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1 Introduction and Preliminaries

Throughout this article, unless otherwise specified, we
always suppose thatN is the set of positive integers and X
is a non empty set. Some authors generalized the Banach
contraction principle theorem [4]in different ways (see for
example [1,2,9,10,11,13,15,16]). Recently, Bhashkar
and Lakshmikantham [5] coupled coincidence points,
coupled fixed points, coupled common fixed points and
common fixed points of nonlinear mappings with two
variables expressed. After the publication of this work,
several coupled fixed point and coincidence point results
have appeared in the recent literature. Works noted in ([3,
6,7,8,12,14,17,18,19])are some relevant examples. The
aim of this article is to make further studies on such
problems, and to generalize and complement some known
results. Next, let us recall some related definitions:

Definition 11Let X be a nonempty set, then(X,d,�) is
called an partially ordered metric space if:

(i)(X,d) is a metric space,
(ii)(X,�) is a partially ordered set.

Definition 12Let (X,�) be a partially ordered set, then
x,y∈ X are called comparable if x� y or y� x.

Definition 13[5] Let (X,�) be a partially ordered set, and
F : X×X −→ X. The mapping F has the mixed monotone
property if F(x,y) is monotone non-decreasing in x and is

monotone non-increasing in y, that is, for any x,y∈ X,

x1,x2 ∈ X,x1 � x2 =⇒ F(x1,y)� F(x2,y),

and

y1,y2 ∈ X,y1 � y2 =⇒ F(x,y1)� F(x,y2).

Definition 14[5] An element(x,y) ∈ X × X is called a
coupled fixed point of the mapping F: X×X −→ X if

F(x,y) = x, F(y,x) = y.

The main results of Bhaskar and Lakshmikantham in [5]
are the following coupled fixed point theorems.

Theorem 15[5] Let (X,�) be a partially ordered set and
suppose there exists a metric d on X such that(X,d) is a
complete metric space. Let F: X × X −→ X be a
continuous mapping having the mixed monotone property
on X. Assume that there exists a k∈ [0,1) with

d(F(x,y),F(u,v))≤
k
2
[d(x,u)+d(y,v)]

for all u � x and y� v. If there exist two elements x0,y0 ∈
X with x0 � F(x0,y0) and F(y0,x0) � y0, then F has a
coupled fixed point.

Recently, R. Bhardwaj [6] proved some generalizations of
the main results in [5].
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Theorem 16[6] Let (X,d,�) be a partially ordered
complete metric space. Suppose that there exist
λ ∈ [0,1),T : X×X −→ X such that

d(T(x,y),T(u,v)) ≤ λ max{d(x,T(x,y)).d(u,T(u,v))
d(x,u) ,

d(u,T(x,y)).d(x,T(u,v))
d(x,u) ,d(x,u)},

for all x,y,u,v ∈ X with x� u,y � v and x6= u. Suppose
also that T is continuous, has the mixed monotone
property on X. If there exist(x0,y0) ∈ X × X such that
x0 � T(x0,y0) and T(y0,x0)� y0, then there exist x,y∈ X
such that x= T(x,y) and y= T(y,x).

In [12], Lakshmikantham andĆiri ć introduced the
concept of mixedg-monotone property which present
these definitions and results in the following.

Definition 17[12] Let (X,≤) be a partially ordered set,
and F : X ×X −→ X and g: X −→ X. We say F has the
mixed g-monotone property if F is non-decreasing
g-monotone in its first argument and is non-increasing
g-monotone in its second argument, that is, for any
x,y∈ X

x1,x2 ∈ X,gx1 ≤ gx2 =⇒ F(x1,y)≤ F(x2,y),

and

y1,y2 ∈ X,gy1 ≤ gy2 =⇒ F(x,y1)≥ F(x,y2).

Note that ifg is the identity mapping, then Definition18
reduces to Definition14.

Definition 18[12] An element(x,y) ∈ X ×X is called a
coupled coincidence point of a mapping F: X×X −→ X
and a mapping g: X −→ X if

F(x,y) = gx, F(y,x) = gy.

