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Abstract: In this study, we take an extensive study of the second-aedgonse surface central composite designs (CCDs). Ttialpar
replication of the central composite designs (CCDs) anetitged studies are especially in focus. Earlier studiesiméng to the partial
replication of the different portions of the CCD are exandim@d the findings highlighted. Even the later studies, wfachised more
on the properties and distribution of the prediction vac&@of the replicated variations of the CCD throughout thégieregion using
graphical methods, were also reviewed. Research findings $tzown that the optimum performance of the replicatedatiaris of
the CCD depends on the axial distanag,and design region, cuboidal or spherical. No particulplicated variation of the CCD is
consistently optimum in both design regions and for all thailable axial distances utilized in exploring the secander response
surfaces using the CCD. However, replicating the star @oriin most cases, improves the desigmerformances. Areas for further
research and extension of the concept of partial replicaifadhe CCD were also highlighted.
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1 Introduction

The works of L] laid the foundation for response surface methodology (R$Wdcording to ], RSM is a combination of
experimental design, regression technique and optimizétieory which utilizes Taylor series approximations teatide

the relationship between the response(s) of interest aniddlependent factor(s). Therefore, it is known as a cadaaif
mathematical and statistical techniques for empirical ehbdilding: see, for example3] and [4]. By careful design of
experiments, the objective of RSM is to optimize the respdisitput variable) of interest which is being influenced by
several independent variables (input variables). Herexaeriment is a series of runs (or tests) in which changeemad
in the input variables help to ascertain the changes andmsder the changes in the output variables.

RSM has been evolving over the years since its inception asthéen very useful in numerous industrial and scientific
revolutions. p] reviewed developments in RSM from the Biometric perspectb] reviewed the progress made in RSM
and suggested areas for further advancemé&harid [8] made the more recent updates on the advancements on RSM.
Furthermore, RSM has been extended to evaluating mixtymergrents and experiments involving noise factors: sae, fo
example, 9], [10] and [11].

RSM is a sequential procedure where the form of the actuatioeiship between the response varialgleand
independent variable(sk;, is unknown but could be approximated using low-order poiyial. Most often, the
approximating function is the first-order model,
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Figure 2: Geometric Structure of the CCD for k= 3 Factors

wheref3; and3; are the regression parameterss the error andk is the number of experimental factors. If there is
curvature, a higher degree polynomial, like the seconeombdel,
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has to be used, where the symbols and notations take sim@animgs as in equation (18][gave three objectives for
considering regression models in RSM and outlined stepsdiizing these objectives.

Designs for fitting the second-order response surface madelcalled second-order response surface designs. These
designs have desirable properties for a number of indusijeeriments. However, a second-order response surfawpde
is often chosen on the consideration of several criteridastified by [L2] and [L3]. Among the numerous second-order
response surface designs with their unique features, tliesteomposite design is the most popular and useful inomresp
surface exploration. The symmetry and flexibility offeredthe structure of the design give substantial advantage in
prediction capabilities and parameter estimation. The @gibts for spherical and cuboidal regions andifer 2, where
k, a positive integer, is the number of factors.

According to [L4], the structure of the CCD has three components: the fatt@ibe) portion of at least resolution
V, the star (axial) portion at distanag, from the centre of the design along each axis, and the cpain¢located at the
centre of the design space. A resolutibesign is a design in which two-factor interactions aresalibwith three-factor
interactions but no main effect or two-factor interactisraliased with another main effect or two-factor interactibhat
is, main effects and the two-factor interactions do not hather main effects and two-factor interactions as the@rsals.
Hence, for a resolutiol design, the shortest word in the defining relation must haseeléitters. The cube or factorial
portion has full ¢ = 0) or fractional ¢ > 0) factorial number of runs, whemgis an integer. The star portion hak 2
number of runs augmented witly centre points. Hence, the CCD uses a totaNof f + 2k + ng number of runs to
estimate thep = (k+ 1)(k+ 2)/2 number of model parameters. The cube (factorial) portamdoordinates of the form,
(X1,X2,...,%n) = (£1,41,...,4+1); the star portion has coordinates of the fofmga, 0,0, ...,0), ..., (0,0,..., a) while the
centre point is of the form(0,0, ...,0). The design matrix and geometric structure of the CCDkfer3 with ng — 1 are
shown in Figures 1 and 2, respectively, with the vecter, @,0,0): see [L5 and [4].

The three components of the CCD play important but differelas in parameter estimation. The resolutibfull or

fractional factorial component (the cube) contributesssaititially to the estimation of thielinear terms and thé“(;—l)
two-factor interaction terms. Only the factorial point tdioutes to the estimation of the interaction terms. The sta
points contribute to the estimation of thkequadratic terms. Without the star points, only the sum ofoghadratic terms
can be estimated. The star points do not contribute to tiaatson of the interaction terms. The centre points contgb
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towards the estimation of pure error and estimation of catacterms.

