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Abstract: In this study, we take an extensive study of the second-orderresponse surface central composite designs (CCDs). The partial
replication of the central composite designs (CCDs) and itsrelated studies are especially in focus. Earlier studies pertaining to the partial
replication of the different portions of the CCD are examined and the findings highlighted. Even the later studies, whichfocused more
on the properties and distribution of the prediction variance of the replicated variations of the CCD throughout the design region using
graphical methods, were also reviewed. Research findings have shown that the optimum performance of the replicated variations of
the CCD depends on the axial distance,α, and design region, cuboidal or spherical. No particular replicated variation of the CCD is
consistently optimum in both design regions and for all the available axial distances utilized in exploring the second-order response
surfaces using the CCD. However, replicating the star portion, in most cases, improves the designs′ performances. Areas for further
research and extension of the concept of partial replication of the CCD were also highlighted.
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1 Introduction

The works of [1] laid the foundation for response surface methodology (RSM). According to [2], RSM is a combination of
experimental design, regression technique and optimization theory which utilizes Taylor series approximations to describe
the relationship between the response(s) of interest and the independent factor(s). Therefore, it is known as a collection of
mathematical and statistical techniques for empirical model building: see, for example, [3] and [4]. By careful design of
experiments, the objective of RSM is to optimize the response (output variable) of interest which is being influenced by
several independent variables (input variables). Here, anexperiment is a series of runs (or tests) in which changes made
in the input variables help to ascertain the changes and reasons for the changes in the output variables.

RSM has been evolving over the years since its inception and has been very useful in numerous industrial and scientific
revolutions. [5] reviewed developments in RSM from the Biometric perspective. [6] reviewed the progress made in RSM
and suggested areas for further advancement. [7] and [8] made the more recent updates on the advancements on RSM.
Furthermore, RSM has been extended to evaluating mixture experiments and experiments involving noise factors: see, for
example, [9], [10] and [11].

RSM is a sequential procedure where the form of the actual relationship between the response variable,y, and
independent variable(s),xi, is unknown but could be approximated using low-order polynomial. Most often, the
approximating function is the first-order model,

y = β0+
k

∑
i=1

βixi + ε (1)
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whereβ0 andβ1 are the regression parameters,ε is the error andk is the number of experimental factors. If there is
curvature, a higher degree polynomial, like the second-order model,

y = β0+
k

∑
i=1

βixi +
k

∑
i=1

βiix
2
ii +

k

∑
i=1

k

∑
j>i

βi jxix j + ε, i = 1,2, ...,k; j > i (2)

has to be used, where the symbols and notations take similar meanings as in equation (1). [8] gave three objectives for
considering regression models in RSM and outlined steps to realizing these objectives.

Designs for fitting the second-order response surface models are called second-order response surface designs. These
designs have desirable properties for a number of industrial experiments. However, a second-order response surface design
is often chosen on the consideration of several criteria as identified by [12] and [13]. Among the numerous second-order
response surface designs with their unique features, the central composite design is the most popular and useful in response
surface exploration. The symmetry and flexibility offered by the structure of the design give substantial advantage in
prediction capabilities and parameter estimation. The CCDexists for spherical and cuboidal regions and fork ≥ 2, where
k, a positive integer, is the number of factors.

According to [14], the structure of the CCD has three components: the factorial (cube) portion of at least resolution
V , the star (axial) portion at distance,α, from the centre of the design along each axis, and the centrepoint located at the
centre of the design space. A resolutionV design is a design in which two-factor interactions are aliased with three-factor
interactions but no main effect or two-factor interaction is aliased with another main effect or two-factor interaction. That
is, main effects and the two-factor interactions do not haveother main effects and two-factor interactions as their aliases.
Hence, for a resolutionV design, the shortest word in the defining relation must have five letters. The cube or factorial
portion has full (q = 0) or fractional (q > 0) factorial number of runs, whereq is an integer. The star portion has 2k
number of runs augmented withn0 centre points. Hence, the CCD uses a total ofN = f + 2k+ n0 number of runs to
estimate thep = (k+1)(k+2)/2 number of model parameters. The cube (factorial) portion has coordinates of the form,
(x1,x2, ...,xn) = (±1,±1, ...,±1); the star portion has coordinates of the form,(±α,0,0, ...,0), ...,(0,0, ...,±α) while the
centre point is of the form,(0,0, ...,0). The design matrix and geometric structure of the CCD fork = 3 with n0−1 are
shown in Figures 1 and 2, respectively, with the vector, 0= (0,0,0): see [15] and [4].

