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Abstract: In this paper, we propose to obtain the Bayesian estimators of unknown parameter of a three parameter gamma 

inverse Weibull distribution, based on non-informative and informative priors using different loss functions. A real life 

example has been used to compare the performance of the estimates under different loss functions. 
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1 Introduction 

The Weibull distribution is one of the most popular distributions in the lifetime data analyzing because a wide variety of 

shapes with varying levels of its parameters can be created. During the past decades, extensive work has been done on this 

distribution in both the frequentist and Bayesian points of view, like, Johnson et al. (1995) and Kundu (2008). Moreover, 

the Weibull probability density function can be decreasing (or increasing) or unimodal, depending on the shape of 

distribution parameters. The inverse Weibull distribution (IW) is usually used in reliability and biological studies. The 

inverse Weibull distribution can be used to model a variety of failure characteristics such as infant mortality, useful life and 

wear-out periods. It can also be used to determine the cost effectiveness, maintenance periods of reliability centered 

maintenance activities and applications in medicine, reliability and ecology. The inverse Weibull distribution provides a 

good fit to several data such as the times to breakdown of an insulating fluid, subject to the action of a constant tension, see 

Nelson (1982).The inverse Weibull distribution has initiated a large volume of research .For example, Calabria and Pulcini 

(1990) have discussed the maximum likelihood and least square estimations of its parameters, and Calabria and Pulcini 

(1994) have considered Bayes 2-sample prediction of the distribution. Keller (1985) obtained the inverse Weibull model by 

investigating failures of mechanical components subject to degradation. The three- parameter generalized inverse Weibull 

(GIW) distribution,which extends to several distributions, and commonly used in the lifetime-literature, is more flexible 

than the inverse Weibull distribution. Mudholkar et al. (1994) and De Gusmao et al. (2011) introduced and discussed the 

three-parameter GIW distribution.  Additional results on the generalizations of the inverse Weibull and related distributions 

with applicationsare given by Oluyede and Yang (2014).and Afaq Ahmad, S.P Ahmad and A.Ahmed (2015), disscued 

Bayesian Estimation of Exponentiated Inverted Weibull Distribution under Asymmetric Loss Functions. A new three-

parameter distribution, called the new class of Generalized Inverse Weibull distribution (NGIWD) has been introduced 

recently by M.Pararai, Warahena Liyanage and B. O. Oluyede (2014). 
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where δ,β are theshapeparameters,andλ is the scaleparameter.  

2 Maximum Likelihood Estimation for the Scale Parameter λ Of NGIW Assuming Shape 

Parameters β And δ Are To Be Known 
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Let us consider a random sample 
1 2( , ,..., )nx x x x  of size n from the New Generalized Inverse Weibull Distribution 

NGIWD. Then the likelihood function for the given sample observation is 
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The log-likelihood function is 
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As both shape parameters and   are assumed to be known, the ML estimator of scale parameter   is obtained by 

solving the 
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3 Bayesian Inference Using Different Priors 

The Bayesian inference requires appropriate choice of prior(s) for the parameter(s). From the Bayesian viewpoint, there is 

no clear cut way from which one can conclude that one prior is better than the other. Nevertheless, very often priors are 

chosen according to one’s subjective knowledge and beliefs. However, if one has adequate information about the 

parameter(s), it is better to choose informative prior(s); otherwise, it is preferable to use non-informative prior(s). In this 

paper we utilize two non-informative (the Uniform and the Jeffrey’s) priors along with two informative (the Gamma and 

the exponential) priors for a New class of Generalized Inverse Weibull distribution. 

The standard Uniform distribution is assumed as non-informative prior for the parameter . The  

Uniform prior for   is 
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The Jeffrey’s prior proposed by Jeffrey, H.(1964), is given as: 
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The exponential prior, and the prior distribution is taken as 
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The gamma prior, and the prior distribution is taken as 
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With the above priors, we use three different loss functions for the model (1.1). 