Similarly, note that if g is the identity mapping, then
Definition19 reduces to Definition17.

Definition 19[12] An element x∈ X is called a common
fixed point of a mapping F: X×X −→ X and g: X −→ X
if

F(x,x) = gx= x.

Definition 110[12] Let X be a nonempty set and
F : X ×X −→ X and g: X −→ X. One says F and g are
commutative if for all x,y∈ X,

F(gx,gy) = g(F(x,y)).

2 Main results

Throughout the article, letΨ [0,∞) be the family of all
functions ψ : [0,∞) −→ [0,∞) satisfying the following
conditions:

(a)ψ is continuous,

(b)ψ nondecreasing,
(c)ψ(t) = 0 if and only if t = 0.

We denote byΦ [0,∞) the set of all functionsφ : [0,∞)−→
[0,∞) satisfying the following conditions:

(a)φ is lower semi-continuous,
(b)φ(t) = 0 if and only if t = 0,

and Θ [0,∞) the set of all continuous functions
θ : [0,∞)−→ [0,∞) with θ(t) = 0 if and only if t = 0.
Our first result is the following.

Theorem 21Suppose that(X,d,≤) be a partially ordered
complete metric space. Let T: X×X −→ X, g : X −→ X,
ψ ∈Ψ [0,∞),ϕ ∈Φ [0,∞) andθ ∈Θ [0,∞) satisfy following
condition

ψ(d(T(x,y),T(u,v))) ≤ ψ(M(x,y,u,v))−φ(M(x,y,u,v))

+Lθ(N(x,y,u,v)), (2.1)

for all x,y,u,v∈ X with gx≤ gu and gy≥ gv and gx6= gu,
L ≥ 0 and

M(x,y,u,v) = max{
d(gx,T(x,y)).d(gu,T(u,v))

d(gx,gu)
,

d(gu,T(x,y)).d(gx,T(u,v))
d(gx,gu)

,d(gx,gu)},

and

N(x,y,u,v) = min{d(gx,T(x,y)),d(gu,T(u,v)),

d(gu,T(x,y)),d(gx,T(u,v))}.

Also, assume T and g are continuous mappings such that
T has the mixed g-monotone property, g commutes with
T and T(X ×X) ⊆ g(X). If there exists(x0,y0) ∈ X ×X
such that gx0 ≤ T(x0,y0) and gy0 ≥ T(y0,x0), then T and
g have coupled coincidence point in X.

Proof. By the given assumptions, there exists
(x0,y0) ∈ X × X such that gx0 ≤ T(x0,y0) and
gy0 ≥ T(y0,x0). SinceT(X ×X) ⊆ g(X), we can define
(x1,y1) ∈ X × X such that gx1 = T(x0,y0) and
gy1 = T(y0,x0), then gx0 ≤ T(x0,y0) = gx1 and
gy0 ≥ T(y0,x0) = gy1. Also there exists(x2,y2) ∈ X ×X
such thatgx2 = T(x1,y1) and gy2 = T(y1,x1). Since T
has the mixedg-monotone property, we have

gx1 = T(x0,y0)≤ T(x0,y1)≤ T(x1,y1) = gx2,

and

gy2 = T(y1,x1)≤ T(y0,x1)≤ T(y0,x0) = gy1.

Continuing in this way, we construct two sequences{xn}
and{yn} in X such that for all n=0,1,2

gxn+1 = T(xn,yn) and gyn+1 = T(yn,xn), (2.2)

for which

gx0 ≤ gx1 ≤ gx2 ≤ ...≤ gxn ≤ gxn+1 ≤ ..., (2.3)

gy0 ≥ gy1 ≥ gy2 ≥ ...≥ gyn ≥ gyn+1 ≥ ....
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If there exists k0 ∈ N such that gxk0+1 = gxk0 and
gyk0+1 = gyk0, then gxk0 = T(xk0,yk0) and
gyk0 = T(yk0,xk0). This means that(xk0,yk0) is a coupled
coincidence point ofT, g and the proof is finished. Thus,
that gxn+1 6= gxn and gyn+1 6= gyn for all n ∈ N. From
(2.2) and (2.3) and the inequality (2.1) with
(x,y) = (xn,yn) and(u,v) = (xn+1,yn+1), we have