The three components of the CCD play important but differentroles in parameter estimation. The resolutionV full or
fractional factorial component (the cube) contributes substantially to the estimation of thek linear terms and thek(k−1)

2
two-factor interaction terms. Only the factorial point contributes to the estimation of the interaction terms. The star
points contribute to the estimation of thek quadratic terms. Without the star points, only the sum of thequadratic terms
can be estimated. The star points do not contribute to the estimation of the interaction terms. The centre points contribute
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towards the estimation of pure error and estimation of quadratic terms.

2 Evaluation of the Central Composite Design

Numerical and graphical methods of evaluating the CCD and other response surface designs exist. When fitting
second-order models, optimal design methods include single-value criteria to construct designs for RSM. We focus on
some of the criteria that use the variance characteristics of the design, theA− and D−efficiency criteria. The
D−efficiency is a useful tool for quantifying the quality of theestimated model parameters and is defined as
De f f = {|X′X|1/p/N}100. The power, 1/p, takes account of thep parameter estimates being assessed when the
determinant of the information matrix is being computed,N is the total number of design runs andX is the design matrix
extended to model form from which the information matrix,M = X′X, is obtained. TheA-efficiency is given by
Ae f f = 100p/trace[N(X′X)−1], and is directly related to minimizing the individual variances of the model parameters.
According to [16] and [17], A− and D−efficiency measures represent the percentage number of runsrequired by a
particular orthogonal design to achieve the same determinant and trace. WhileA−efficiency deals with the individual
variances of the model parameters,D−efficiency considers the variances and covariances of the regression parameters.
Furthermore, we also considerG-efficiency andV -criterion, which depend on the scaled prediction varianceof the
design. The scaled prediction variance is given by

SPV = N f ′(x)M−1
ξ f (x) (3)

where M−1
ξ =(X′X)−1 is the inverse of the information matrix of the design,ξ , whose design matrix isX and

f ′(x) = (1,x1,x2, ...,xk;x2
1, ...,x

2
k ;x1x2, ...,xk−1xk) is the vector of design points in the design space expanded tomodel

form by classifying the coordinates of the design points into linear, quadratic and mixed (interaction) components of the
model. Therefore, theG-efficiency is given byGe f f = 100p/[N f ′(x)M−1

ξ f (x)] while the V -criterion is given by

V = N[traceS(X′X)−1], whereS is the matrix of region moments. TheV -criterion minimizes the average of the scaled
prediction variance. The values ofA−, D− andG−efficiencies are in the interval,[0,1]. However, for easy assessment
and comparison, these values are converted to percentages by multiplying by 100.N is used to scale the results based on
the overall size of the design. The higher the efficiency values, the better forA−, D− and G-efficiencies while the
smaller the value, the better for theV -criterion.

When the practitioner is interested in understanding the prediction variance distribution, that is, to know if the
prediction variance is stable throughout the entire designregion or where in the region has the best and worst prediction
variance, graphical methods offer the best approach for exploring the prediction properties of competing designs. As
rightly pointed out by [13], single-value criteria, like the four alphabetic criteria considered here, do not effectively
reflect the prediction capabilities of a design. Hence, graphical approach is necessary to obtain the complete prediction
characteristics of the CCD throughout the entire design region. The two graphical approaches adopted here are the
variance dispersion graphs (VDGs) by [18] and fraction of design space graphs (FDSGs) by [19].

3 Historical Review of Partial Replications of the CCD

Traditionally, it is only the centre point that is replicated n0 times for the purpose of the estimation of pure error, test of
model lack-of-fit and other tests of hypotheses withn0− 1 degrees-of-freedom: see, for example, [20]. However, there
is increasing concern about replicating only at the centre of the design, as this may not give complete knowledge of the
prediction capability of a design since there is no clear information on how the design will perform if there are replications
at the cube and/or star points. Figure 3 shows the three different structures of a three-factor CCD with each component
replicated twice.