2 Evaluation of the Central Composite Design

Numerical and graphical methods of evaluating the CCD armrotesponse surface designs exist. When fitting
second-order models, optimal design methods includeesivgjlue criteria to construct designs for RSM. We focus on
some of the criteria that use the variance characteristich® design, theA— and D—efficiency criteria. The
D—efficiency is a useful tool for quantifying the quality of thestimated model parameters and is defined as
Dert = {|X’X|/P/N}100. The power, Ap, takes account of they parameter estimates being assessed when the
determinant of the information matrix is being computeds the total number of design runs aKds the design matrix
extended to model form from which the information matrid, = X’X, is obtained. TheA-efficiency is given by
Aetf = 100p/trace[N(X’X)~1], and is directly related to minimizing the individual var@es of the model parameters.
According to [L6] and [L7], A— and D—efficiency measures represent the percentage number ofrequged by a
particular orthogonal design to achieve the same detemhavad trace. WhileA—efficiency deals with the individual
variances of the model parametdbs; efficiency considers the variances and covariances of tiression parameters.
Furthermore, we also consid&-efficiency andV-criterion, which depend on the scaled prediction variaotéhe
design. The scaled prediction variance is given by

PV =NF ()M (x) (3)

where Mglz(x’x)—1 is the inverse of the information matrix of the desigh, whose design matrix iX and

f/(X) = (1,X1, X, ..., Xi; X2, ...,xﬁ;xlxz,...,xk,lxk) is the vector of design points in the design space expandetbtiel
form by classifying the coordinates of the design points Iirtear, quadratic and mixed (interaction) componentfef t
model. Therefore, thes-efficiency is given byGess = 100p/[Nf’(x)Mg1f(x)] while the V-criterion is given by

V = N[traceS(X'X)~1], whereSis the matrix of region moments. Thecriterion minimizes the average of the scaled
prediction variance. The values Af-, D— and G—efficiencies are in the interval), 1]. However, for easy assessment
and comparison, these values are converted to percentagesliiplying by 100.N is used to scale the results based on
the overall size of the design. The higher the efficiency esluhe better foA—, D— and G-efficiencies while the
smaller the value, the better for tkfecriterion.

When the practitioner is interested in understanding tregliption variance distribution, that is, to know if the
prediction variance is stable throughout the entire desegion or where in the region has the best and worst predictio
variance, graphical methods offer the best approach fologrg the prediction properties of competing designs. As
rightly pointed out by 13], single-value criteria, like the four alphabetic criterconsidered here, do not effectively
reflect the prediction capabilities of a design. Hence, lgiGg approach is necessary to obtain the complete predicti
characteristics of the CCD throughout the entire desigimoredgrhe two graphical approaches adopted here are the
variance dispersion graphs (VDGs) @8] and fraction of design space graphs (FDSGs)18}.

3 Historical Review of Partial Replications of the CCD

Traditionally, it is only the centre point that is replicdtey times for the purpose of the estimation of pure error, test of
model lack-of-fit and other tests of hypotheses wigh- 1 degrees-of-freedom: see, for exampkf][ However, there

is increasing concern about replicating only at the cenfttb@design, as this may not give complete knowledge of the
prediction capability of a design since there is no cleasrimiation on how the design will perform if there are repiicas

at the cube and/or star points. Figure 3 shows the threedliffstructures of a three-factor CCD with each component
replicated twice.

The history of partial replication of the CCD dates backat] iwho argued that replicating only at the centre could be
misleading since there is no assurance that the experibegrgawill be constant throughout the entire design regida
pointed out that variability might increase away from thatee of the design such that the estimate of the experimental
error may be too small for proper evaluation of the coeffitsesf the second-order models, and therefore, it is a sound
experimental strategy to obtain replicates over the erpantal region in order to estimate error and provide rediabl
estimates of the experimental effects. In his work also,cthige and star portions of the CCD were examined through
partial replication and suggestions made on possible @dges of replicating these portions of the design in the spdie
region. Furthermore, he considered the cases of partiafiiicated orthogonally-blocked CCD and, from his analysis
concluded that replication of the star portion of the oritweagjly-blocked CCD has better potential than replicatimg t
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(a) (k) ()

Figure 3: Geometric Structure of Partially Replicated Three-Factor CCD with () Cube, (b) Star and (c) Centre
Point Replicated Twice

cube. For a CCD with the star portion replicated twi@d] [proposes the axial distance that ensures orthogonalibigck
as

. f(N—f—nf)
_{ 4(f+nf) }1/2 )

whereN = f + 4k + n¢ + na.

