 0,
x5−0.44166728−0.19950920x7x6x3 = 0,
x6−0.14654113−0.18922793x8x5x10 = 0,
x7−0.42937161−0.21180486x2x5x8 = 0,
x8−0.07056438−0.17081208x1x7x6 = 0,
x9−0.34504906−0.19612740x10x6x8 = 0,
x10−0.42651102−0.21466544x4x8x1 = 0.

(17)

where−2 ≤ xi ≤ 2. Table7 gives the optimum results
found in [4,28,18]. DE-Powell and Oliveira [18]
algorithms get the same global best solution whereas
LQPSO and QPSO has served optimum solution as
mentioned in [28], which is the same solution from our
proposed algorithm and Oliveira and Petraglia [18].

5.6 Case study 6

The inverse position problem for a six-revolute joint
problem application [4,28] is taken as the benchmark
problem. The problem can be described as










x2
i + x2

i+1−1= 0,
a1i x1x3+a2i x1x4+a3i x2x3+a4i x2x4+a5i x2x7+
a6i x5x8+a7i x6x7+a8i x6x8+a9i x1+a10i x2+a11i x3+
a12i x4+a13i x5+a14i x6+a15i x7+a16i x8+a17i = 0.

(18)
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Table 3: Optimum results forcase study 1

DE-Powell LQPSO GRAV ITHS Jäger and

Sol #1 Sol #2 Sol #1 Sol #2 Ratz [8]

x1 1 0.91635458253 1 0.91635458253 0.91656602848 0.99999998393 0.91635458253
x2 1 0.91635458253 1 0.91635458253 0.91626240767 0.99999998426 0.91635458253
x3 1 0.91635458253 1 0.91635458253 0.91698124986 0.99999998465 0.91635458253
x4 1 0.91635458253 1 0.91635458253 0.91614164659 0.99999998406 0.91635458253
x5 1 1.41822708733 1 1.41822708733 1.41747835261 1.00000007618 1.41822708733

f1 0 0 0 0 -4.2863100E-06 -2.9903315E-09 3.3750780E-14
f2 0 0 0 0 -3.0790712E-04 -2.6576110E-09 2.3980817E-14
f3 0 0 0 0 4.1093507E-04 -2.2731319E-09 2.3980817E-14
f4 0 0 0 0 -4.2866821E-04 -2.8568605E-09 2.3980817E-14
f5 0 0 0 0 5.3287740E-05 1.3080827E-08 2.1982416E-14

Ψbest 0 0 0 0 6.7103563E-04 1.4157747E-08 5.7858280E-14

Table 4: Optimum results forcase study 2

DE-Powell LQPSO QPSO GRAV ITHS

x1 -1 -1.00000071857 -1.06006024401 -1.00000071857 -1.00469360194
x2 1 1.00000045092 1.03789221093 1.00000045092 1.00269955201
x3 -1 -0.99999920901 -0.96490791150 -0.99999920901 -0.99763045118
x4 1 1.00000957563 1.04304617227 1.00000957563 1.00270464525
x5 -1 -0.99999966616 -0.96783925322 -0.99999966616 -0.99763694114
x6 1 1.00000047454 1.02588330513 1.00000047454 1.00262777389

f1 0 9.0373000E-08 3.6034276E-04 1.4948000E-03 -6.3374000E-04
f2 0 -2.2725000E-08 -7.3227699E-04 -1.8160000E-03 -2.8872000E-04
f3 0 7.4938000E-08 7.0261200E-05 -1.0845000E-03 -3.0021000E-04
f4 0 4.6304000E-10 -1.4208871E-04 -8.9244000E-04 -1.6590000E-04
f5 0 -1.2889000E-07 -2.1739908E-04 5.3726000E-04 -3.0415000E-04
f6 0 8.9808000E-08 -8.4609808E-05 -6.0686000E-04 3.0832000E-04