The history of partial replication of the CCD dates back to [21] who argued that replicating only at the centre could be
misleading since there is no assurance that the experimental error will be constant throughout the entire design region. He
pointed out that variability might increase away from the centre of the design such that the estimate of the experimental
error may be too small for proper evaluation of the coefficients of the second-order models, and therefore, it is a sound
experimental strategy to obtain replicates over the experimental region in order to estimate error and provide reliable
estimates of the experimental effects. In his work also, thecube and star portions of the CCD were examined through
partial replication and suggestions made on possible advantages of replicating these portions of the design in the spherical
region. Furthermore, he considered the cases of partially replicated orthogonally-blocked CCD and, from his analysis,
concluded that replication of the star portion of the orthogonally-blocked CCD has better potential than replicating the
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cube. For a CCD with the star portion replicated twice, [21] proposes the axial distance that ensures orthogonal blocking
as

α = { f (N − f − n f )

4( f + n f )
}1/2 (4)

whereN = f +4k+ n f + na.
[20] examined the appropriate number of centre points that offers minimum prediction variance for central composite

and Box-Behnken designs. Experimenters usually resort to various ’rules of thumb’ for choosing number of replications
of the centre point for design selection and test of model lack-of-fit. One of the ’rules of thumb’, as pointed out in [20],
is selecting enough centre points to create enough degrees-of-freedom for model lack-of-fit in the F-test. Another ’rule
of thumb’, still in [20], is to have at least two centre points and sufficient replications from other portions of the designs
to obtain at least three degrees-of-freedom for pure error.Instead of resorting to the rule of thumb, he introduced the
integrated variance criterion for determining the number of centre points suitable for using the CCD in response surface
exploration. To achieve this, he considered three partially replicated options of the CCD, namely: (i) one cube plus two
stars, (ii) one cube plus one star, and (iii) two cubes plus one star, fork = 5, 6, 7 and 8 factors. The designs are evaluated by
varying the number of centre points to know the design optionthat minimizes the integrated variance function. Contrary
to initial recommendations that more number of centre points is needed for evaluating these designs, the results show that
fewer centre points are generally more appropriate.

[22] developed analytical procedure for plotting the VDGs and this procedure accommodates the replication of the
star portion only. Secondly, he demonstrated the impact of replicating the star portion by plotting the VDGs fork = 5 and
6 factors where he used two star points(4k) for evaluation of the CCD in spherical region with axial distance,α =

√
k.

He concluded that replicating the star portion improves thespherical prediction variance characteristics of the CCD.
[17] evaluated the effects of replicating the cube, star and centre points of the CCD on theA−, D− andG-efficiencies

and theV -criterion for the reduced models in the hypercube. The reduced model here implies the nature of the second-
order model when either the quadratic term,x2

i , or the linear term,xi, or the interaction term,xix j, is removed from the
model. The study considered seven versions of partially replicated CCD for the comparison. They are: (0, 1, 1); (2, 1,
1); (4, 1, 1); (0, 2, 1); (2, 2, 1); (0, 1, 2) and (2, 1, 2), each being the realization values for(n0,ns,nc) , wheren0 is the
number of centre points,ns is the number of star point replication andnc is the number of cube replication, respectively.
The points of zero values for the centre point represent the cases of missing values. [17] concluded that for the reduced
models for the CCD, the partial replication of the CCD influences the optimality criteria in different ways. What improves
one criterion may be detrimental to the other criterion and therefore, the decision rests with the experimenter based on
professional experience and preferences.

4 Recent Developments in Evaluation of Partially Replicated CCD

In this section, we consider developments in the area of partial replication of the CCD in the last five years or thereabout.
Earlier works did not pay much attention to the prediction variance properties of the partially replicated CCD options.
The prediction variance performance of a design determineshow well the design could predict responses with precision.
Designs with smaller prediction variances predict responses with higher precision than designs with large prediction
variances. [23] replicated the cube and star portions of the CCD fork = 2, 3, 4 and 5 factors to evaluate the performances
of the CCD with respect to the rotatability and orthogonality properties of the designs. The pattern of replication by [20]
was adopted and extended for the study. They utilized theD-optimality as the basis for comparison of the variations
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of the partially replicated CCD. From their results, it was concluded that replicating the cube offer betterD-optimality
than replicating the star for both the rotatable and orthogonal CCDs. While the case of rotatable CCD may be true,
the same may not be said of the orthogonal CCD due to the fact that the values of the axial distances used for the
orthogonal CCD for which the function,α = {[(2knc)

1/2− 2knc]/2ns}1/2, for partially replicated orthogonal CCD was
derived is consistent with an earlier general expression for the orthogonalα for partial replications given by [24] as
α = {[N1/2− (2knc)

1/2]/4n2
s}1/4.