[20] examined the appropriate number of centre points thatoffénimum prediction variance for central composite
and Box-Behnken designs. Experimenters usually resoriiows 'rules of thumb’ for choosing number of replications
of the centre point for design selection and test of modéd-tzefit. One of the 'rules of thumb’, as pointed out ia(],
is selecting enough centre points to create enough degfdesedom for model lack-of-fit in the F-test. Another ‘eul
of thumb?, still in [20], is to have at least two centre points and sufficient repbos from other portions of the designs
to obtain at least three degrees-of-freedom for pure elmstead of resorting to the rule of thumb, he introduced the
integrated variance criterion for determining the numbferemtre points suitable for using the CCD in response sarfac
exploration. To achieve this, he considered three partiejplicated options of the CCD, namely: (i) one cube plus two
stars, (ii) one cube plus one star, and (iii) two cubes plesstar, folk =5, 6, 7 and 8 factors. The designs are evaluated by
varying the number of centre points to know the design ogtiah minimizes the integrated variance function. Contrary
to initial recommendations that more number of centre pamheeded for evaluating these designs, the results skaw th
fewer centre points are generally more appropriate.

[22] developed analytical procedure for plotting the VDGs alnid procedure accommodates the replication of the
star portion only. Secondly, he demonstrated the impactmfaating the star portion by plotting the VDGs fot= 5 and
6 factors where he used two star poit&) for evaluation of the CCD in spherical region with axial diste,a = v/k.

He concluded that replicating the star portion improvessiitgerical prediction variance characteristics of the CCD.

[17] evaluated the effects of replicating the cube, star antteq@oints of the CCD on thAa—, D— andG-efficiencies
and theV-criterion for the reduced models in the hypercube. The cedumodel here implies the nature of the second-
order model when either the quadratic tesgh, or the linear termy;, or the interaction termx;x;, is removed from the
model. The study considered seven versions of partiallijcaied CCD for the comparison. They are: (0, 1, 1); (2, 1,
1); (4, 1,1); (0, 2,1); (2,2,1); (0,1, 2) and (2, 1, 2), eacinbehe realization values fding, ns,n¢) , whereng is the
number of centre pointsy is the number of star point replication anglis the number of cube replication, respectively.
The points of zero values for the centre point representadisesof missing valueslT] concluded that for the reduced
models for the CCD, the partial replication of the CCD infloesithe optimality criteria in different ways. What impreve
one criterion may be detrimental to the other criterion aratefore, the decision rests with the experimenter based on
professional experience and preferences.

4 Recent Developmentsin Evaluation of Partially Replicated CCD

In this section, we consider developments in the area oigbagplication of the CCD in the last five years or thereabout
Earlier works did not pay much attention to the predictionamce properties of the partially replicated CCD options.
The prediction variance performance of a design deterntineswell the design could predict responses with precision.
Designs with smaller prediction variances predict respsngith higher precision than designs with large prediction
variances. 23] replicated the cube and star portions of the CCDKfer2, 3, 4 and 5 factors to evaluate the performances
of the CCD with respect to the rotatability and orthogorygtitoperties of the designs. The pattern of replication2f [
was adopted and extended for the study. They utilizedttaptimality as the basis for comparison of the variations
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of the partially replicated CCD. From their results, it wascluded that replicating the cube offer beteoptimality
than replicating the star for both the rotatable and ortma@€CDs. While the case of rotatable CCD may be true,
the same may not be said of the orthogonal CCD due to the fatttle values of the axial distances used for the
orthogonal CCD for which the functiomy = {[(2n¢)Y/2 — 2kn.] /2ns}Y/2, for partially replicated orthogonal CCD was
derived is consistent with an earlier general expressioritfe orthogonab for partial replications given by2{] as

a = {[NY?— (2nc)/?] /4nZ} /4.

Usually, when the cube and star points are replicated the sammber of times, the cube-replicated CCD will have
more runs than the star-replicated CCD. However, in theitlyst[23] made cube- and star-replicated CCDs which are
replicated equal number of times to have the same numbensfloy augmenting the star-replicated option with excess
number of centre points. This also influenced the outcoméaif study. For instance, for the five-factor CCD, one of
the replicated options, four cubes plus one star augmenitadthvee centre points has a total of 141 design runs. The
corresponding star-replicated option, four stars plusari®, also has 141 runs. Normally, and based on the litesatur
the star-replicated option should have a total of 75 runswdrually augmented with the same three centre points. To
achieve 141 runs for this design option, excess of 66 cewlrepwere added. Put in another way, the centre point was
replicated sixty-six times. The implications are obvioksst, the smaller number of design runs, which should be an
advantage for the star-replicated CCDs, is not reflectechi@Hy, theD-optimality values for the star-replicated design
options are also expected to be affected sicas earlier explained, is somewhat over-bloated.