Ψbest 0 3.2107000E-08 8.6349494E-04 2.8569000E-03 8.8894000E-04

Table 5: Optimum results forcase study 3

DE-Powell LQPSO QPSO GRAV ITHS Sharma and
Arora [23]

x1 0.5149332646611 0.5149332646611 0.5149332646611 0.5149332646611 0.5149332646611 0.5149332646611
x2 0.5149332646611 0.5149332646611 0.5149332646611 0.5149346009788 0.5149332646611 0.5149332646611
x3 0.5149332646611 0.5149332646611 0.5149332646611 0.5149237165235 0.5149332646611 0.5149332646611
x4 0.5149332646611 0.5149332646611 0.5149332646611 0.5149444327230 0.5149332646611 0.5149332646611

f1 0 0 0 2.259407661E-06 0 0
f2 0 0 0 -7.041394250E-08 0 0
f3 0 0 0 7.706203400E-06 0 0
f4 0 0 0 -7.094691013E-07 0 0

Ψbest 0 0 0 1.148300900E-10 0 0
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Table 6: Optimum results forcase study 4

DE-Powell LQPSO QPSO GRAV ITHS ICA

x1 -0.8419172629 0.4462091846 -0.7966166843 0.8353268473 0.7579922172 -0.0410960509
x2 0.8419172629 -0.4462091846 0.7966166843 0.7828606939 0.7579956367 0.0410960509
x3 -0.5396066367 0.8949286919 -0.6044847875 0.5497536704 0.6522901471 0.9991552005
x4 0.5396066367 -0.8949286919 0.6044847875 -0.6221970203 0.6523056989 -0.9991552005
x5 9.275556E-02 0.3667790583 -0.3435296497 -1.258964E-08 2.604670E-02 9.873355E-02
x6 9.275556E-02 0.3667790583 -0.3435296497 1.436173E-08 -2.600994E-02 9.873355E-02

f1 0 0 0 3.985034E-08 3.463733E-05 0
f2 0 0 0 -1.780246E-09 6.011012E-05 0
f3 0 0 0 -5.551106E-09 9.686086E-06 0
f4 0 0 0 -4.474299E-10 1.585609E-05 0
f5 0 0 0 1.174203E-09 1.141786E-05 0
f6 0 0 0 -1.030592E-08 1.345653E-05 0

Ψbest 0 0 0 4.159110E-08 7.395710E-05 0

Table 7: Optimum results forcase study 5

DE-Powell LQPSO QPSO GRAV ITHS Grosan and Oliveira and
Abraham [4] Petraglia [18]

x1 0.257833393701 0.257833393701 0.257833393701 0.257839946927 0.254686410313 0.046490512 0.257833393701
x2 0.381097154603 0.381097154603 0.381097154603 0.381079261668 0.378523004753 0.101356836 0.381097154603
x3 0.278745017346 0.278745017346 0.278745017346 0.278737809173 0.276525468374 0.084057782 0.278745017346
x4 0.200668964225 0.200668964225 0.200668964225 0.200676775829 0.201804033261 -0.138846031 0.200668964225
x5 0.445251424841 0.445251424841 0.445251424841 0.445251560410 0.443869219215 0.494390574 0.445251424841
x6 0.149183919969 0.149183919969 0.149183919969 0.149185582343 0.147985685016 -0.076068516 0.149183919969
x7 0.432009698984 0.432009698984 0.432009698984 0.432006811493 0.432376554489 0.247581911 0.432009698984
x8 0.073402777776 0.073402777776 0.073402777776 0.073403712785 0.069871690819 -0.017074816 0.073402777776
x9 0.345966826876 0.345966826876 0.345966826876 0.345965056291 0.349297348759 0.000366754 0.345966826876
x10 0.427326275993 0.427326275993 0.427326275993 0.427333090362 0.432318039408 0.148111931 0.427326275993