Usually, when the cube and star points are replicated the same number of times, the cube-replicated CCD will have
more runs than the star-replicated CCD. However, in their study, [23] made cube- and star-replicated CCDs which are
replicated equal number of times to have the same number of runs by augmenting the star-replicated option with excess
number of centre points. This also influenced the outcome of their study. For instance, for the five-factor CCD, one of
the replicated options, four cubes plus one star augmented with three centre points has a total of 141 design runs. The
corresponding star-replicated option, four stars plus onecube, also has 141 runs. Normally, and based on the literature,
the star-replicated option should have a total of 75 runs when equally augmented with the same three centre points. To
achieve 141 runs for this design option, excess of 66 centre points were added. Put in another way, the centre point was
replicated sixty-six times. The implications are obvious.First, the smaller number of design runs, which should be an
advantage for the star-replicated CCDs, is not reflected. Secondly, theD-optimality values for the star-replicated design
options are also expected to be affected sinceN, as earlier explained, is somewhat over-bloated.

The use of graphical methods to assist in evaluating the replicated design prediction potential has not received much
attention in the previous works discussed so far. However, the importance of graphical techniques like the variance
dispersion graphs and fraction of design space graphs earlier mentioned need not be over emphasized. Subsequent works
presented here made consistent effort to utilize one or two of the graphical methods along with the alphabetic criteria to
evaluate partially replicated CCD options. This gives a more general understanding of the design potentials than relying
only on the alphabetic criteria, which as earlier pointed out do not reflect the overall performance of the design
throughout the design region.

[25] considered variations of partially replicated central composite designs in the hypercube. The hypercube is a multi-
dimensional cuboidal region with axial distance,α = 1. They extended the [20] form of replication of the CCD. Hence
the designs considered are (i) two cubes plus one star(C2S1); (ii) one cube plus two stars(C1S2); (iii) three cubes plus
one star(C3S1); (iv) one cube plus three stars(C1S3); (v) four cubes plus one star(C4S1); and (vi) one cube plus four
stars(C1S4). The prediction capabilities of the design options with respect to their prediction variances are evaluated
using theG- and I-optimality criteria as single-value optimality criteria. The fraction of design space graphs are used
to evaluate and compare the prediction variance performance of the replicated design options on a common scale and
on a two-dimensional space. The performances of the design options are observed forn0 = 2 and 3 centre points. The
replication of the star point is recommended since the replicated-star options always give smallerG- andI-optimal values
than the corresponding replicated-cube options with equalnumber of replications. The FDSGs show that star-replicated
CCD options have more stable spread of small-scaled prediction variances throughout the entire design region, with the
(C1S2) option being the best. The FDSGs fork = 4 and 5 factors are displayed in Figures 4 and 5.

There is increasing argument and consideration for the use of unscaled (standardized) prediction variance (UPV)
in design evaluation when graphical methods are used while viewing the prediction variance performance of a given
design throughout the design region. This argument is basedon the fact that scaling the prediction variance which entails
multiplying the prediction variance byN, the sample size or runs of the design, gives smaller designsundue advantage
over larger designs. Smaller and larger designs here imply designs with smaller and larger sample sizes, respectively.
According to [19] and [14], scaling penalizes larger designs over smaller ones. The rationale for scaling the prediction
variance is to account for the cost of the design, represented by N, in comparing designs of various sizes. However, there
is increasing awareness for the use of the UPV in design evaluation. [26] and [27] argue that larger designs often lead
to smaller prediction variances and provide the experimenter with more useful information than scaling the prediction
variance. Subsequent discussions will feature the unscaled prediction variance (UPV) among the veritable tools for the
evaluation and comparison of the replicated design options.