The use of graphical methods to assist in evaluating thécegpt design prediction potential has not received much
attention in the previous works discussed so far. Howewer,importance of graphical techniques like the variance
dispersion graphs and fraction of design space grapheearéintioned need not be over emphasized. Subsequent works
presented here made consistent effort to utilize one or fvibeographical methods along with the alphabetic critegia t
evaluate partially replicated CCD options. This gives aempeneral understanding of the design potentials thamiglyi
only on the alphabetic criteria, which as earlier pointed da not reflect the overall performance of the design
throughout the design region.

[25] considered variations of partially replicated centrangmsite designs in the hypercube. The hypercube is a multi-
dimensional cuboidal region with axial distance= 1. They extended the(] form of replication of the CCD. Hence
the designs considered are (i) two cubes plus one(€48;); (ii) one cube plus two star&C;S); (iii) three cubes plus
one star(C3S;); (iv) one cube plus three sta(€,Ss); (v) four cubes plus one sta€,S;); and (vi) one cube plus four
stars(C1S). The prediction capabilities of the design options withpext to their prediction variances are evaluated
using theG- and|-optimality criteria as single-value optimality criteri@he fraction of design space graphs are used
to evaluate and compare the prediction variance performahthe replicated design options on a common scale and
on a two-dimensional space. The performances of the degitions are observed fary = 2 and 3 centre points. The
replication of the star point is recommended since the caf#d-star options always give small@randl-optimal values
than the corresponding replicated-cube options with equalber of replications. The FDSGs show that star-replicate
CCD options have more stable spread of small-scaled predlicariances throughout the entire design region, with the
(C1S) option being the best. The FDSGs for 4 and 5 factors are displayed in Figures 4 and 5.

There is increasing argument and consideration for the tismsraled (standardized) prediction variance (UPV)
in design evaluation when graphical methods are used wigleing the prediction variance performance of a given
design throughout the design region. This argument is baselde fact that scaling the prediction variance which étai
multiplying the prediction variance b\, the sample size or runs of the design, gives smaller desigdse advantage
over larger designs. Smaller and larger designs here imgdjgds with smaller and larger sample sizes, respectively.
According to [L9 and [14], scaling penalizes larger designs over smaller ones. atienale for scaling the prediction
variance is to account for the cost of the design, repreddntdl, in comparing designs of various sizes. However, there
is increasing awareness for the use of the UPV in design atraiu [26] and [27] argue that larger designs often lead
to smaller prediction variances and provide the experigranith more useful information than scaling the prediction
variance. Subsequent discussions will feature the urdsgaediction variance (UPV) among the veritable tools fa th
evaluation and comparison of the replicated design options

[28] revisited the partially replicated CCD options in the hyqée for k = 3 to 6 experimental factors. In this case,
graphical methods alone, VDG and FDSG, are used in the di@iuaf the designs. The VDGs of the replicated design
options are plotted for the scaled prediction varianced/§Si a common scale while the FDSGs of the designs are
plotted for the UPV but not on a common scale. The importaridkis is to be able to ascertain the merit or lack of it
of considering the UPV in design evaluation throughout thigre design region. The replicated options are considered
for ngp =1, 2 and 3 centre points. This helped in monitoring the peréorces of the designs in the cuboidal region as the
number of centre points increases from 1 to 3. The VDGs and@dX8rk = 6 factors, and 3 centre points are displayed
in Figures 6 and 7.

In general, the results have shown that the replicateddstigns displayed stability and no dispersion within thi¢ un
cube considering the VDG and smaller unscaled predictioanees for the FDSG. Therefore, the replicated-star optio
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have higher prediction potentials in the hypercube. Alke, replicated-cube options showed some dispersion around
the centre of the design region for the VDG and higher undcpiediction variance for the FDSG which deteriorates
rapidly away from the centre of the design region. Howees, deterioration worsens as the replication of the cube
portion increases. Moreover, the replicated-star dedigive smaller number of runs than the replicated-cube design
which are replicated the same number of times. This makerefiieated-star designs more economically feasible than
the replicated-cube designs.

Orthogonality is a very important geometric property of ®€D. The CCD is made orthogonal by the choice of
axial distancea. The orthogonality property of the CCD enables for uncemerl estimates of the response model
coefficients as well as minimizes the variances of the caeffis. The axial distance;, for an orthogonal CCD is given
by a = {[(Nf)1/2 — f]/2}1/2: see, for example20]. [24] showed that for an orthogonal CCD with the cube or star point
replicated, the axial distance is given by

2k—an[N1/2 _ (2k—qnc)1/2]2 14
a={ 4n2 P
S

where the symbols and notations of the alpha equationshaikeusual meanings highlighted earlier in this work.