4 Bayesian Method of Estimation 
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In this section Bayesian estimation of the scale parameter of gamma inverse Weibull distribution is obtained by using 

various priors under different symmetric and asymmetric loss functions. 

4.1 Posterior density under the Assumption of Uniform Prior 

Combining the prior distribution (3.1) and the likelihood function (2.1), the posterior density of  is derived as follows: 
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Hence the posterior density of   is given as  
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  and ( 1)n  are the parameters of the posterior distribution similar to the gamma distribution 
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4.2 Posterior density under the Assumption of Jeffrey’s prior 

Combining the prior distribution (3.2) and the likelihood function (2.1), the posterior density of  is derived as follows: 
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Hence the posterior density of   is given as  
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4.3 Posterior density under the Assumption of of exponential Prior 

Combining the prior distribution (3.3) and the likelihood function (2.1), the posterior density of  is derived as follows: 
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Hence the posterior density of   is given as  
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4.4 Posterior density under the Assumption of Gamma Prior 

Combining the prior distribution (3.4) and the likelihood function (2.1), the posterior density of  is derived as follows: 
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Hence the posterior density of   is given as  
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5 Bayesian estimation by using Uniform prior under different Loss Functions 

Theorem 5.1:- Assuming the loss function ˆ( , )sl   , the Bayesian estimator of the parameter , if the parameters & 

are known, is of the form  
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Proof: - The risk function of the estimator  under the squared error loss function 
2ˆ ˆ( , ) ( )l c      is given by the 

formula  
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On substituting (4.1) in (5.1.1), we have  
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On solving (5.2), we get 
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  Minimization of the risk with respect to ̂  gives us the optimal estimator 
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Theorem 5.2:- Assuming the loss function ),ˆ( Al , the Bayesian estimator of the parameter , if the parameters  &

are known, is of the form  
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Proof: - The risk function of the estimator  under the Al-Bayyati,s loss function 2 2ˆ ˆ( , ) ( )
c

l         is given by the 

formula  
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On substituting (4.1) in (5.5), we have  
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On solving (5.6), we get 
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  Minimization of the risk with respect to ̂  gives us the optimal estimator 
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Theorem 5.3:- Assuming the loss function ˆ( , )El   , the Bayesian estimator of the parameter  , if the parameters  &

are known, is of the form  
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Proof: - The risk function of the estimator  under the Entropy loss function 
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On substituting (4.1) in (5.8), we have 
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On solving (5.9), we get 
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Theorem 5.4:- Assuming the loss function ˆ( , )pl   , the Bayesian estimator of the parameter  , if the parameters  &

are known, is of the form  
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Proof: - The risk function of the estimator under the precautionary loss function
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On substituting (4.1) in (5.11), we have  
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On solving (5.12), we get 
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Minimization of the risk with respect to ̂  gives us the optimal estimator 
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6 Bayesian Estimation of λ under the Assumption of Jeffrey’s Prior 
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Theorem 6.1:- Assuming the loss function ˆ( , )sl   , the Bayesian estimator of the parameter , if the parameters & 

are known, is of the form  
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Proof: - The risk function of the estimator  under the squared error loss function 
2ˆ ˆ( , ) ( )l c      is given by the 

formula  

2

2

0

ˆ ˆ( , ) ( ) ( / )R c x d      


        
)1.6(

 

On substituting (4.2) in (6.1), we have  
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On solving (6.2), we get 
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Minimization of the risk with respect to ̂  gives us the optimal estimator                  
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Theorem 6.2:- Assuming the loss function ),ˆ( Al , the Bayesian estimator of the parameter  , if the parameters & 
are known, is of the form  
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Proof: - The risk function of the estimator  under the Al-Bayyati,s loss function 2 2ˆ ˆ( , ) ( )
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On substituting (4.2) in (6.5), we have  
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On solving (6.6), we get 
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Theorem 6.3:- Assuming the loss function ),ˆ( El , the Bayesian estimator of the parameter , if the parameters 

