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1 Introduction and Preliminaries monotone non-increasing in y, that is, for any x X,

Throughout this article, unless otherwise specified, we X1,X2 € X, X1 2 X2 = F(x1,y) = F(%,Y),

always suppose that is the set of positive integers and X

is a non empty set. Some authors generalized the Banaci'd

contraction principle theorend]in different ways (see for

example [,2,9,10,11,13,15,16]). Recently, Bhashkar Yi.Y2 € X,y1 2 y2 = F(X,Y1) = F(X,Y2).

and Lakshmikantham5] coupled coincidence points,

coupled fixed points, coupled common fixed points and

common fixed points of nonlinear mappings with two

variables expressed. After the publication of this work, _ _

several coupled fixed point and coincidence point results FO0Y) =% Fv.X) =Y.

have appeared in the recent literature. Works noted3n ([ The main results of Bhaskar and Lakshmikanthamsin |

6,7,8,12,14,17,18,19])are some relevant examples. The g6 the following coupled fixed point theorems.

aim of this article is to make further studies on such

problems, and to generalize and complement some knowitheorem 1§5] Let (X, <) be a partially ordered set and

results. Next, let us recall some related definitions: suppose there exists a metric d on X such tad) is a
complete metric space. Let FX x X — X be a

Definition 11Let X be a nonempty set, theX.d, =) is  continuous mapping having the mixed monotone property

Definition 14[5] An element(x,y) € X x X is called a
coupled fixed point of the mapping: X x X — X if

called an partially ordered metric space if: on X. Assume that there exists & k0, 1) with

(i)(X,d) is a metric space, K

(i) (X, <) is a partially ordered set. d(F(x,y),F(u,v)) < E[d(x, u) +d(y,Vv)]
Definition 12Let (X, <) be a partially ordered set, then oy g)| u < x and y< v. If there exist two elements,¥o €
X,y € X are called comparable if X y ory < x. X with % =< F(Xo,Yo) and F(yo,Xo) = Yo, then F has a

Definition 13[5] Let (X, <) be a partially ordered set, and coupled fixed point.

F : X x X — X. The mapping F has the mixed monotone Recently, R. Bhardwajg] proved some generalizations of
property if F(x,y) is monotone non-decreasing in x and is the main results ing].
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Theorem 146] Let (X,d,=<) be a partially ordered (b)y nondecreasing,
complete metric space. Suppose that there exist(c)y(t)=0ifandonlyift=0.

A €[0.2), T - XxX — X such that We denote byp[0, ») the set of all functiong : [0,0) —

d(T(x,y), T(u,v)) <A max{ (T ( Xy)gdef)UT(U-,V))’ [0, ) satisfying the following conditions:
d(u,T (xy)).d(x,T(uVv)) Jdxu)} (a)@is lower semi-continuous,
d(x.u) b (b)p(t) =0ifand only ift =0

for all x,y,u,v.€ X with x=< u,y = v .and x7 u. SUPPOSe  ang E[0,00) the set of all continuous functions
also that T is continuous, has the mixed monotoneg - [0,00) — [0, 0) with 8(t) = 0 if and only ift = 0

property on X. If there existxo,Yo) € X x X such that o first result is the following.

Xo < T(Xo,Yo0) and T(yo,Xo) = Yo, then there exist,y € X

such that x= T(x,y) and y= T (y, ). Theorem 21Suppose thatX,d, <) be a partially ordered
. L complete metric space. Let:TX x X — X, g: X — X,

In [12], Lakshmikantham andCiric introduced the Y€ W[0,»),¢ € ®[0,») andb € O[0, o) satisfy following

concept of mixedg-monotone property which present cgondition

these definitions and results in the following. WAT (). T(UV)) < GM( ) M( )
« e . X7y7 u7V —_ vaauav _q) vaauav
Definition 17[12] Let (X,<) be a partially ordered set, FLONGGY,UY),  (2.1)

and F: X x X — X and g: X — X. We say F has the
mixed g-monotone property if F is non-decreasing for all x,y,u,v e X with gx< gu and gy> gv and gx£ gu,
g-monotone in its first argument and is non-increasingL > 0 and