[30] conducted extensive study on the prediction capabilitiepartially replicated orthogonal central composite
design. Théd— andG-efficiencies are used to evaluate the performances of tigraefor 3 to 6 factors in the spherical
region while the VDG and FDSG are the graphical methods usdi$play the design prediction variances throughout the
entire design region. Only the scaled prediction variaisf\) was considered for the VDG while both SPV and UPV
were considered for the FDSG. Furthermore, they evalubtedésigns while assessing their performances as the number
of centre points increases from 1 to 3. The six partiallyicgppéd design options o2p] are compared with the classical
(unreplicated) CCD, one cube plus one §tarS;). The VDG and FDSG show that for both the scaled and unscaled
prediction variances, the replicated-star options displaaller and stable prediction variances than the replicabe
options and the classical (unreplicated) CCD. The graphls 05 with 3 centre points are displayed in Figure 8.

Rotatability is another important property of the CCD imwced by B1]. Rotatability is a reasonable basis for the
selection of a response surface design in response sugtioezation and it is wise to choose a design that providesieq
precision of estimation in all directions. A design whichiaace,V{y(x)}, of the predicted responsgx), is constant
at any given pointx, in the design space such that equal information is obtaimad directions at equal distance from
the centre of the design space is said to be rotatable. Thassribat for a rotatable desig{y(x)} is the same at all
points, X, that are of the same distance from the centre of the desggorreThe CCD is made rotatable by the choice
of a, the axial distance. This property is achieved by settimgstar point at distance, = (f)¥/#, f being the factorial
(cube) portion of the CCD.32] , [33], [34] and [4] offer further discussions on rotatability and measuresotdtability.

If the cube is replicated, times and the stans times, thengr = {(n.f)/ns}*/* yields a rotatable CCD, where= 2k~
is the number of factorial points in the design: s24.[

[35] discussed the prediction variance properties of rotatghltially replicated CCD in the spherical region for
= 3 to 10 factors. Full factorial portion of the CCD was used ko= 3, 4 and 5 factors. With the number of factors
moderately increasing, one-half fraction of the factopiaition is considered fdk = 6 and 7 factors while one-quarter
fraction is considered fok = 8, 9 and 10 factors. Each design option is augmented mgith 3 centre points. Th®—
andG-efficiencies as well as thé-criterion are used for the design evaluation while the FOthe graphical method
considered in displaying the prediction variances of tliesggns in the design region. The choice of plotting the SPV o
UPV is very important since comparisons are being made amdesigns of various sizes. If the experimenter is interested
in obtaining efficient designs while considering the cosadding an extra run to increase precision of prediction ley th
reduction of the prediction variance, plotting the SPV isfprable. In this cas€; S is recommended fdk = 3, 4, 5, 6,

(5)
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7 and 8 factors for the rotatable CCD whilgS,; is recommended fdk = 9 and 10 factors. Plotting the UPV is a better
alternative if the experimenter is not restricted by costdasires a design with high precision for prediction inexsjve
of the design?s sample size. The various plots show thatrakesign runs yield smaller prediction variance si@g8;
andC; &, the higher replicated-cube and star-options with high lbeinof runs, respectively, continuously yield small
prediction variances. The graphs for 8 and 9 are displayed in Figures 9 and 10, respectively.

One of the cardinal advantages of the CCD is its amenabdibetarranged in orthogonal blocks. The second-order
response surface model with blocking effects is given by

K K b
Yu= 30+_Zﬁ&n +_Zlﬁiixﬁi +Y D BiXiXyj +_Zlcﬁ (zu—12)+&;u=12,...,N (6)
i= i= 1< i=

whereY, is the observed response values at ifeexperimental runy; is the corresponding setting of thi8 input
variable,x,; is the corresponding setting of th® input variablej # j, zy is the dummy variable with value one if the

uh observation is in'" block and zero otherwisej is thel™ block effectz = & 5,z is the fraction of the total runs in
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1" block, Bo Bi, Bii, Bij are, respectively, the constant, first-order (linear)padeorder (quadratic) and interaction model
parameters ang, is random error. The block effects are orthogonal to the mpdemeters ifzﬂzlxui (zy—7) =0,
301 XiXuj (Zu —2) =0, fori # j andy ;G (zu —2) = 0.