f1 -2.12503626E-17 0 0 6.52503549E-06 -3.17270311E-03 0.207795924 -2.12503626E-17
f2 -1.64798730E-17 0 0 -1.80334006E-05 -2.55089378E-03 0.276979885 -1.64798730E-17
f3 -2.42861287E-17 0 0 -7.16837993E-06 -2.16674725E-03 0.187686321 -2.42861287E-17
f4 9.97465999E-18 0 0 7.73423073E-06 1.18507157E-03 0.336788711 9.97465999E-18
f5 2.12503626E-17 0 0 2.12270381E-07 -1.32810307E-03 5.30391E-02 2.12503626E-17
f6 1.30104261E-18 0 0 1.58576125E-06 -1.09258759E-03 0.222373054 1.30104261E-18
f7 5.20417043E-18 0 0 -2.79803508E-06 5.18467284E-04 0.181608475 5.20417043E-18
f8 -5.20417043E-18 0 0 8.50208862E-07 -3.47628514E-03 8.74896E-02 -5.20417043E-18
f9 1.31188463E-17 0 0 -1.80713729E-06 3.37156538E-03 0.344720037 1.31188463E-17
f10 -2.50450702E-17 0 0 6.75152562E-06 5.03611772E-03 0.278422749 -2.50450702E-17

Ψbest 5.21466306E-17 0 0 2.32151680E-05 8.64367970E-03 0.746860040 5.21466306E-17

where−10≤ xi ≤ 10, i = 1, . . . ,4, and the coefficientsa ji
where 1≤ i ≤ 4 and 1≤ j ≤ 17 are given in Table8. Table
9 shows the best of the different solutions obtained by our
algorithm and other algorithms [28]. Moreover some of the
non dominated solutions of Grosan and Abraham [4]. DE-
Powell gets the best result for this case and outperforms
other algorithms.

5.7 Case study 7

The combustion problem [4,18,28,29] occurred at a
temperature of 3000◦C. It is described by system

consisting of ten of nonlinear equations as follows.































































x2+2x6+ x9+2x10−10−5 = 0,
x3+ x8−3×10−5 = 0,
x1+ x3+2x5+2x8+ x9+ x10−5×10−5 = 0,
x4+2x7−10−5 = 0,
0.5140437×10−7x5− x2

1 = 0,
0.1006932×10−6x6−2x2

2 = 0,
0.7816278×10−15x7− x2

4 = 0,
0.1496236×10−6x8− x1x3 = 0,
0.6194411×10−7x9− x1x2 = 0,
0.2089296×10−14x10− x1x2

2 = 0.

(19)
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Table 8: Parameters forcase study 6

ai j 1 2 3 4

1 -0.249150680 0.125016350 -0.635550070 1.48947730
2 1.609135400 -0.686607360 -0.115719920 0.23062341
3 0.279423430 -0.119228120 -0.666404480 1.32810730
4 1.434480160 -0.719940470 0.110362110 -0.25864503
5 0.000000000 -0.432419270 0.290702030 1.16517200
6 0.400263840 0.000000000 1.258776700 -0.26908494
7 -0.800527680 0.000000000 -0.629388360 0.53816987
8 0.000000000 -0.864838550 0.581404060 0.58258598
9 0.074052388 -0.037157270 0.195946620 -0.20816985
10 -0.083050031 0.035436896 -1.228034200 2.68683200
11 -0.386159610 0.085383482 0.000000000 -0.69910317
12 -0.755266030 0.000000000 -0.079034221 0.35744413
13 0.504201680 -0.039251967 0.026387877 1.24991170
14 -1.091628700 0.000000000 -0.057131430 1.46773600
15 0.000000000 -0.432419270 -1.162808100 1.16517200
16 0.049207290 0.000000000 1.258776700 1.07633970
17 0.049220729 0.013873010 2.162575000 -0.69686809