3, )r/rz)r;(otone in its second argument, that is, for anywx, ) = max{d<gx’T(xd)zgx7déS)u T(u v))’
X1,% € X, 0% < g% = F(x1,y) < F(x,Y), d(gu, T(xy))-d(gx T (u,v)) d(gxgul,
and d(gx gu)
and
y1,¥2 € X, g1 < gy2 = F(X,y1) > F(X,y2). N(X,y,U,v) = min{d(gx T(xy)),d(gu, T (u,v)),
Note that ifg is the identity mapping, then Definitiot8 d(gu, T(x,y)),d(gx T(u,v))}.

reduces to Definitiorl4. Also, assume T and g are continuous mappings such that

Definition 18[12] An element(x,y) € X x X is called a T has the mixed g-monotone property, g commutes with
coupled coincidence point of a mapping K x X —s X T and T(X x X) € g(X). If there existsxo, yo) € X x X

and a mapping gX — X if such that gy < T(xo,Yo) and gy > T(yo,%o), then T and
g have coupled coincidence point in X.
F(xy) =0x F(y,x) =gy Proof. By the given assumptions, there exists

Similarly, note that ifg is the identity mapping, then (X0,Yo) € X x X such that gxo < T(x0,%0) and
Definitign 19reduces tg Definitiord 7. d Pping 9¥o > T(Yo,X). SinceT (X x X) € g(X), we can define
(x1,y1) € X x X such that g = T(Xo,Y0) and

Definition 19[12] An element % X is called a common 9¥1 = T(Yo.X), then gx < T(Xo,Yo) = gx and
fixed point of a mapping EX x X — X and g: X — X 9¥o > T(Yo.%0) = gy1. Also there existgxp,y2) € X x X

if such thatgx, = T(x1,y1) and gy2 = T(y1,%1). SinceT
F(X,X) = gx=X. has the mixed-monotone property, we have

Definition 110{12] Let X be a nonempty set and g% = T(X0,Y0) < T(Xo0,¥1) < T(X1,¥1) = g%,

F:XxX— X andg: X — X. One says F and g are

commutative if for all xyy € X, and

F(oxgy) = d(F(xy))- gy2 = T (y1,x1) < T(Yo,X1) < T(Yo,X0) = gy1.

Continuing in this way, we construct two sequen¢rs}

2 Main results and{yn} in X such that for all n=0,1,2
9%+1=T(X,Yn) and gyi1 =T (¥Yn,Xn), (2.2)

Throughout the article, l1e#/[0,) be the family of all )
functions  : [0,00) —> [0,0) satisfying the following ~for which

conditions: PSSP < . SO < Phg1 < oy (2.3)
(a)y is continuous, QYo=0y1 = 09y2=> ... 2 9% = G¥nt1 = -
@© 2014 NSP
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If there existskp € N such thatgx,+1 = g%, and
WMo+l = o, _then g%, = T(Xg,V) and
Vi, = T (Yiy» Xk, )- This means thatx,, k,) is a coupled

coincidence point off, g and the proof is finished. Thus,

that gx+1 # 0% and gyn+1 # gyn for all n € N. From
(2.2 and @.3 and the inequality Z.1) with
(va) = (Xnvyn) and(U,V) = (Xn+17yn+l)' we have

w(d(gml,gxmz)) Y(d(g%11,P%+2))
YA(T (Xn,Yn), T (Xnt1,Ynt1)))
Y(M(Xn, Yn, Xn+1, Yn+1))
( (X, Yn, Xn+1, Y1)

+ Le( (Xm ym Xn+17 Yn+1))7
(2.4)
where

M (Xn,Yn, Xn+1,Yni1) =
_ d(9%, T (%1,¥n))-d(9%+1, T (Xn+1,Yn+1))
= max
d(g%, 9% +1)
d(g%+1, T (X0, ¥n))-d(9%, T (Xn1,Yn+1))
d(0%. 0% 1) ,d(g%, 9%11)}

d(9%, 9% +1)-d(9%+1, 9% 2)

d(9%, 9% +1)
d(9%+1,9%+1)-0(9%, 9% 2)

d(g%), 9% 1)
= max{d(g%,g%.1),d

)