Orthogonal blocking of the central composite design (CGDpassible due to the flexibility involved in the choice
of the axial distance¢r , and the number of centre points. The orthogonal blocking of the CCD is such that the
star portion forms a block while the cube (factorial porjiecan be in one or more blocks depending on the number of
factors,k. That is, the cube can be sub-divided into more than one Hlatkhe axial block can never be sub-divided.
An illustration using a three-factor CCD arranged in twodi® with one centre point in each block is given in Figure
11. The number of centre points in the factorial blockjswhile n, is the number of centre points in the axial block.

22 T 40 30
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PlgUIE 12: FDS p].CItS for Five-Factor Plgu_re 13- FDS p]_ots for Five-Factor CCD PlgUIE 14:FDS p].OtS for Five-Factor
Orl:hogona]ly Blocked CCDin Two in Two Blocks ]:nvo]_ving Two Cubes Plus CCD in Two Blocks iIlVO].‘v"iIlg Two
Blocks ’Dne Star , Stars Plus One Cube

For the orthogonally-blocked CCD, the block effects do rted the estimates of the parameters of the response
surface model: see, for examplag]. [4] suggested that the number of centre points should beliséd equally among
the blocks. The size of the experimeNt,changes as portions of the CCD is replicated. Replicatisgcentre, the cube
or the star points increassk [27] suggested that it is always a good idea for an experimeetg#gding an experiment to
evaluate designs of different sizes.

Orthogonally-blocked CCD with partial replications of tbebe and star components of the design are evaluated by
[37]. In this study, they considered the central compositegiesiith the cube being at least one block andandn;
are not strictly distributed equally among the blocks. Thkigs ofny andn; are varied in this study and their effects on
the performances of the—, D— and G-efficiencies and/-criterion are evaluated. Comparison of these designrizite
when the cube and star portions of the CCD are partially cafgd is the focus of the study. Graphical comparisons of
the designs are made using FDSG to understand the predieti@mce characteristics of these orthogonally-blocket a
partially replicated design options. They deduced thasttial distance that ensures orthogonal blocking when the cu

is replicatedn. times, and the stany, times, with the centre pointyy , augmentation isr = {%}UZ, where
N = F 4 2nk + ng + ng andF = n¢f.

Also, from [37], it could be observed that the Partial replication of theDC&fects the location of the star points and
the performances of the—, D—, G-efficiencies ani -criterion. Replicating the cube portion increasgshereby moving
the star-points away from the centre of the design regioiigwhplicating the star-portion reduces, thereby bringing
the star points closer to the centre of the design regiompl@cal evaluations of the designs show that increasingeh&re
points equally in the blocks or increasing the centre pdimthe star blocks more than the cube blocks consistently giv
stable distribution of small scaled prediction varianaetighout the entire design region. Also, replicating tlae athile
increasingn; more thanng, improves the designs prediction capability. The desigmsetbetter precision throughout
the entire design region for predicting responses in spakregion when the star is replicated than when the cube is
replicated. In general, replicating the centre points niorthe star-blocks than the cube blocks enhances the piadict
capabilities of orthogonally-blocked central composigsidns. Typical FDSGs fde= 5 are presented in Figures 12, 13
and 14.

The spherical property of the CCD is achieved by setting vk which is called the spherical. This puts all the
factorial and star points on the surface of a sphere of ragfflkssee, for example2p] and [4]. The spherical and rotatable
alpha values have some significant drawbacks as the numfaatofs gets higher: the values get larger and may attain
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Figure 16: FDSG of Unscaled Prediction Variance for (a) #, =1 and (b) 17, =3 for k=5 factors

an impractical level for the factors of interest. These galmay also not be feasible in many experiments. For both the
VDG and FDSG, the unscaled prediction variance is not recenttad as metric for design evaluation and comparison for
the spherical CCD because of the apparent instability irspinead of the prediction variances for the spherical CC2. Th
spherical CCDs display very high and unstable unscaledgiied variances which tend to converge at the extreme point
Additional centre points do not significantly improve thstibility of the unscaled prediction variance. lllustoat are
given in Figures 15 and 16 fée= 4 and 5 factors, respectively, with one and three centnatpoi

As earlier pointed out, ak increase, the spherical attains impractical level that may be infeasible to apply in
industrial experiments. For this reasoB8|[proposed the practical alpha,= kX4, which is a compromise between the
sphericala and the cuboidal alphag = 1. The practical alpha has acceptable variance inflatiotorfa&/IF) and
provides design points that are less extreme as the numbfactofs increases3f] considered the partially replicated
options of the CCD when the axial distanceqis= k'/4 for k = 3 to 6 factors. The four alphabetic criteria, the, D—
and G-efficiencies and/-criterion as well as the graphical methods, VDG and FDSCuagal in the evaluation of the
various replicated options of the practical CCD.