[28] revisited the partially replicated CCD options in the hypercube for k = 3 to 6 experimental factors. In this case,
graphical methods alone, VDG and FDSG, are used in the evaluation of the designs. The VDGs of the replicated design
options are plotted for the scaled prediction variances (SPV) on a common scale while the FDSGs of the designs are
plotted for the UPV but not on a common scale. The importance of this is to be able to ascertain the merit or lack of it
of considering the UPV in design evaluation throughout the entire design region. The replicated options are considered
for n0 = 1, 2 and 3 centre points. This helped in monitoring the performances of the designs in the cuboidal region as the
number of centre points increases from 1 to 3. The VDGs and FDSGs fork = 6 factors, and 3 centre points are displayed
in Figures 6 and 7.

In general, the results have shown that the replicated-stardesigns displayed stability and no dispersion within the unit
cube considering the VDG and smaller unscaled prediction variances for the FDSG. Therefore, the replicated-star options
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have higher prediction potentials in the hypercube. Also, the replicated-cube options showed some dispersion around
the centre of the design region for the VDG and higher unscaled prediction variance for the FDSG which deteriorates
rapidly away from the centre of the design region. However, the deterioration worsens as the replication of the cube
portion increases. Moreover, the replicated-star designshave smaller number of runs than the replicated-cube designs
which are replicated the same number of times. This makes thereplicated-star designs more economically feasible than
the replicated-cube designs.

Orthogonality is a very important geometric property of theCCD. The CCD is made orthogonal by the choice of
axial distance,α. The orthogonality property of the CCD enables for uncorrelated estimates of the response model
coefficients as well as minimizes the variances of the coefficients. The axial distance,α, for an orthogonal CCD is given
by α = {[(N f )1/2− f ]/2}1/2: see, for example, [29]. [24] showed that for an orthogonal CCD with the cube or star point
replicated, the axial distance is given by

α = {2k−qnc[N1/2− (2k−qnc)
1/2]2

4n2
s

}1/4, (5)

where the symbols and notations of the alpha equations take their usual meanings highlighted earlier in this work.
[30] conducted extensive study on the prediction capabilitiesof partially replicated orthogonal central composite

design. TheD− andG-efficiencies are used to evaluate the performances of the designs for 3 to 6 factors in the spherical
region while the VDG and FDSG are the graphical methods used to display the design prediction variances throughout the
entire design region. Only the scaled prediction variance (SPV) was considered for the VDG while both SPV and UPV
were considered for the FDSG. Furthermore, they evaluated the designs while assessing their performances as the number
of centre points increases from 1 to 3. The six partially replicated design options of [25] are compared with the classical
(unreplicated) CCD, one cube plus one star(C1S1). The VDG and FDSG show that for both the scaled and unscaled
prediction variances, the replicated-star options display smaller and stable prediction variances than the replicate-cube
options and the classical (unreplicated) CCD. The graphs for k = 5 with 3 centre points are displayed in Figure 8.

Rotatability is another important property of the CCD introduced by [31]. Rotatability is a reasonable basis for the
selection of a response surface design in response surface optimization and it is wise to choose a design that provides equal
precision of estimation in all directions. A design which variance,V{ŷ(x)}, of the predicted response,ŷ(x), is constant
at any given point,x, in the design space such that equal information is obtainedin all directions at equal distance from
the centre of the design space is said to be rotatable. This means that for a rotatable design,V{ŷ(x)} is the same at all
points,x, that are of the same distance from the centre of the design region. The CCD is made rotatable by the choice
of α, the axial distance. This property is achieved by setting the star point at distance,α = ( f )1/4, f being the factorial
(cube) portion of the CCD. [32] , [33], [34] and [4] offer further discussions on rotatability and measures ofrotatability.
If the cube is replicatednc times and the star,ns times, then,α = {(nc f )/ns}1/4 yields a rotatable CCD, wheref = 2k−q

is the number of factorial points in the design: see [24].
[35] discussed the prediction variance properties of rotatable partially replicated CCD in the spherical region fork