=max

)

9 d(gxfh ngH-l)}

(9%1+1,9%142) }

and

N(Xn, Y, Xn+1,Ynt1) =

= min{d (9%, T (Xn,¥n)),d(9%n+1, T (Xnt1, Yn+1)),
d(9% 1, T (Xn,¥n)), d(9%, T (Xn+1,Yn+1)) }

= min{d(g%, 9%+1),d(9%+ 1, 9%+ 2),d(F% 11, 9%+ 1)
,d(g%, O%42)} = 0.

Therefore,

Y(d(9%+1, O%nr2)) <

< y(max{d(g%, g% +1),d(@%11,0%2)})  (2.5)
— @(max{d (g%, 9%+1),d(IX+1,9%+2) }),
We prove that for alh € N,
d(9%+1,0%+2) < d(@%, T%n11)- (2.6)

Suppose that there existsng € N such that
d(9%ng+1; ¥ng+2) > d(%ny; P¥ng+1), from (2.5), we have

Y(d(9%np+1, I*np+2)) <

< Y(maxd(gx%y, 9% +1), (g1, G%g+2) })
— @(max{d (g%, Png+1), d(Xg+1, I¥ng+2) })
= w(d(g)(nOJrl?anoJrZ)) - (p(d(an0+1ngn()+2))
< Y(d(9%y+1, 9% +2)) s

which is a contradiction. Hence,

d(g%11,9%112) < d(g%, O%+1)

for all n € N. Similarly, we can show that
d(gY¥n+1,9Yn+2) < d(g¥n, g¥n+1) for all n € N. It follows
that the sequencefd(9%, g% +1)} and {d(gyn,gyn+1)}

are monotone decreasing sequences of non-negative real

numbers and consequently there exidtsd, > 0 such
that

lim d(g%.,0%+1) = &1 and lim d(gyn, gyni1) = 3.
n—-so0 n—; o

2.7)
We shall show thad, = &, = 0. Suppose, to the contrary,
that &; > 0. Taking the (upper) limit ag& — oo in (2.5
and using the properties of the functioisand @ we get
W(d) <y(d)
—liminf p(max{d(g%, g%+1),d(9%1,9%+2) }

S Y(61) - @(d) < Y(d),

which is a contradiction. Thereforé; = 0, that is,

lim d(g%),09%1) =0. (2.8)
n—-o

Similarly, we can show that

[lim_d(gyn, g¥h+1) =0 (2.9)

Now, we claim that

olim d(g%, Gxm) = (2.10)
Assume the contrary. Then there exists- 0 for which
we can find two subsequence®m }, {9% k) } of {g%}
with m(k) > n(k) > k such that
d((k)> PXm(i)) = € (2.11)
Additionally, corresponding ta(k), we may choosen(k)

such that it is the smallest integer satisfyiriy1(l) and
m(k) > n(k) > k. Thus,

d(IXn(k)» PHmik)—1) < € (2.12)
We have
€ < d(9%m(k)» I%n(k))
< d(9%m(k)» IXm(k)—1) + A(IXm(k)—1, 9%n(k))
< d(Xn(k)> PXmk)—1) + €-

Taking the upper limit ak — o and using 2.8) we
obtain

Jim A9, Pnik)) = (2.13)
— o0
Also
d(9Xn(k) IXmik)) < APk » P —1)
+d(Pn()—1: 9%k —1) + APk —15 Pn(k) )

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

84 N SS 2=

R. ARAB, M. RABBANI: Coupled Coincidence and Common Fixed Point...

d(PXm(k)—1:IXk)—1) < A(Pni)—1: IXm(k))
+d(9%m(k) IXn(k)) + d(DXa(k)» Pk 1)

d(9%k)—1, Pmiky) < A(FXn(k)—1 Pn(ky) + A (DXn(k) - IXm(k) )

d(Xm(k), k) < A(Pmik)» P —1) + A (X (k)—15 IXm(ie))-

So from @.89),(2.13 and takingk — o in the above
inequalities, we have

Jm A (9% -1, Pn-1) = iM_d(Gxaqk—1. 9%m) = €
(2.14)