ψ(d(gxn+1,gxn+2))≤ ψ(d(gxn+1,gxn+2))

= ψ(d(T(xn,yn),T(xn+1,yn+1)))

≤ ψ(M(xn,yn,xn+1,yn+1))

−φ(M(xn,yn,xn+1,yn+1))

+Lθ(N(xn,yn,xn+1,yn+1)),
(2.4)

where

M(xn,yn,xn+1,yn+1) =

= max{
d(gxn,T(xn,yn)).d(gxn+1,T(xn+1,yn+1))

d(gxn,gxn+1)
,

d(gxn+1,T(xn,yn)).d(gxn,T(xn+1,yn+1))

d(gxn,gxn+1)
,d(gxn,gxn+1)}

= max{
d(gxn,gxn+1).d(gxn+1,gxn+2)

d(gxn,gxn+1)
,

d(gxn+1,gxn+1).d(gxn,gxn+2)

d(gxn,gxn+1)
,d(gxn,gxn+1)}

= max{d(gxn,gxn+1),d(gxn+1,gxn+2)},

and

N(xn,yn,xn+1,yn+1) =

= min{d(gxn,T(xn,yn)),d(gxn+1,T(xn+1,yn+1)),

d(gxn+1,T(xn,yn)),d(gxn,T(xn+1,yn+1))}

= min{d(gxn,gxn+1),d(gxn+1,gxn+2),d(gxn+1,gxn+1)

,d(gxn,gxn+2)}= 0.

Therefore,

ψ(d(gxn+1,gxn+2))≤

≤ ψ(max{d(gxn,gxn+1),d(gxn+1,gxn+2)})

−φ(max{d(gxn,gxn+1),d(gxn+1,gxn+2)}),

(2.5)

We prove that for alln∈ N,

d(gxn+1,gxn+2)≤ d(gxn,gxn+1). (2.6)

Suppose that there existsn0 ∈ N such that
d(gxn0+1,gxn0+2)> d(gxn0,gxn0+1), from (2.5), we have

ψ(d(gxn0+1,gxn0+2))≤

≤ ψ(max{d(gxn0,gxn0+1),d(gxn0+1,gxn0+2)})

−φ(max{d(gxn0,gxn0+1),d(gxn0+1,gxn0+2)})

= ψ(d(gxn0+1,gxn0+2))−φ(d(gxn0+1,gxn0+2))

< ψ(d(gxn0+1,gxn0+2)),

which is a contradiction. Hence,

d(gxn+1,gxn+2)≤ d(gxn,gxn+1)

for all n ∈ N. Similarly, we can show that
d(gyn+1,gyn+2) ≤ d(gyn,gyn+1) for all n ∈ N. It follows
that the sequences{d(gxn,gxn+1)} and {d(gyn,gyn+1)}
are monotone decreasing sequences of non-negative real
numbers and consequently there existsδ1,δ2 ≥ 0 such
that

lim
n−→∞

d(gxn,gxn+1) = δ1 and lim
n−→∞

d(gyn,gyn+1) = δ2.

(2.7)
We shall show thatδ1 = δ2 = 0. Suppose, to the contrary,
that δ1 > 0. Taking the (upper) limit asn −→ ∞ in (2.5)
and using the properties of the functionsψ andφ we get

ψ(δ1) ≤ ψ(δ1)

− liminf
n−→∞

φ(max{d(gxn,gxn+1),d(gxn+1,gxn+2)}

≤ ψ(δ1)−φ(δ1)< ψ(δ1),

which is a contradiction. Therefore,δ1 = 0, that is,

lim
n−→∞

d(gxn,gxn+1) = 0. (2.8)

Similarly, we can show that

lim
n−→∞

d(gyn,gyn+1) = 0. (2.9)