This study by B9] was performed for the spherical region. The results okthishow that replicating the cube is
beneficial only up taC3S; as the replications improve the performances of the algiabeteria. Beyond this, further
replication causes the performances of the alphabetierizrito begin to deteriorate. Fér= 5, the more the star is
replicated, the better the value of tecriterion while the star-replicated CC0;S, , gives the best value fak with or
without additional centre points except for= 3. Finally, the replication of the star ensures uniforntriisition of the
unscaled and scaled prediction variances throughout tlire elesign space for both the variance dispersion grapths an
fraction of design space graphs and for all the number obfaatonsidered.

[17] proposed exact functions for the four alphabetic critéria D— and G-efficiencies and th&/-criterion for
evaluation of the classical CCD. However, these exact fanstdo not accommodate the replications of the components
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of the CCD. Hence, there is need to obtain exact functionsaterobust to the replication of the cube and/or star
portions of the CCD. 35|, through matrix algebra and calculus, developed eefficiency andv-criterion fork > 1
which are robust to the replication of the components of tl@DCThey show that for the cube point§, having
multiplicity, n; the star points, 2 having multiplicityns and withng centre points; the subscripts,s and O representing
cube, star and zero, respectively d&nd 1, the exacG-efficiency is

100 p
Gt = k 2 k k(k-1)/2 2,21 (7)
Nmax{Bo +B1 3 1 X +B2 31 X' +Bayij X}
B  kF +2nsa* _ 1 2(F + 2nsa?) 1 4
where Bg = A1, A1 = T 1= [F+2nsa2 — 9 ], B2 = M[ZnSNa + (k+1)p] and
i »p
Bs = [F nsa“Q]'
Furthermore, th¥ -criterion was obtained as
kF +2nsa*  2k(F +2nsa? k K[9(2Nnsa?) +4(k— 1 k(k—1
NEEnat 2(F+2na?) _ Ke@Nnsa®) + k= 1)p] | k1), ©
Q 3Q S(F + 2nsa?) 45(2nsa4Q) 18F

which is the trace of the product of the matrix of region motseand the inverse of the information matrix. From the
functions,Q = 2Nnsa* + kp andp = NF — (F + 2nsa?).

The exactA— andD-efficiencies for the partially replicated CCD are also fegd by #0]. They show that for the
CCD with the cube and/or star portions replicated,Akhefficiency is given by

100x p
= 9
At N{AL+ K K2nNa(k—1)p]  k(k— D, ®)
Y Fiona? 2nsa4Q 2F
For the exacD-efficiency, they obtained
1
Der = {(2nsaQ) 1Q(F +2nsa?) i D/zp P (10)

Some numerical results for the exact design criteria pteseabove for the partially replicated CCD are shown in
Table 1 for three- to six-factor experiments involving th€IT in spherical region. The results are presented for the
spherical axial distance of the CCD when= vk, otherwise called the spherical CCD. The results are displdorng
=1 and 3 to reflect the performance of the spherical CCD asuh@rr of centre points increases. The cube and star
replicated versions of the CCD considered are: (i) two cythesone stafC,S; ), (i) two stars plus one cubl€;S,), (iii)
three cubes plus one st@s3S;), (iv) three star plus one culi€;S3), (v) four cubes plus one sté€4S; ), (Vi) four stars
plus one cubéC,S;). For proper judgment, these replicated versions were coedpaith the unreplicated CCD option,
one cube plus one sté€,S;) in order to highlight the performance of the spherical CClhvavery replication of the
cube or star and with every additional centre point.

Results are presented fog = 1 and 3 centre points to reflect the values of the alphabéterieras the number of
centre points is increased. The replication of the cube tardd®es not imprové, D and G for all the factors. Also,
replicating the centre point improvEsbut does not improvA, D andG. It could also be noticed that the deterioration in
the values ofp, D andG asng increases is not significant and therefore, for the sake pfogpiate degrees-of-freedom
for pure error measurement and test of lack-of-fit, it is reotended that the centre is replicated rather than the cube or
star.

Apart from the few results which are displayed in Table leaesh has shown that the performances of the replicated
versions of the CCD depend on the axial distamcajnder consideration. Replicating the star is better inesoases for
the orthogonabr, practicala and cuboidabr and thea for orthogonal blocking (se€l)],; [28]; [30] and [37]) . For the
rotatablea , replicating the cube improves the performance of the C@e 5]).