Also

d(PXn(k)—1> FXn)—1) < A(GXm()—1, Pn(ie))

+d(9%(k) I¥n(k)—1)

< €+ d(Pn(k)> Pa(k)—1)-
So from @.8),(2.14 and takingk — o in the above
inequalities, we have

Jim A (@), Pnk)-1) = &- (2.15)
— s

By the definition ofM(x,y,u,v) and from @.8),(2.14 and
(2.195 we get

Jm M () -1 V(o1 Xmik) -1 Yy -1) = &

MmN (X1, V(-1 Xmik -1, Y -1) = 0. (2.16)
Indeed,

M (Xn(10) 1 Yn(k)— 1 Xm(k) 1, Ym(k) -1) =

- ma (%T(Tg;ni)y_ng)_l))

xd(9Xm(k) 15 T (Xm(i)— 1 Ym(k)—1))

d(g%m)—1 ( n()—1:Yn(k)—1))

d(@%() 1 PXm(l)—1)

xd(Pnk) -1, T Km(k)—1: Ym(k) 1))

d(9%(k) -1, Pmik)—1) }
_ max{d(gxn(k)—lvgxn(k))-d(gxm(k)—lvgxm(k))
d(9Xn(k)—1> PHm(k)—1)
d(9%m(k) -1 IXn(k))-d(IXn(k)—1, Pmik))

d(9%n(k)—1> PHm(k)—1)

d(gxn(k)flygxm(k)fl)}
and

N (Xn(k)— 15 Yn(k)— 1> Xm(k)—1> Ym(k)-1) =
—min{d(gxn (-1, T (Xn(k)—1,Yno-1))
d(9Xmk) -1, T Xm(k)— 1, Ym(k)—1))

d( (Xn 1,Yn ))

d(P%k) -1, T Km(k)—15 Ym(ky—1)) }

= min{d(gxn(k)—lvgxn(k))>d(g)§n(k)—la IXm(k))
d(9%m(k)—1, I%n(k))» A (D) -1, Pmii ) }-

Taking the limit ask — o and using 2.8),(2.14 and

(215 we get @.16. Since mk) > n(k),
Pmik)—1 = Paky—1 and GYmk)—1 < GYnky—1 from (2.1,
we have

W(d(9Xm(k), Pk)) =

= Y(d(T Xng)—1,Yn(-1)s T Km(k)—1, Ymi)—-1)))
<YM (Xn(k)—15 Yn(k) 1, Xm(k) 1, Ym(k)—1))

= (M (Xn(k) 1, Yn(k)— 1 Xm(k) 1, Ym(k)~1))
FLO(N(Xn(k)— 1 Yn(k)— 15 Xm(k) — 1: Ym(k)—1))

taking the upper limit ak — o, and using2.16) and the
properties of the functiop we obtain

Wie) <y(e) —ole) < y(e),

which is a contradiction. Therefor.(L0Q holds, and we
have

o Jim d (g%, gxn) =
Similarly, we show that
JJim _d(gyn, gym) =0

Since X is a complete metric space, there exigy € X
such that

lim g%+1=x and lim gyn.1 =Y. (2.17)
n—-soo n—-o
From the commutativity of andg, we have
9(9%+1) = 9(T (Xn,Yn)) = T (9%, G¥hn),
9(9¥n+1) = 9(T (Yn, Xn)) = T (G, %) (2.18)

Now we shall show that
gx=T(x,y) and gy=T(y,X).
Lettingn — o in (2.18 and from the continuity of and
g, we get
gx = lim g(gx1) = lim T(9%, Q%)
- T(nIILT)]ng{'IvnII_r)nwgyn) = T(Xv y)a
gy = lim g(gyni1) = lim T(gyn,9%)
=T(lim gyn, im gx,) = T(y,%).

This implies thatx,y) is a coupled coincidence point of
andg . This completes the proof.