Now, we claim that

lim
n,m−→∞

d(gxn,gxm) = 0. (2.10)

Assume the contrary. Then there existsε > 0 for which
we can find two subsequences{gxm(k)}, {gxn(k)} of {gxn}
with m(k)> n(k)≥ k such that

d(gxn(k),gxm(k))≥ ε . (2.11)

Additionally, corresponding ton(k), we may choosem(k)
such that it is the smallest integer satisfying (2.11) and
m(k)> n(k)≥ k. Thus,

d(gxn(k),gxm(k)−1)< ε . (2.12)

We have

ε ≤ d(gxm(k),gxn(k))

≤ d(gxm(k),gxm(k)−1)+d(gxm(k)−1,gxn(k))

< d(gxm(k),gxm(k)−1)+ ε .

Taking the upper limit ask −→ ∞ and using (2.8) we
obtain

lim
k−→∞

d(gxn(k),gxm(k)) = ε . (2.13)

Also

d(gxn(k),gxm(k)) ≤ d(gxm(k),gxm(k)−1)

+d(gxm(k)−1,gxn(k)−1)+d(gxn(k)−1,gxn(k)),
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d(gxm(k)−1,gxn(k)−1) ≤ d(gxm(k)−1,gxm(k))

+d(gxm(k),gxn(k))+d(gxn(k),gxn(k)−1),

d(gxn(k)−1,gxm(k)) ≤ d(gxn(k)−1,gxn(k))+d(gxn(k),gxm(k)),

d(gxm(k),gxn(k)) ≤ d(gxm(k),gxn(k)−1)+d(gxn(k)−1,gxm(k)).

So from (2.8),(2.13) and takingk −→ ∞ in the above
inequalities, we have

lim
k−→∞

d(gxn(k)−1,gxm(k)−1) = lim
k−→∞

d(gxn(k)−1,gxm(k)) = ε .
(2.14)

Also

d(gxm(k)−1,gxn(k)−1) ≤ d(gxm(k)−1,gxn(k))

+d(gxn(k),gxn(k)−1)

< ε +d(gxn(k),gxn(k)−1).

So from (2.8),(2.14) and takingk −→ ∞ in the above
inequalities, we have

lim
k−→∞

d(gxn(k),gxm(k)−1) = ε . (2.15)

By the definition ofM(x,y,u,v) and from (2.8),(2.14) and
(2.15) we get

lim
k−→∞

M(xn(k)−1,yn(k)−1,xm(k)−1,ym(k)−1) = ε ,

lim
k−→∞

N(xn(k)−1,yn(k)−1,xm(k)−1,ym(k)−1) = 0. (2.16)

Indeed,

M(xn(k)−1,yn(k)−1,xm(k)−1,ym(k)−1) =

= max{
d(gxn(k)−1,T(xn(k)−1,yn(k)−1))

d(gxn(k)−1,gxm(k)−1)

×d(gxm(k)−1,T(xm(k)−1,ym(k)−1)),

d(gxm(k)−1,T(xn(k)−1,yn(k)−1))

d(gxn(k)−1,gxm(k)−1)

×d(gxn(k)−1,T(xm(k)−1,ym(k)−1)),

d(gxn(k)−1,gxm(k)−1)}

= max{
d(gxn(k)−1,gxn(k)).d(gxm(k)−1,gxm(k))

d(gxn(k)−1,gxm(k)−1)

d(gxm(k)−1,gxn(k)).d(gxn(k)−1,gxm(k))

d(gxn(k)−1,gxm(k)−1)

d(gxn(k)−1,gxm(k)−1)}

and

N(xn(k)−1,yn(k)−1,xm(k)−1,ym(k)−1) =

= min{d(gxn(k)−1,T(xn(k)−1,yn(k)−1)),

d(gxm(k)−1,T(xm(k)−1,ym(k)−1))

d(gxm(k)−1,T(xn(k)−1,yn(k)−1)),

d(gxn(k)−1,T(xm(k)−1,ym(k)−1))}

= min{d(gxn(k)−1,gxn(k)),d(gxm(k)−1,gxm(k))

d(gxm(k)−1,gxn(k)),d(gxn(k)−1,gxm(k))}.