= 3 to 10 factors. Full factorial portion of the CCD was used for k = 3, 4 and 5 factors. With the number of factors
moderately increasing, one-half fraction of the factorialportion is considered fork = 6 and 7 factors while one-quarter
fraction is considered fork = 8, 9 and 10 factors. Each design option is augmented withn0 = 3 centre points. TheD−
andG-efficiencies as well as theV -criterion are used for the design evaluation while the FDSGis the graphical method
considered in displaying the prediction variances of thesedesigns in the design region. The choice of plotting the SPV or
UPV is very important since comparisons are being made amongdesigns of various sizes. If the experimenter is interested
in obtaining efficient designs while considering the cost ofadding an extra run to increase precision of prediction by the
reduction of the prediction variance, plotting the SPV is preferable. In this case,C1S4 is recommended fork = 3, 4, 5, 6,
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7 and 8 factors for the rotatable CCD whileC4S1 is recommended fork = 9 and 10 factors. Plotting the UPV is a better
alternative if the experimenter is not restricted by cost but desires a design with high precision for prediction irrespective
of the design?s sample size. The various plots show that larger design runs yield smaller prediction variance sinceC4S1
andC1S4, the higher replicated-cube and star-options with high number of runs, respectively, continuously yield small
prediction variances. The graphs fork = 8 and 9 are displayed in Figures 9 and 10, respectively.

One of the cardinal advantages of the CCD is its amenability to be arranged in orthogonal blocks. The second-order
response surface model with blocking effects is given by

Yu = β0+
k

∑
i=1

βixui +
k

∑
i=1

βiix
2
ui +∑

i<
∑

j
βi jxuixu j +

b

∑
i=1

δl(zul − zl)+ εu;u = 1,2, ...,N (6)

whereYu is the observed response values at theuth experimental run,xui is the corresponding setting of theith input
variable,xu j is the corresponding setting of thejth input variable,i 6= j, zul is the dummy variable with value one if the
uth observation is inlth block and zero otherwise;δl is thelth block effect,zl =

1
N ∑u zul is the fraction of the total runs in
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lth block,β0,βi,βii,βi j are, respectively, the constant, first-order (linear), second-order (quadratic) and interaction model
parameters andεu is random error. The block effects are orthogonal to the model parameters if∑N

u=1 xui(zul − zl) = 0,
∑N

u=1 xuixu j(zul − zl) = 0, for i 6= j and∑N
u=1x2

ui(zul − zl) = 0.
Orthogonal blocking of the central composite design (CCD) is possible due to the flexibility involved in the choice

of the axial distance,α , and the number of centre points,n0. The orthogonal blocking of the CCD is such that the
star portion forms a block while the cube (factorial portion) can be in one or more blocks depending on the number of
factors,k. That is, the cube can be sub-divided into more than one blockbut the axial block can never be sub-divided.
An illustration using a three-factor CCD arranged in two blocks with one centre point in each block is given in Figure
11. The number of centre points in the factorial block isn f while na is the number of centre points in the axial block.

, ,
For the orthogonally-blocked CCD, the block effects do not affect the estimates of the parameters of the response

surface model: see, for example, [36]. [4] suggested that the number of centre points should be distributed equally among
the blocks. The size of the experiment,N, changes as portions of the CCD is replicated. Replicating the centre, the cube
or the star points increasesN. [27] suggested that it is always a good idea for an experimenter designing an experiment to
evaluate designs of different sizes.

Orthogonally-blocked CCD with partial replications of thecube and star components of the design are evaluated by
[37]. In this study, they considered the central composite design with the cube being at least one block andna andn f
are not strictly distributed equally among the blocks. The values ofna andn f are varied in this study and their effects on
the performances of theA−, D− andG-efficiencies andV -criterion are evaluated. Comparison of these design criteria
when the cube and star portions of the CCD are partially replicated is the focus of the study. Graphical comparisons of
the designs are made using FDSG to understand the predictionvariance characteristics of these orthogonally-blocked and
partially replicated design options. They deduced that theaxial distance that ensures orthogonal blocking when the cube

is replicatednc times, and the star,nns times, with the centre point,n0 , augmentation isα = {F(N−F−n f )

2ns(F+n f )
}1/2, where

N = F +2nsk+ n f + na andF = nc f .
Also, from [37], it could be observed that the Partial replication of the CCD affects the location of the star points and

the performances of theA−, D−, G-efficiencies andV -criterion. Replicating the cube portion increasesα, thereby moving
the star-points away from the centre of the design region, while replicating the star-portion reduces,α, thereby bringing
the star points closer to the centre of the design region. Graphical evaluations of the designs show that increasing the centre
points equally in the blocks or increasing the centre pointsin the star blocks more than the cube blocks consistently give
stable distribution of small scaled prediction variance throughout the entire design region. Also, replicating the star while
increasingn f more thanna, improves the designs prediction capability. The designs have better precision throughout
the entire design region for predicting responses in spherical region when the star is replicated than when the cube is
replicated. In general, replicating the centre points morein the star-blocks than the cube blocks enhances the prediction
capabilities of orthogonally-blocked central composite designs. Typical FDSGs fork = 5 are presented in Figures 12, 13
and 14.