Corollary 22Let (X,d,<) be a partially ordered
complete metric space. Let TX x X — X be a
continuous mapping having the mixed monotone property
on X, € Y[0,:),0 € ®[0,») and 6 € O[0, ) satisfy
following condition

YT (xY), T(uV) < PMXY,u,v) = oM(x,y,u,v))
FLON(XY,u,v)),
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for all x,y,u,v € X with x<uandy>vand x£Au, L>0 for all x,y,u,v € X with gx< gu and gy> gv and gx# gu

and and for some &, c > 0 with a-+ b+ c < 1. Also, assume
d(x, T(x,y)).d(u,T(u,v)) T and g are continuous mappings such that T has the
M(X,y,u,Vv) = max d(x,u) ) mixed g-monotone property, g commutes with T and
i T(X x X)0 C g(X). If there exists(Xo,Yo) € X x X such
du T Y)-dXTUN) gy that gx < T (Xo,yo) and gy > T(yo,Xo). then then there
d(x,u) exist xy € X such that gx=T(x,y) and gy= T (y,x).

and Proof. Fora,b,c > 0,a+b+c < 1 and for allx,y,u,v € X

N(x,y,u,v) = min{d(x, T(x,y)),d(u, T(u,v)),d(u, T(xy)), with gx< guandgy > gvandgx+ gu, we have

d(x, T(u,v))}.
- dxT(uv)} ATy T(uy) <ad@8TY)dEuTwY)
If there existgxo, Yo) € X x X such that x < T (Xo, Yo) and d(gx gu)
Yo > T (Yo, %0), then then there exist x € X such that x= d(gu, T(x,y)).d(gx T (u,v))
T(xy) and y=T(y,x). b d(oxou) +ed(grgu
Proof. Applying Theorems21 and taking agy = Ix we d(x, T(x,y)).d(u, T (u,v))
obtain the corollary2. < (a+b+cjmax d(xu) '
Corollary 23Let(X,d, <) be a partially ordered complete d(u, T(x,y)).d(x, T (u,v)) q
metric space. Let TX x X — X, g: X — X and there d(x.u) dicw}
existaA € [0,1) satisfy following condition d(x, T (x,y))-d(u, T(uv))
d(gx T(xy))-d(gu T(uv)) B T E—
d(T(xy), T(UV))) <A max oY) QAL AW (x,u)
digx.gu ATy AXTWY) §o

d(gu, T(x,y))-d(gx T (u,v)) d(x,u)

) digx.gu whereA =a+b+c < [0,1). Therefore, we get Corollary
for all x,y,u,v € X with gx< gu and gy> gv and gx# gu. 25 of Corollary 24.

Also, assume T and g are continuous mappings such tha{,y we give sufficient conditions for uniqueness of the
T has the mixed g-monotone property, g commutes withy,pjed coincidence point. Note thatX, <) is a partially

T and T(X x X)0 C g(X). If there existS(xo,yo) € XX X grdered set, then we endow the prodick X with the
such that gy < T (xo,¥o) and gy > T(Yo,%), then then  ¢415ing partial order relation, for allx,y), (zt) € X x X,
there exist xy € X such that gx= T (x,y) and gy= T (y, X).
Proof. In Theorems21, taking asL = 0, @(t) = (1— A)t (xy) <(zt) =x<z y>t
andy(t) = Ix for all t € [0,4), we get corollar?23.

Corollary 24Let(X,d, <) be a partially ordered complete
metric space. Suppose that there exist [0,1), T : X x

,d(gx.gu)},

From Theorem?21, it follows that the set of coupled
coincidence points of andg is non-empty.