Taking the limit ask −→ ∞ and using (2.8),(2.14) and
(2.15) we get (2.16). Since m(k) > n(k),
gxm(k)−1 ≥ gxn(k)−1 and gym(k)−1 ≤ gyn(k)−1 from (2.1),
we have

ψ(d(gxm(k),gxn(k)) =

= ψ(d(T(xn(k)−1,yn(k)−1),T(xm(k)−1,ym(k)−1)))

≤ ψ(M(xn(k)−1,yn(k)−1,xm(k)−1,ym(k)−1))

−φ(M(xn(k)−1,yn(k)−1,xm(k)−1,ym(k)−1))

+Lθ(N(xn(k)−1,yn(k)−1,xm(k)−1,ym(k)−1)),

taking the upper limit ask−→ ∞, and using (2.16) and the
properties of the functionφ we obtain

ψ(ε)≤ ψ(ε)−φ(ε)< ψ(ε),

which is a contradiction. Therefore (2.10) holds, and we
have

lim
n,m−→∞

d(gxn,gxm) = 0.

Similarly, we show that

lim
n,m−→∞

d(gyn,gym) = 0.

SinceX is a complete metric space, there existx,y ∈ X
such that

lim
n−→∞

gxn+1 = x and lim
n−→∞

gyn+1 = y. (2.17)

From the commutativity ofT andg, we have

g(gxn+1) = g(T(xn,yn)) = T(gxn,gyn),

g(gyn+1) = g(T(yn,xn)) = T(gyn,gxn). (2.18)

Now we shall show that

gx= T(x,y) and gy= T(y,x).

Lettingn−→ ∞ in (2.18) and from the continuity ofT and
g, we get

gx = lim
n−→∞

g(gxn+1) = lim
n−→∞

T(gxn,gyn)

= T( lim
n−→∞

gxn, lim
n−→∞

gyn) = T(x,y),

gy = lim
n−→∞

g(gyn+1) = lim
n−→∞

T(gyn,gxn)

= T( lim
n−→∞

gyn, lim
n−→∞

gxn) = T(y,x).

This implies that(x,y) is a coupled coincidence point ofT
andg . This completes the proof.

Corollary 22Let (X,d,≤) be a partially ordered
complete metric space. Let T: X × X −→ X be a
continuous mapping having the mixed monotone property
on X, ψ ∈ Ψ [0,∞),ϕ ∈ Φ [0,∞) and θ ∈ Θ [0,∞) satisfy
following condition

ψ(d(T(x,y),T(u,v))) ≤ ψ(M(x,y,u,v))−φ(M(x,y,u,v))

+Lθ(N(x,y,u,v)),
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for all x,y,u,v∈ X with x≤ u and y≥ v and x6= u, L≥ 0
and

M(x,y,u,v) = max{
d(x,T(x,y)).d(u,T(u,v))

d(x,u)
,

d(u,T(x,y)).d(x,T(u,v))
d(x,u)

,d(x,u)},

and

N(x,y,u,v) = min{d(x,T(x,y)),d(u,T(u,v)),d(u,T(x,y)),

d(x,T(u,v))}.

If there exists(x0,y0)∈ X×X such that x0 ≤ T(x0,y0) and
y0 ≥ T(y0,x0), then then there exist x,y∈ X such that x=
T(x,y) and y= T(y,x).

Proof. Applying Theorems21 and taking asg = IX we
obtain the corollary22.

Corollary 23Let (X,d,≤) be a partially ordered complete
metric space. Let T: X×X −→ X, g : X −→ X and there
exist aλ ∈ [0,1) satisfy following condition

d(T(x,y),T(u,v))) ≤ λ max{
d(gx,T(x,y)).d(gu,T(u,v))

d(gx,gu)
,

d(gu,T(x,y)).d(gx,T(u,v))
d(gx,gu)

,d(gx,gu)},

for all x,y,u,v∈ X with gx≤ gu and gy≥ gv and gx6= gu.
Also, assume T and g are continuous mappings such that
T has the mixed g-monotone property, g commutes with
T and T(X×X)0⊆ g(X). If there exists(x0,y0) ∈ X×X
such that gx0 ≤ T(x0,y0) and gy0 ≥ T(y0,x0), then then
there exist x,y∈ X such that gx= T(x,y) and gy= T(y,x).