 & are known, is of the form  
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Minimization of the risk with respect to ̂  gives us the optimal estimator                  
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Theorem 6.4:- Assuming the loss function ˆ( , )pl   , the Bayesian estimator of the parameter  , if the parameters & 

are known, is of the form  
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On substituting (4.2) in (6.13), we have  
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On solving (6.14), we get 
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Minimization of the risk with respect to ̂  gives us the optimal estimator                  
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7 Bayesian Estimation of λ under the Assumption of exponential Prior 

Theorem 7.1:- Assuming the loss function ),ˆ( sl , the Bayesian estimator of the parameter  , if the parameters & 

are known, is of the form  
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On substituting (4.3) in (7.1), we have  
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On solving (7.2), we get 
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Minimization of the risk with respect to ̂  gives us the optimal estimator                  
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Theorem 7.2:- Assuming the loss function ),ˆ( Al , the Bayesian estimator of the parameter , if the parameters & 
are known, is of the form  
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On substituting (4.3) in (7.5), we have  
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On solving (7.6), we get  
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Theorem 7.3:- Assuming the loss function ˆ( , )El   , the Bayesian estimator of the parameter , if the parameters & 
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On solving (7.10), we get 

1

( 1)ˆ ˆ ˆ( , ) log( ) 1
( ) ( 1)

T n
R b

n n


   

 

  
    

  
           

)11.7(
 

Minimization of the risk with respect to ̂  gives us the optimal estimator                  

1
1

( )
,

n

i
i

T x cE

n

T



 





               
)12.7(

 

 



J. Stat. Appl. Pro. 6, No. 1, 185- 203 (2017) / http://www.naturalspublishing.com/Journals.asp  197 
  

 

 

         © 2017 NSP 

           Natural Sciences Publishing Cor. 
 

Theorem 7.4:- Assuming the loss function ˆ( , )pl   , the Bayesian estimator of the parameter  , if the parameters  &

are known, is of the form  
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On substituting (4.3) in (7.13), we have  
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On solving (7.14), we get  
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8 Bayesian Estimation of λ under the Assumption of Gamma Prior 

Theorem 8.1:- Assuming the loss function ˆ( , )sl   , the Bayesian estimator of the parameter , if the parameters & 

are known, is of the form  
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Proof: - The risk function of the estimator   under the squared error loss function 
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On substituting (4.4) in (8.1), we have  



http://www.naturalspublishing.com/Journals.asp


198                                      K. Fatima, S. Ahmad: Bayesian analysis of a scale … 
 

 

 

© 2017 NSP 

Natural Sciences Publishing Cor. 
 





 dTean

an

anT
cR 





 
1

)(
0

2)ˆ(),ˆ(

 

2 1 2 1

0 0

1 1

0

ˆ

ˆ( , )
( )

ˆ2

n a T n a T

n a

n a T

e d e d
T

R c
n a

e d

   



 

    

 


  

 

      





   

 
 

 
  
 
  

 



  )2.8(
 

On solving (8.2), we get  
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Minimization of the risk with respect to ̂  gives us the optimal estimator                                 
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Theorem 8.2:- Assuming the loss function ),ˆ( Al , the Bayesian estimator of the parameter , if the parameters  &
are known, is of the form  









 n

i

bixTA
T

acn

1

2 ,
)(





 

Proof: - The risk function of the estimator  under the Al-Bayyati,s loss function 2 2ˆ ˆ( , ) ( )
c

l         is given by the 

formula  

2 2

4

0

ˆ ˆ( , ) ( ) ( / )
c

R x d       


                  
)5.8(

 

On substituting (4.4) in (8.5), we have 
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Minimization of the risk with respect to ̂  gives us the optimal estimator                                
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Theorem 8.3:- Assuming the loss function ),ˆ( El , the Bayesian estimator of the parameter , if the parameters 

 & are known, is of the form  
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On substituting (4.3) in (8.9), we have  
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On solving (8.10), we get 
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On substituting (4.4) in (8.13), we have  
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On solving (8.15), we get   
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9 Real Life Data 

The data set is given by Lee and Wang (2003) which represent remission times (in months) of a random sample of 

128 bladder cancer patients. The data are as follows: 0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 

6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 

2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34,  

14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 

4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40 , 

3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 

6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.  