X — X such that Theorem 28y adding to the hypotheses of Theor2in
d(x,T(xy)-d(u,T(uv)  the condition:
d(T(xy), T(uv)) <A max d(xu) » for every (x,y) and (zt) in X x X, there exists a
’ (u,v) € X x X such that(T (u,v),T(v,u)) is comparable
d(u, T(x.y).d(x T(uv)) Ld(x,u)}, to (T(x,y), T(y,x)) and to(T(zt),T(t,z)), then T and g
d(x,u) have a unique coupled common fixed point; that is, there

for all x,y,u,v € X with x<u and y> v and x## u. exist a uniquéx,y) € X x X such that

Suppose also that T is continuous, has the mixedxi X=T(xy), y=gy=T(y.x)

monotone property on X.If there exigt&,yo) € X x X =9X= V) Yy=9y= 1%

such that ¥ < T(Xo,Yo) and ¥ > T(Yo,X0), then then  Proof. We know, from Theorem .2, that there exists at

there exist xy € X such that x= T(x,y) and y= T (y, x). least a coupled coincidence point. Suppose that) and
Proof. Taking g = Ix in Corollary 23, we obtain the (z1) are coupled coincidence points dfandg, that is,
corollary 24, T(xy) =0gx T(y,x) =9y, T(zt) =gzandT(t,2) = gt.

We shall show thatgx = gz and gy = gt. By the
assumptions, there existéu,v) € X x X such that
(T(u,v), T(v,u)) is comparable tdT (x,y), T (y,x)) and to
(T(zt),T(t,z)). Without any restriction of the generality,
dT(xy).TuV) <a d(gx T(x.y)).d(guT(uv)) we can assume that

Corollary 25Let(X,d, <) be a partially ordered complete
metric space. Suppose that K x X — X, g: X — X
satisfies the following condition:

d(gx gu)
d(gu, T(x,y)).d(gx T (u,v)) (TY), T(¥:%) < (T(U,v), T(v,u))
d(gx gu) and
+cd(gx, gu), (T(zt),T(t,2) < (T(u,v), T(vu)).
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Putup = u, vo = vand chooséus, v1) € X x X such that

gup = T (up, Vo), gvi = T (Vo,Up).

For n > 1, continuing this process we can construct

sequence$gu, } and{gv,} such that

QUn+1 = T(Un,Vn), QVh+1 = T (Vn,Un) for all n.

Further, setxg = X, Yo =y andzy = z, to =t and on the
same way define sequendes }, {gyn} and{gz}, {gt,}.
Then, it is easy to see that

0% — T(Xay)v OYn — T(yvx)v

9% — T(z1), gta — T(t,2), (2.19)

foralln> 1.

Since (T(xY). T(y,x)) = (gxgy) = (9a,gy) is
comparable to(T (u,v), T(v,u)) = (Qui,gw1), then it is
easy to show(gx,gy) < (gtn,gvn), that is,gx < gu, and
gy > gv, for all n € N. Thus from2.1, we have

Y(d(gx,gtni1)) = Y(d(T (X Y), T (Un,Vn)))
< W(M(X7y7 Un,Vn)) - (p(M (X>y7 uﬂv\/n))
+LO(N(X,Y,un,Vn)),

where

d(gx T(X,y)).d(gtn, T (Un,Vn))
d(gx,gun)

d(gUn, T (%,Y))-d(g%, T (Un,Vn))
d(gx gun)

= max{(d(gx gh),d(gX,gtn+1)},

M (Xa ya UmVn) = ma){

9

,d(gX,gun) }

and
N(X7y7 Un,Vn) = mln{d(gxﬂT(va))’ d(gUnaT(UmVn))a
d(gth, T(X,Y)),d(g% T (Un,Vn)) = 0.
Hence

P(d(gx,gthi1)) < Y(max{d(gx gun),d(gx gun+1)})
—@(max{d(gx gun),d(gx gun1)}).

It is easy to show that

Y(d(gx guns1)) < Y(d(gxgun)) — @(d(gx gun))
< @(d(gx,gun)). (2.20)

This implies that {d(gxgu,)} is a non-increasing
sequence. Hence, there exists 0 such that

lim d(gx gun) =r.
Passing the upper limit iB.20asn — o, we obtain

Y(r) < w(r)—olr),

which implies thatp(r) = 0 and theny = 0. We deduce
that

lim d(gx,guy) =0. (2.21)
n—-c0

Similarly one can prove that

[lim_d(gy.gvn) = 0. (2.22)
Similarly, one can prove that
[lim d(gzgun) = lim d(gt,gvn) = 0. (2.23)

By the triangle inequality2.22and2.23 we get
d(9x,92) < d(gX gun+1) +d(9Z gth1) —> 0as n— oo,

d(gy,gt) < d(gy,gvn+1) +d(9t,gVh+1) — 0as n— co.