Proof. In Theorems21, taking asL = 0,φ(t) = (1− λ )t
andψ(t) = IX for all t ∈ [0,+∞), we get corollary23.

Corollary 24Let (X,d,≤) be a partially ordered complete
metric space. Suppose that there existλ ∈ [0,1), T : X ×
X −→ X such that

d(T(x,y),T(u,v))) ≤ λ max{
d(x,T(x,y)).d(u,T(u,v))

d(x,u)
,

d(u,T(x,y)).d(x,T(u,v))
d(x,u)

,d(x,u)},

for all x,y,u,v ∈ X with x≤ u and y≥ v and x 6= u.
Suppose also that T is continuous, has the mixed
monotone property on X.If there exists(x0,y0) ∈ X ×X
such that x0 ≤ T(x0,y0) and y0 ≥ T(y0,x0), then then
there exist x,y∈ X such that x= T(x,y) and y= T(y,x).

Proof. Taking g = IX in Corollary 23, we obtain the
corollary24.

Corollary 25Let (X,d,≤) be a partially ordered complete
metric space. Suppose that T: X×X −→ X, g : X −→ X
satisfies the following condition:

d(T(x,y),T(u,v))) ≤ a
d(gx,T(x,y)).d(gu,T(u,v))

d(gx,gu)
+

b
d(gu,T(x,y)).d(gx,T(u,v))

d(gx,gu)

+cd(gx,gu),

for all x,y,u,v∈ X with gx≤ gu and gy≥ gv and gx6= gu
and for some a,b,c ≥ 0 with a+b+ c < 1. Also, assume
T and g are continuous mappings such that T has the
mixed g-monotone property, g commutes with T and
T(X ×X)0 ⊆ g(X). If there exists(x0,y0) ∈ X ×X such
that gx0 ≤ T(x0,y0) and gy0 ≥ T(y0,x0), then then there
exist x,y∈ X such that gx= T(x,y) and gy= T(y,x).

Proof. Fora,b,c≥ 0,a+b+c< 1 and for allx,y,u,v∈ X
with gx≤ guandgy≥ gvandgx 6= gu, we have

d(T(x,y),T(u,v))) ≤ a
d(gx,T(x,y)).d(gu,T(u,v))

d(gx,gu)
+

b
d(gu,T(x,y)).d(gx,T(u,v))

d(gx,gu)
+cd(gx,gu)

≤ (a+b+c)max{
d(x,T(x,y)).d(u,T(u,v))

d(x,u)
,

d(u,T(x,y)).d(x,T(u,v))
d(x,u)

,d(x,u)}

= λ max{
d(x,T(x,y)).d(u,T(u,v))

d(x,u)
,

d(u,T(x,y)).d(x,T(u,v))
d(x,u)

,d(x,u)},

whereλ = a+b+ c∈ [0,1). Therefore, we get Corollary
25of Corollary24.
Now we give sufficient conditions for uniqueness of the
coupled coincidence point. Note that if(X,≤) is a partially
ordered set, then we endow the productX ×X with the
following partial order relation, for all(x,y),(z, t)∈X×X,

(x,y)≤ (z, t)⇐⇒ x≤ z, y≥ t.

From Theorem21, it follows that the set of coupled
coincidence points ofT andg is non-empty.

Theorem 26By adding to the hypotheses of Theorem21,
the condition:
for every (x,y) and (z, t) in X × X, there exists a
(u,v) ∈ X ×X such that(T(u,v),T(v,u)) is comparable
to (T(x,y),T(y,x)) and to(T(z, t),T(t,z)), then T and g
have a unique coupled common fixed point; that is, there
exist a unique(x,y) ∈ X×X such that

x= gx= T(x,y), y= gy= T(y,x).