We estimate the unknown parameters of each distribution by the maximum-likelihood method, and the Bayes Estimates are 

obtained to compare the candidate distributions. 

 

 

Table 1: Bayes Estimates of λ under Uniform Prior 

  
 

MLE SELF 
ABLF 

ELF PLF 
C2=0.5 C2=1.0 

0.5 0.5 1.012679 1.028502 1.036414 1.036384 1.012679 1.036384 

0.5 1.0 1.242364 1.261776 1.271482 1.281188 1.242364 1.271445 

1.0 0.5 2.025358 2.041181 2.049093 2.057004 2.025358 2.049078 

1.0 1.0 2.484729 2.504141 2.513847 2.523553 2.484729 2.513828 

MLE=Maximum Likelihood, SELF=squared error loss function, ABLF=Albayyti’s 

loss function, ELF=Entropy loss function, PLF=precautionary loss function. 

Table 2: Bayes Estimates of λ under Jeffreys Prior 

  
 

MLE SELF ABLF ELF PLF 
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C2=0.5 C2=1.0 

0.5 0.5 1.012679 1.012679 1.020591 1.028502 0.99686 1.02056 

0.5 1.0 1.242364 1.242364 1.252070 1.261776 1.22295 1.252033 

1.0 0.5 2.025358 2.025358 2.033270 2.041181 2.009535 2.033254 

1.0 1.0 2.484729 2.484729 2.494435 2.504141 2.465317 2.494416 

MLE=Maximum Likelihood, SELF=squared error loss function, ABLF=Albayyti’s 

loss function, ELF=Entropy loss function,  PLF=precautionary loss function 

Table 3: Bayes Estimates of λ under exponential prior 

  
 1c

 
MLE SELF 

ABLF 
ELF 

 

PLF C2=0.5 C2=1.0 

0.5 0.5 0.4 1.012679 1.022033 1.029895 1.037757 1.00631 1.029865 

0.5 1.0 0.4 1.242364 1.252054 1.261686 1.271317 1.232792 1.261649 

1.0 0.5 0.4 2.025358 2.028343 2.036205 2.044067 2.01262 2.03619 

1.0 1.0 0.4 2.484729 2.484846 2.494478 2.504109 2.465584 2.494459 

MLE=Maximum Likelihood, SELF=squared error loss function, ABLF=Albayyti’s loss 

function, ELF=Entropy loss function, PLF=precautionary loss function 

Table 4: Bayes Estimates of λ under gamma prior 

  
 

a  b
 

MLE SELF 
ABLF 

ELF 
 

PLF C2=0.5 C2=1.0 

0.5 0.5 1.4 0.4 1.012679 1.028323 1.036185 1.044046 1.012599 1.036155 

0.5 1.0 1.4 0.4 1.242364 1.259759 1.269391 1.279022 1.240497 1.269354 

1.0 0.5 1.4 0.4 2.025358 2.034633 2.042495 2.050356 2.018909 2.042479 

1.0 1.0 1.4 0.4 2.484729 2.492551 2.502183 2.511814 2.473289 2.502164 

                         MLE=Maximum Likelihood, SELF=squared error loss function, ABLF=Albayyti’s loss 

                         function, ELF=Entropy loss function, PLF=precautionary loss function. 