Table 9: Optimum results forcase study 6

DE-Powell LQPSO QPSO GRAV ITHS Grosan and
Abraham [4]

x1 0.997945582200 0.590050131899 0.772231269943 -0.418714637585 -0.481187883256 -0.0625820337
x2 -0.064067269078 0.807366609320 0.635092244415 0.908150863302 0.855827688882 0.7777446281
x3 -0.997945582200 -0.590050131890 0.772345476746 -0.418496945674 0.489354396993 -0.0503725828
x4 -0.064067269078 0.807366609320 0.635464640411 0.908273850895 0.856058114077 0.3805368959
x5 0.997945582200 -0.590050131890 -0.771984058288 0.418286659161 0.529021825853 -0.5592587603
x6 0.598972482326 0.942931949016 0.501630602443 -0.267011571006 -0.413193459556 -0.6988338865
x7 0.447874788025 0.266895066252 0.016544744589 -0.589809505947 -0.583759143370 0.3963927675
x8 -0.815231997842 -1.224247772170 -1.199869634114 -0.998579648273 -0.817013237701 0.0861763643

f1 0 2.22044604E-16 -3.16706807E-04 5.99382446E-05 -3.60171880E-02 0.3911967824
f2 0 0 -1.40305634E-04 -1.22315945E-04 -2.80912411E-02 0.3925758963
f3 0 0 3.32844662E-04 1.01081758E-04 -2.76967795E-02 0.8526542737
f4 0 0 -2.25304537E-04 -7.48825476E-05 1.26995869E-02 0.5424213097
f5 6.93889390E-18 -3.40005800E-16 8.67394191E-04 6.52303303E-05 -1.74787136E-02 0.7742116224
f6 8.67361738E-18 -6.07153210E-17 1.36536886E-03 3.21280003E-05 -6.43899846E-02 0.1537105718
f7 0 0 7.99271797E-04 -1.70272692E-06 -8.18048271E-03 0.9116019977
f8 1.11022302E-16 1.11022302E-16 5.32099950E-04 2.26792051E-05 -5.64808155E-02 0.1519175234

Ψbest 1.11576573E-16 4.25346978E-16 1.95450943E-03 2.00457360E-04 0.103593498941 1.6749682555

where−20≤ xi ≤ 20. Table10 presents the best result
with different solutions obtained by DE-Powell and other
algorithms. Our algorithm finds a lot of non dominated
solutions for this problem, and obtains the best solution
comparing with the other algorithms. Also, DE-Powell
obtains the minimum worst solution and minimum
standard division among the other algorithms. Oliveira
and Petraglia [18] reported six different solutions using
the fuzzy adaptive simulated annealing algorithm, which
are the best results of this study and added into Table10
for the sake of comparison.

5.8 Case study 8

Consider one of benchmark problems [1,31] that consists
of eight non linear equations and is defined by











































4.731×10−3x1x3−0.3578x2x3−0.1238x1+ x7−1.637×10−3x2−0.9338x4−0.3571= 0,
0.2238x1x3+0.7623x2x3+0.2638x1− x7−0.07745x2−0.6734x4−0.6022= 0,
x6x8+0.3578x1+4.731×10−3x2 = 0,
−0.7623x1+0.2238x2+0.3461= 0,
x2

1+ x2
2−1= 0,

x2
3+ x2

4−1= 0,
x2

5+ x2
6−1= 0,

x2
7+ x2

8−1= 0.

(20)
where−1≤ xi ≤ 1 andi = 1, . . . ,8. Table11 presents the
known solutions of case study 8 [28] that solved by
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Table 10: Optimum results forcase study 7

DE-Powell LQPSO QPSO GRAV ITHS Oliveira and
Petraglia [18]

x1 -1.50083955E-07 -5.92864500E-08 -4.88278463E-07 -1.29788338E-03 7.24587841E-03 6.05151660E-07
x2 8.95047570E-04 -6.94279000E-05 6.47373030E-03 9.18114481E-03 1.01801769E-02 -4.11586963E-03
x3 -14.68357214583 -0.298022727000 0.988680886100 0.351976543448 -2.90517380E-03 -0.565259901992
x4 -1.06127505E-04 -8.85260400E-05 6.88493552E-03 1.34497861E-02 -2.32291582E-03 5.84693914E-03
x5 0.813792089857 -0.412726852200 0.249330591600 0.381060037378 -2.57099289E-03 -0.130586435447
x6 15.93998306073 -5.47120683E-02 -4.75443378E-03 0.328340515467 -1.28513542E-04 3.61353748E-02
x7 5.80636695E-05 4.92534440E-05 -3.43749623E-03 -6.72201015E-03 1.07527110E-03 -2.91846910E-03
x8 14.68360214891 0.298052730400 -0.988651263890 -0.35194359193 2.82171705E-03 0.565289928388
x9 -0.741481204001 0.945338532100 0.976976825720 -0.15159591940 1.70605627E-04 -0.540050513545
x10 -15.56968498160 -0.417917503000 -0.486965844210 -0.25714404312 -4.93715825E-03 0.235952824633