Proof. We know, from Theorem 2.1, that there exists at
least a coupled coincidence point. Suppose that(x,y) and
(z, t) are coupled coincidence points ofT andg, that is,
T(x,y) = gx, T(y,x) = gy, T(z, t) = gz and T(t,z) = gt.
We shall show thatgx = gz and gy = gt. By the
assumptions, there exists(u,v) ∈ X × X such that
(T(u,v),T(v,u)) is comparable to(T(x,y),T(y,x)) and to
(T(z, t),T(t,z)). Without any restriction of the generality,
we can assume that

(T(x,y),T(y,x))≤ (T(u,v),T(v,u))

and
(T(z, t),T(t,z))≤ (T(u,v),T(v,u)).
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Putu0 = u, v0 = v and choose(u1, v1) ∈ X×X such that

gu1 = T(u0,v0), gv1 = T(v0,u0).

For n ≥ 1, continuing this process we can construct
sequences{gun} and{gvn} such that

gun+1 = T(un,vn), gvn+1 = T(vn,un) f or all n.

Further, setx0 = x, y0 = y andz0 = z, t0 = t and on the
same way define sequences{gxn}, {gyn} and{gzn}, {gtn}.
Then, it is easy to see that

gxn −→ T(x,y), gyn −→ T(y,x),

gzn −→ T(z, t), gtn −→ T(t,z), (2.19)

for all n≥ 1.
Since (T(x,y),T(y,x)) = (gx,gy) = (gx1,gy1) is
comparable to(T(u,v),T(v,u)) = (gu1,gv1), then it is
easy to show(gx,gy) ≤ (gun,gvn), that is,gx≤ gun and
gy≥ gvn for all n∈ N. Thus from2.1, we have

ψ(d(gx,gun+1)) = ψ(d(T(x,y),T(un,vn)))

≤ ψ(M(x,y,un,vn))−φ(M(x,y,un,vn))

+Lθ(N(x,y,un,vn)),

where

M(x,y,un,vn) = max{
d(gx,T(x,y)).d(gun,T(un,vn))

d(gx,gun)
,

d(gun,T(x,y)).d(gx,T(un,vn))

d(gx,gun)
,d(gx,gun)}

= max{d(gx,gun),d(gx,gun+1)},

and

N(x,y,un,vn) = min{d(gx,T(x,y)),d(gun,T(un,vn)),

d(gun,T(x,y)),d(gx,T(un,vn)) = 0.

Hence

ψ(d(gx,gun+1)) ≤ ψ(max{d(gx,gun),d(gx,gun+1)})

−φ(max{d(gx,gun),d(gx,gun+1)}).

It is easy to show that

ψ(d(gx,gun+1)) ≤ ψ(d(gx,gun))−φ(d(gx,gun))

< ψ(d(gx,gun)). (2.20)

This implies that {d(gx,gun)} is a non-increasing
sequence. Hence, there existsr ≥ 0 such that

lim
n−→∞

d(gx,gun) = r.

Passing the upper limit in2.20asn−→ ∞, we obtain

ψ(r)≤ ψ(r)−φ(r),

which implies thatφ(r) = 0 and then,r = 0. We deduce
that

lim
n−→∞

d(gx,gun) = 0. (2.21)

Similarly one can prove that

lim
n−→∞

d(gy,gvn) = 0. (2.22)

Similarly, one can prove that

lim
n−→∞

d(gz,gun) = lim
n−→∞

d(gt,gvn) = 0. (2.23)

By the triangle inequality,2.22and2.23, we get

d(gx,gz)≤ d(gx,gun+1)+d(gz,gun+1)−→ 0 as n−→ ∞,

d(gy,gt)≤ d(gy,gvn+1)+d(gt,gvn+1)−→ 0 as n−→ ∞.