The spherical property of the CCD is achieved by settingα =
√

k which is called the sphericalα. This puts all the
factorial and star points on the surface of a sphere of radius,

√
k : see, for example, [22] and [4]. The spherical and rotatable

alpha values have some significant drawbacks as the number offactors gets higher: theα values get larger and may attain
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an impractical level for the factors of interest. These values may also not be feasible in many experiments. For both the
VDG and FDSG, the unscaled prediction variance is not recommended as metric for design evaluation and comparison for
the spherical CCD because of the apparent instability in thespread of the prediction variances for the spherical CCD. The
spherical CCDs display very high and unstable unscaled prediction variances which tend to converge at the extreme points.
Additional centre points do not significantly improve the instability of the unscaled prediction variance. Illustrations are
given in Figures 15 and 16 fork = 4 and 5 factors, respectively, with one and three centre point.

As earlier pointed out, ask increase, the sphericalα attains impractical level that may be infeasible to apply in
industrial experiments. For this reason, [38] proposed the practical alpha,α = k1/4, which is a compromise between the
sphericalα and the cuboidal alpha,α = 1. The practical alpha has acceptable variance inflation factor (VIF) and
provides design points that are less extreme as the number offactors increases. [39] considered the partially replicated
options of the CCD when the axial distance, isα = k1/4 for k = 3 to 6 factors. The four alphabetic criteria, theA−, D−
andG-efficiencies andV -criterion as well as the graphical methods, VDG and FDSG areused in the evaluation of the
various replicated options of the practical CCD.

This study by [39] was performed for the spherical region. The results obtained show that replicating the cube is
beneficial only up toC3S1 as the replications improve the performances of the alphabetic criteria. Beyond this, further
replication causes the performances of the alphabetic criteria to begin to deteriorate. Fork = 5, the more the star is
replicated, the better the value of theV -criterion while the star-replicated CCD,C1S2 , gives the best value forA with or
without additional centre points except fork = 3. Finally, the replication of the star ensures uniform distribution of the
unscaled and scaled prediction variances throughout the entire design space for both the variance dispersion graphs and
fraction of design space graphs and for all the number of factors considered.

[17] proposed exact functions for the four alphabetic criteria,A−, D− and G-efficiencies and theV -criterion for
evaluation of the classical CCD. However, these exact functions do not accommodate the replications of the components
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of the CCD. Hence, there is need to obtain exact functions that are robust to the replication of the cube and/or star
portions of the CCD. [35], through matrix algebra and calculus, developed exactG-efficiency andV -criterion fork > 1
which are robust to the replication of the components of the CCD. They show that for the cube points,f , having
multiplicity, nc the star points, 2k, having multiplicityns and withn0 centre points; the subscripts,c, s and 0 representing
cube, star and zero, respectively andk > 1, the exactG-efficiency is

Ge f f =
100× p

Nmax{B0+B1 ∑k
i=1 x2

i +B2 ∑k
i=1 x4

i +B3 ∑k(k−1)/2
i< j x2

i x2
j}
, (7)

where B0 = A1, A1 =
kF +2nsα4

Q
, B1 = [

1
F +2nsα2 − 2(F +2nsα2)

Q
], B2 =

1
2nsα4Q

[2nsNα4 + (k + 1)ρ ] and

B3 = [
1
F
− ρ

nsα4Q
].

Furthermore, theV -criterion was obtained as

N[
kF +2nsα4

Q
− 2k(F +2nsα2)

3Q
+

k
s(F +2nsα2)

+
k[9(2Nnsα4)+4(k−1)ρ ]

45(2nsα4Q)
+

k(k−1)
18F

] (8)

which is the trace of the product of the matrix of region moments and the inverse of the information matrix. From the
functions,Q = 2Nnsα4+ kρ andρ = NF − (F +2nsα2)2.