Therefore, we havgx= gzandgy= gt. Sincegx=T(X,y)
andgy = T(y,x), by commutativity ofT andg, we have

9(9x) = 9(T(x,y)) = T(gx9y),

g(gy) =9(T(v.x)) = T(9y,9%). (2.24)
Denotegx= aandgy = b. Then from2.24
gd(a) =T(ab), g(b) =T(b,a). (2.25)

Thus,(a,b) is a coupled coincidence point, it follows that
ga= gzandgb= gy, that is,

g(a)=a, g(b) =b (2.26)
From2.25and2.26
a:g(a) :T(aab)a b:g(b):T(bva) (227)

Therefore(a,b) is a coupled common fixed point ®fand
g. To prove the uniqueness of the pofatb), assume that
(c,d) is another coupled common fixed pointBfandg.
Then we have

c=9gc=T(c,d), d=gd=T(d,c).

Since(c,d) is a coupled coincidence point @fandg ,we
havegc=gx=aandgd=gy=b. Thusc=gc=ga=a
andd = gd = gb = b. Hence, the coupled common fixed
point is unique. this completes the proof.

If g =1, the identity mapping in Theorer@6, then we
deduce the following corollary.

Corollary 271n addition to the hypotheses of Corolla2g,
suppose that for everix,y) and(z t) in X x X, there exists
a(u,v) € X x X such thatT (u,v), T(v,u)) is comparable

to (T(x,y), T(y,x)) and to(T(zt),T(t,z)). Then T has a
unique coupled fixed point, that is, there exists a unique
(x,y) € X x X such that

x=T(xy), y=T(¥,x).
Now, we state and prove the last theorem of this paper.

Theorem 28n addition to hypotheses of Theore?t, if
0% and gy are comparable, then T and g have a unique
common fixed point, that is, there existe X such that
X=gx=T(X,X).

© 2014 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.3, No. 2, 81-87 (2014) www.naturalspublishing.com/Journals.asp NS 2 87

Proof. By Theorem21, we can construct two sequences [3] H. Aydi, E. Karapinar, W. Shatanawi, Coupled fixed point

{g9%} and{gyn} in X such thagx, — x andgy, — V, results for(¢ — ¢ )-weakly contractive condition in ordered
where(x,y) is a unique coupled common fixed pointDf partial metric spaces. Comput. Math. Apy§i2, 4449-4460
andg. We only have to show that=y. Sincegx, andgyo (2011).

are comparable, we may assume tipgt < gy, then it is [4] S. Banach, Surles operations dans les ensembles et leur
an easy matter to show that ?fg)zlig)ation aux equation sitegrales. Fund. M&8h133-181

0% < gyn foralln>0. (2.28) [5] TG. Bhaskar, V. Lakshmikantham , Fixed point theory in

partially ordered metric spaces and applications. Nonlinear

From2.1and2.28 we have Anal., 65, 1379-1393 (2006).

Y(d(9%1,0Ynr1) = W(A(T (X0, Yn), T (Y, %n))) [6] R. Bhardwaj, Coupled fixed point theorems in partially
< YM(x %n)) ordered metric space. Mathematical theory and modeling,
= naYnaYn, n 2’ (2012)
—®(M(Xn,Yn, Yn; %n)), [7]1 BS. Choudhury, A. Kundu, A coupled coincidence point
where result in partially ordered metric spaces for compatible

mappings. Nonlinear Anal.,73, 2524 2531 (2010).
M (X, Yins Vi, Xn) = Max{ d<9x“"T<X”*{;()X)n'dy(ng)yan<ynvxn)), doi:10.1016/.na.2010.06.025 o
’ [8] BS. Choudhury, N. Metiya, A. Kundu, Coupled coincidence