Therefore, we havegx= gzandgy= gt. Sincegx=T(x,y)
andgy= T(y,x), by commutativity ofT andg , we have

g(gx) = g(T(x,y)) = T(gx,gy),

g(gy) = g(T(y,x)) = T(gy,gx). (2.24)

Denotegx= a andgy= b. Then from2.24

g(a) = T(a,b), g(b) = T(b,a). (2.25)

Thus,(a,b) is a coupled coincidence point, it follows that
ga= gzandgb= gy, that is,

g(a) = a, g(b) = b. (2.26)

From2.25and2.26

a= g(a) = T(a,b), b= g(b) = T(b,a). (2.27)

Therefore,(a,b) is a coupled common fixed point ofT and
g. To prove the uniqueness of the point(a,b), assume that
(c,d) is another coupled common fixed point ofT andg.
Then we have

c= gc= T(c,d), d = gd= T(d,c).

Since(c,d) is a coupled coincidence point ofT andg ,we
havegc= gx= a andgd= gy= b. Thusc= gc= ga= a
andd = gd = gb= b. Hence, the coupled common fixed
point is unique. this completes the proof.
If g = I , the identity mapping in Theorem26, then we
deduce the following corollary.

Corollary 27In addition to the hypotheses of Corollary22,
suppose that for every(x,y) and(z, t) in X×X, there exists
a (u,v) ∈ X×X such that(T(u,v),T(v,u)) is comparable
to (T(x,y),T(y,x)) and to(T(z, t),T(t,z)). Then T has a
unique coupled fixed point, that is, there exists a unique
(x,y) ∈ X×X such that

x= T(x,y), y= T(y,x).

Now, we state and prove the last theorem of this paper.

Theorem 28In addition to hypotheses of Theorem21, if
gx0 and gy0 are comparable, then T and g have a unique
common fixed point, that is, there exists x∈ X such that
x= gx= T(x,x).
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Proof. By Theorem21, we can construct two sequences
{gxn} and{gyn} in X such thatgxn −→ x andgyn −→ y,
where(x,y) is a unique coupled common fixed point ofT
andg. We only have to show thatx= y. Sincegx0 andgy0
are comparable, we may assume thatgx0 ≤ gy0, then it is
an easy matter to show that

gxn ≤ gyn f or all n ≥ 0. (2.28)

From2.1and2.28, we have

ψ(d(gxn+1,gyn+1) = ψ(d(T(xn,yn),T(yn,xn)))

≤ ψ(M(xn,yn,yn,xn))

−φ(M(xn,yn,yn,xn)),

where

M(xn,yn,yn,xn) = max{d(gxn,T(xn,yn)).d(gyn,T(yn,xn))
d(xn,yn)

,

d(gyn,T(xn,yn)).d(gxn,T(yn,xn))
d(xn,yn)

,

d(xn,yn)}

= max{d(gxn,gxn+1).d(gyn,gyn+1)
d(gxn,gyn))

,

d(gyn,gxn+1).d(gxn,gyn+1)
d(gxn,gyn)

,

d(gxn,gyn)}

and

N(xn,yn,yn,xn) = min{d(gxn,T(xn,yn)),d(gyn,T(yn,xn)),

d(gyn,T(xn,yn)),d(gxn,T(yn,xn))}

= min{d(gxn,gxn+1),d(gyn,gyn+1),

d(gyn,gxn+1),d(gxn,gyn+1)}.

By taking the upper limit asn−→ ∞, we get

lim
n−→∞

M(xn,yn,yn,xn) = d(x,y), lim
n−→∞

N(xn,yn,yn,xn) = 0.

Hence

ψ(d(x,y))≤ ψ(d(x,y))−φ(d(x,y)),

which implies thatφ(d(x,y)) = 0. Thereforex= y, that is,
T andg have a common fixed point. Similar arguments can
be used ifgx0 ≥ gy0.

If we assumeg = I in Theorem28, then we deduce the
following corollary.

Corollary 29In addition to the hypotheses of Corollary27,
if x0 and y0 are comparable, then T has a unique fixed
point, that is, there exists x∈ X such that x= T(x,x).
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