5 Challenges and Suggestions for Future Studies

One of the major challenges facing research works and thegomes is improper implementations. Most research
findings, especially in Statistics and many other relatedsrcould not find their way to the industrial and industréal
world and therefore are limited to the pages of projectsyjals and technical reports stashed away forever in Urityers
and Departmental archives. The most challenging aspentloEirial Statistics, like the RSM being discussed herig, is
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Table 1: Exact Values of the Alphabetic Criteria for the Partially Replicated Spherical CCD

£ gf“ =1 my =3
 [F k| e [N [ D 4 G v |~ D A G v
3[C15 | 8 ] 1.7321 | 13 711 324 1000 91033 | 17 | 701 63.6 300 49476
Ca8; | 16 6 7321 | 23 634 294 433 128026 [ 23 | 703 533 77.7 60146
Ci15 [ 8 12 17321 | 21 673 247 476 121310 | 23 636 41.7 6.0181
Cs8; [ 24 6 1.7321 | 31 649 192 323 166118 | 33 631 383 725339
Ci15: | 8 18 1.7321 | 27 631 198 371 132917 | 19 641 350 7.1603
CsS; | 32 6 1.7321 | 39 618 138 256 204484 | 41 636 331 £5400
Ci8: | 8 24 1.7321 | 33 304 163 303 182786 | 35 6235 303 83257
41 C158; | 16 g 2.0000 | 23 766 332 600 14444227 764 513 7.2003
C:8; [ 32 g 20000 [ 41 532 266 366 218284 |43 751 434 05164
C15; [ 16 16 2.0000 [ 33 735 101 456 150239 35 | 639 441 26526
C38; [ 48 g 2.0000 | 57 693 170 263 19357739 | 720 358 T 12.0335
C18; [ 16 24 2.0000 [ 39 691 208 366 224573 |41 709 376 7101762
CsSp | 64 g 2.0000 | 73 617 137 206 342082 | 73 | 601 302 145087
Ci8s [ 16 32 2.0000 [ 49 65.1 176 306 265087 | 51 673 515 125511
5[ €181 | 32 10 22361 [ 43 302 212 488 237726 | 45 | BOT 509 01771
Ca5; | 64 10 22361 | 75 752 186 280 300576 | 77 | 771 386 36.7 142796
C15; [ 32 20 22361 [ 33 789 240 396 283568 | 55 | 801 443 105688
C38; [ 96 10 22361 [ 107 [ 70.8 137 196 520312 | 109 | 733 304 194156
€185 | 32 30 22361 [ 63 754 205 333 310938 (65 [ 770 393 12.0513
CqSp [ 128 | 30 22361 [ 139 [ 674 108 151 67.0459 | 141 | 700 250 33.6 245617
Ci18 [32 [ 40 22361 | 7 717 179 288 35692575 [ 736 348 70.7 13.5593
6| C18; | 32 12 24495 [ 45 338 337 622 254624 | 47 | 8335 558 949 122040
Ca8; | 64 12 24495 [ 77 314 134 364 390074 (79 | 823 438 69.7 16.8486
C18; | 32 24 24495 | 37 796 176 491 314863 | 39 | 7998 473 799 143269
C38; [ 96 12 24495 [ 109 [ 781 177 237 347701 | 111|797 376 324 217898
€185 | 32 36 24493 | 69 742 132 406 375818 | 71 730 406 69.0 169329
CaSp [ 128 | 12 24495 | 141 [ 751 142 198 696030 | 143 | 770 il6 420 268075
Ci18: [ 32 [ 48 24493 [ 81 693 200 346 436962 | 83 703 334 46.2 193628

the area of application. Many industries and companiesdhatexpected to lead the way in utilizing these amazing
research findings and sponsoring other major and extensidies have unfortunately, backed out from this
responsibility. The researcher is now saddled with theaesibility of finding areas of application to his/her resdar
findings. For the ongoing discussion on partial replicatbthe portions of the CCD 4[] has given an example on the
application of the results to improving local cassava cohite bread production in Nigeria while maintaining desleab
quality of loaf. In the same work, a computer program has lismeloped as an Excel Macro which gives the optimum
replication of the cube, star and centre points of the CCLKinggit easier for an experimenter to use. More real-life
problems facing different aspects of the economy need txamimed and solutions proffered by the exploitation of the
amazing properties of the CCD. RSM and in particular, the G@B large potential applications in the health sector,
painting industry (using Mixture experiments), automehiidustry, financial sector, agricultural sector, maniufidcg
industry, food packaging, education, etc.

There are design evaluation criteria that have not been inseet literature to compare the variations of the CCD
when the cube and star portions are replicated. Such ei@iu@tptimality) criteria should be considered in further
studies to ascertain the performances of the replicateédmegtions with respect to the design criteria and apped@ri
recommendations for the benefit of practitioners made heugtudies need to be done in deriving exact functions that
accommodate replications of the portions of the CCD for ttieoregularly applied optimality criteria in design of
experiments. Such optimality criteria like tBeoptimality, Ds-optimality, and so on need to be investigated with respect
to the partial replication of the CCD.
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