f1 1.83623390E-09 -3.71842543E-08 7.57933610E-12 -3.18298966E-05 2.09438980E-04 1.56804700E-08
f2 3.08443468E-09 3.40314122E-09 -3.77787894E-07 2.95151945E-06 -1.13456744E-04 2.63960000E-08
f3 -3.97291811E-09 -1.52430012E-08 3.47636752E-08 1.21588444E-04 2.56003193E-05 1.29259847E-10
f4 -1.66204936E-10 -1.91525933E-08 -5.69542591E-08 -4.23416696E-07 -1.82373624E-04 9.45794000E-10
f5 4.18324472E-08 -2.12159327E-08 1.28164436E-08 -1.66491312E-06 5.25028861E-05 -6.71307965E-09
f6 2.82759772E-09 -1.51495430E-08 -8.38188468E-05 -1.68553778E-04 2.07272018E-04 -3.38771270E-05
f7 -1.12630473E-08 -7.83685922E-09 -4.74023371E-05 -1.80896747E-04 5.39593790E-06 -3.41866973E-05
f8 -6.75516492E-09 2.19672601E-08 3.34826022E-07 4.56771848E-04 2.10509583E-05 4.26648682E-07
f9 -4.57960610E-08 5.85528822E-08 6.36789430E-08 1.19066648E-05 -7.37643137E-05 3.09622231E-08
f10 8.77040994E-14 -5.07159522E-16 2.04623346E-11 1.09403029E-07 7.50933872E-08 -1.02510078E-11

Ψbest 6.36899822E-08 6.20831492E-06 9.62956081E-05 5.34548982E-04 3.77206671E-04 6.85713100E-05

imperialist competitive algorithm (ICA) [1] and filled
function method for solving a nonlinear system [31].
LQPSO gives the best solution for this case comparing
with other algorithms and gets the minimum worst
solution and minimum standard division among those
algorithms.

5.9 Case study 9

This case study is considered as a benchmark problem [1,
6,16,28]. The problem is defined by











A= bh− (b−2t)(h−2t),

Iy = bh3

12 − (b−2t)(h−2t)3

12 ,

In =
2t(h−t)2(b−t)2

h+b−2t .

(21)

whereb is the width of the section,h is the height of the
section and t is the thickness of the section.
A= 165, Iy = 9369 andIn = 6835, 0≤ xi ≤ 25. There are
multiple solutions for this nonlinear system. ICA [1] and
particle swarm optimization algorithm (PPSO) [6] attain
the optimum solutions of this problem utilizing
Imperialist Competitive Algorithm and Particle Swarm
Optimization method, respectively. Table12 shows the
optimum results obtained from these studies, DE-Powell
and other algorithms. DE-Powell outperforms the other
algorithms by obtaining the optimal solution for this case.
Moreover DE-Powell has the minimum standard division
and worst solution. The proposed method obtains the

optimal solution for this system as follows:
x∗={12.25651959934869594803785730619,
22.894938623626284623924220795743,
2.7898179195381542783138684171718}.