The exactA− andD-efficiencies for the partially replicated CCD are also proposed by [40]. They show that for the
CCD with the cube and/or star portions replicated, theA-efficiency is given by

Ae f f =
100× p

N{A1+
k

F +2nsα2 +
k[2nsNα4(k−1)ρ ]

2nsα4Q
+

k(k−1)
2F

}
(9)

For the exactD-efficiency, they obtained

De f f =
1
N
{(2nsα4Q)k−1Q(F +2nsα2)kFk(k−1)/2}1/p (10)

Some numerical results for the exact design criteria presented above for the partially replicated CCD are shown in
Table 1 for three- to six-factor experiments involving the CCD in spherical region. The results are presented for the
spherical axial distance of the CCD whenα =

√
k, otherwise called the spherical CCD. The results are displayed forn0

= 1 and 3 to reflect the performance of the spherical CCD as the number of centre points increases. The cube and star
replicated versions of the CCD considered are: (i) two cubesplus one star(C2S1), (ii) two stars plus one cube(C1S2), (iii)
three cubes plus one star(C3S1), (iv) three star plus one cube(C1S3), (v) four cubes plus one star(C4S1), (vi) four stars
plus one cube(C1S4). For proper judgment, these replicated versions were compared with the unreplicated CCD option,
one cube plus one star(C1S1) in order to highlight the performance of the spherical CCD with every replication of the
cube or star and with every additional centre point.

Results are presented forn0 = 1 and 3 centre points to reflect the values of the alphabetic criteria as the number of
centre points is increased. The replication of the cube and star does not improveA, D andG for all the factors. Also,
replicating the centre point improvesV but does not improveA, D andG. It could also be noticed that the deterioration in
the values ofA, D andG asn0 increases is not significant and therefore, for the sake of appropriate degrees-of-freedom
for pure error measurement and test of lack-of-fit, it is recommended that the centre is replicated rather than the cube or
star.

Apart from the few results which are displayed in Table 1, research has shown that the performances of the replicated
versions of the CCD depend on the axial distance,α, under consideration. Replicating the star is better in some cases for
the orthogonalα, practicalα and cuboidalα and theα for orthogonal blocking (see [10],; [28]; [30] and [37]) . For the
rotatableα , replicating the cube improves the performance of the CCD (see [35]).

5 Challenges and Suggestions for Future Studies

One of the major challenges facing research works and their outcomes is improper implementations. Most research
findings, especially in Statistics and many other related areas, could not find their way to the industrial and industrialized
world and therefore are limited to the pages of projects, journals and technical reports stashed away forever in University
and Departmental archives. The most challenging aspect of industrial Statistics, like the RSM being discussed here, isin
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the area of application. Many industries and companies thatare expected to lead the way in utilizing these amazing
research findings and sponsoring other major and extensive studies have unfortunately, backed out from this
responsibility. The researcher is now saddled with the responsibility of finding areas of application to his/her research
findings. For the ongoing discussion on partial replicationof the portions of the CCD, [40] has given an example on the
application of the results to improving local cassava content in bread production in Nigeria while maintaining desirable
quality of loaf. In the same work, a computer program has beendeveloped as an Excel Macro which gives the optimum
replication of the cube, star and centre points of the CCD, making it easier for an experimenter to use. More real-life
problems facing different aspects of the economy need to be examined and solutions proffered by the exploitation of the
amazing properties of the CCD. RSM and in particular, the CCDhas large potential applications in the health sector,
painting industry (using Mixture experiments), automobile industry, financial sector, agricultural sector, manufacturing
industry, food packaging, education, etc.

There are design evaluation criteria that have not been usedin the literature to compare the variations of the CCD
when the cube and star portions are replicated. Such evaluation (optimality) criteria should be considered in further
studies to ascertain the performances of the replicated design options with respect to the design criteria and appropriate
recommendations for the benefit of practitioners made. Further studies need to be done in deriving exact functions that
accommodate replications of the portions of the CCD for the other regularly applied optimality criteria in design of
experiments. Such optimality criteria like theE-optimality,Ds-optimality, and so on need to be investigated with respect
to the partial replication of the CCD.
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