Bayes risk is computed in the following tables: 

Table 5: Bayes Risk of λ under Uniform Prior 

  
 

SELF ABLF ELF 
PLF 

C=0.5 C=1.0 C2=0.5 C2=1.0 b1=0.5 b1=1.0 

0.5 0.5 0.00814 0.01627 0.01660 0.01706 2.077038 4.154076 0.01576 

0.5 1.0 0.01225 0.02449 0.02767 0.03138 1.97483 3.94966 0.01934 

1.0 0.5 0.01615 0.03229 0.04628 0.06644 2.07509 4.15018 0.01579 

1.0 1.0 0.02431 0.04861 0.07715 0.12267 1.97288 3.94577 0.01937 

SELF=squared error loss function, ABLF=Albayyti’s loss function, ELF=Entropy loss 

function, PLF=precautionary loss function. 

Table 6: Bayes Risk of λ under Jeffrey’s Prior 

  
 

SELF ABLF ELF 
PLF 

C=0.5 C=1.0 C2=0.5 C2=1.0 b1=0.5 b1=1.0 

0.5 0.5 0.00801 0.01602 0.01622 0.01648 2.07710 4.15420 0.01576 

0.5 1.0 0.01206 0.02412 0.02704 0.03043 1.97489 3.94978 0.01934 

1.0 0.5 0.01602 0.03205 0.04574 0.06541 2.07511 4.15021 0.01579 

1.0 1.0 0.02412 0.04823 0.07625 0.12078 1.97289 3.94579 0.01937 

SELF=squared error loss function, ABLF=Albayyti’s loss function, ELF=Entropy loss 

function, PLF=precautionary loss function.        
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Table 7: Bayes Risk of λ under exponential Prior 

  
 1c

 

SELF ABLF ELF 
PLF 

C=0.5 C=1.0 C2=0.5 C2=1.0 b1=0.5 b1=1.0 

0.5 0.5 0.4 0.00803 0.01607 0.01634 0.01668 2.08019 4.16038 0.01566 

0.5 1.0 0.4 0.01206 0.02412 0.02714 0.03066 1.97869 3.95739 0.01919 

1.0 0.5 0.4 0.01595 0.03189 0.04555 0.06519 2.07825 4.15649 0.01569 

1.0 1.0 0.4 0.02393 0.04786 0.07567 0.11986 1.97675 3.95350 0.01923 

SELF=squared error loss function, ABLF=Albayyti’s loss function, ELF=Entropy loss 

function, PLF=precautionary loss function. 

Table 8: Bayes Risk of λ under gamma prior 

  
 

a  b  
SELF ABLF ELF 

PLF 
C=0.5 C=1.0 C2=0.5 C2=1.0 b1= b1= 

0.5 0.5 1.4 0.4 0.00808 0.01617 0.01649 0.01688 2.08017 4.16034 0.01566 

0.5 1.0 1.4 0.4 0.01213 0.02427 0.02739 0.03104 1.97867 3.95734 0.01919 

1.0 0.5 1.4 0.4 0.01599 0.03199 0.04576 0.06559 2.07824 4.15648 0.01569 

1.0 1.0 1.4 0.4 0.02401 0.04801 0.07602 0.12059 1.97674 3.95349 0.01922 

SELF=squared error loss function, ABLF=Albayyti’s loss function, ELF=Entropy loss function, 

PLF=precautionary loss function.  

10 Conclusion 

On comparing the Bayes posterior risk of different loss functions, it is observed that for smaller values of δ  SELF has less  

Bayes posterior risk and for higher values of δ Precautionary loss function gives less posterior risk than other loss functions 

in both non informative and informative priors than other loss functions. According to the decision rule of less Bayes 

posterior risk we conclude that SELF is more preferable loss function for smaller values of δ and precautionary loss 

function is preferable for higher values of δ.  

It is clear from Table 5 to Table 8, the comparison of Bayes posterior risk under different loss function using non-

informative as well as informative priors has been made through which we conclude that within each loss function 

informative exponential prior provides less Bayes posterior risk than gamma prior so it is more suitable for the generalized 

inverse Weibull distribution and among non informative priors Jeffrey’s prior provides less posterior risk than uniform 

prior.  
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