6 Conclusions and future work

In this paper, a novel hybrid algorithm, based on DE and
Powell conjugate direction method in order to solve
systems of nonlinear equations. The system of nonlinear
equations is transformed into an optimization problem.
Our proposed algorithm, DE-Powell, has superiority over
Powell Conjugate Direction (CD) and Differential
Evolution (DE), separately, it overcomes the inaccuracy
of Powell conjugate direction method and DE for solving
systems of nonlinear equations. In order to check the
effectiveness of the proposed algorithm, nine systems of
nonlinear equations with different dimensions are
employed. Based on the presented results, it is clear that
the DE-Powell produced better solutions and outperforms
than other algorithms in the literature such as Chaotic
Quantum Particle Swarm Optimization (LQPSO) [28],
Intelligent Tuned Harmony Search algorithm (ITHS)
[32], imperialist competitive algorithm (ICA) [1],
Quantum behaved Particle Swarm Optimization (QPSO)
[25], [26], multiobjective approach for nonlinear systems
[4], fuzzy adaptive simulated annealing [18],
weighted-Newton method [23], combined method based
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Table 11: Optimum results forcase study 8

DE-Powell LQPSO QPSO GRAV ITHS ICA Wang et al. [31]

x1 0.67155426182 0.16443166585 0.16443166585 0.67170801324 0.16364139102 0.16443166585 0.67154465
x2 0.74095537884 -0.98638847685 -0.98638847685 0.74077329294 -0.98627002981 -0.98638847685 0.74097111
x3 -0.65159061100 0.94762379641 0.94762379641 -0.25300250019 0.95152343463 0.71845260103 0.95189459
x4 -0.75857081124 -0.31938869811 -0.31938869811 -0.96749642402 -0.30706727299 -0.69557591971 -0.30643725
x5 0.96254501886 -0.99842747394 -0.99842747394 0.95789826891 -0.99686071792 0.99796438397 0.96381470
x6 0.27112190370 -0.05605871286 -0.05605871286 0.28712600808 0.03838334620 0.06377372756 -0.26657405
x7 -0.43757756375 -0.25758509950 -0.25758509950 -0.52841723679 -0.25765415744 -0.52780910528 0.40463693
x8 -0.89918066911 0.96625561655 0.96625561655 -0.84896958415 0.96464846448 -0.84936302508 0.91447470

f1 0 0 0 -1.8519834E-04 -1.0141714E-02 2.7755576E-16 -3.750E-06
f2 0 0 0 -9.1791862E-05 -0.69875127031 -1.1102230E-16 1.537E-05
f3 -3.9031278E-18 2.6020852E-18 1.7347235E-18 8.0477909E-05 9.0911282E-02 1.7347235E-18 8.990E-06
f4 -5.5511151E-17 0 1.6653345E-16 -1.5795553E-04 6.2893495E-04 1.6653345E-16 1.084E-05
f5 0 0 0 -6.3273422E-05 -4.9292345E-04 0 1.039E-05
f6 0 0 0 5.9595589E-05 -3.1284320E-04 0 7.090E-06
f7 0 0 0 1.0438088E-05 -4.7954278E-03 0 4.900E-07
f8 0 0 0 -2.5586905E-05 -3.0676751E-03 0 -4.980E-06

Ψbest 5.5648201E-17 2.6020852E-18 1.6654248E-16 2.8720052E-04 0.70473696973 3.4219811E-16 6.318E-10

Table 12: Optimum results forcase study 9

DE-Powell LQPSO QPSO GRAV ITHS ICA PPSO [6]

b 12.2565195993 12.2565196104 12.2566746085 12.2602439079 8.91579028165 8.94308877875 43.155566055
h 22.8949386236 22.8949389227 22.9030352655 22.7756346836 23.2914526043 23.2714818792 10.128950202
t 2.78981791954 2.78981773672 2.78498579560 2.85755430840 12.8853532234 12.9127742914 12.944048458

f1 165 164.999 165.1859 167.57130 165.874091108 165 709.2412
f2 9369 9368.99 9369.01 9362.2016 9366.49248249 9369 9369
f3 6835 6835.00 6834.9887 6836.7276 6831.80426651 6835 6835

Ψbest 0 1.6298215E-10 1.8607675E-01 7.47089935933 4.15504414695 N/A N/A

on Grobner bases [8], and filled function method[31],
Gravitational Search algorithm (GRAV) [22].

This work motivates us to various projects as future
works, for example, large scale nonlinear systems are
under investigation by adjusting our proposed algorithm
and can we apply our proposed algorithm on nonlinear
systems that arise from the optimality conditions of
various optimization problems?
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