dign.T (X”’ﬁ”(yr;dy(n%mﬂy”’x”” , point theorems in ordered metric spaces. Ann. Univ. Ferrara,
d(xn’y ) 57,116 (2011).
)N [9] PN. Dutta, BS. Choudhury, A generalization of contraction
— max{d(%-,g)c‘jreﬂ)-d(g%/;,gywl), principle in metric spaces. Fixed Point Theo8y,(Article
9.0 ID 406368) (2008). doi:10.1155/2008/406368.
d<gy”’g)3<+g1)z1‘dg(3x)”‘gy””), [10] J. Harjani, B. lbpez, K. Sadarangani, Fixed point theorems
= for mixed monotone operators and applications to integral
d(9%, 9¥n) } equations, Nonlinear Anal74, 17491760 (2011).
and [11] J. Jachymski, Equivalent conditions for generalized
contractions on (ordered) metric spaces. Nonlinear Analy.,
N(Xn,Yn: ¥n, Xa) = Min{d (g%, T (Xa,Yn)),d (¥, T (Yn. Xn)), 74,774-768 (2011).
d(ayn, T (%, Yn))» A(9%, T (Y, X)) } [12] V.Lakshmikantham, L. Cirifi¢, Coupled fixed point
— min{d( ), d( ) theorems for nonlinear contractions in partially ordered
P, P1), (G, Odn1), metric spaces. Nonlinear Anal: Theorey Methods Apf?,,
d(Q¥n, 9%n+1),d(9%; ¥n+1) }- 4341 4349 (2009). doi:10.1016/j.na.2008.09.020.

[13] N.V.Luong, N.X.Thuan, Fixed point theorem for

By taking the upper limit as — o, we get generalized weak contractions satisfying rational

lim M (Xn, Yn, Yn, %n) = d(X,y), lim N(Xn,Yn,Yn, %) = O. expressions in ordered metric spaces. Fixed Point Theory
n—e n—e0 Appl., 2011, 46 (2011).
Hence [14] N.V.Luong, N.X.Thuan, Coupled fixed point theorems in
partially ordered metric spaces. Bul. Math. An. Apgl|.16-
Pd(x,y) < @d(xy)) — @(d(x,y)), 24 (2010).

[15] HK. Nashine, Z. Kadelburg, S. RadenoyiCommon fixed
point theorems for weakly isotone increasing mappings
in ordered partial metric spaces. Math. Comput. Model.,
(2011). doi:10.1016/j.mcm.2011.12.019.

[16] B. Samet, M. Rajow, R. Lazove, R. Stojiljkovic, Common
fixed point results for nonlinear contractions in ordered

which implies thatp(d(x,y)) = 0. Thereforex =y, that is,

T andg have a common fixed point. Similar arguments can
be used ifgx > gyo.

If we assumeg = | in Theorem28, then we deduce the
following corollary.

Corollary 291In addition to the hypotheses of Corolla2y, partial metric spaces. Fixed Point Theory Ap@Q11 71
if xo and y, are comparable, then T has a unique fixed _ (2011). o
point, that is, there exists& X such that = T (x,x). [17] S. L. Singh and B. Prasad, Some coincidence theorems and

stability of iterative proceders, Comput. Math. Ap5,
2512-2520 (2008).
[18] W. Shatanawi, Fixed point theorems for nonlinear weakly
References C..contractive mappings in metric spaces. Math. Comput.
3 Model, 54, 2816-2826 (2011).

[1] Rp. Agarwal, MA. El-Gebeily, D.Oregan, Generalized [19] W. Shatanawi, Z. Mustafa, N. Tahat, Some coincidence
contractions in partially ordered metric spaces. Appl. Anal., point theorems for nonlinear contraction in ordered metric
87, 109-116 (2008). spaces. Fixed Point Theory App2Q11, 68 (2011).

[2] A. Aghajani, S. Radenove, JR. Roshan, Common fixed
point results for four mappings satisfying almost generalized
(ST)- contractive condition in partially ordered metric
spaces. Appl. Math. Compu®18 5665-5670 (2012).

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction and Preliminaries
	Main results

