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Abstract: This paper treats the time/fuel optimal control of gravity gradient spacecraft. The equations of motion of the spacecraft are
simplified such that the maximum principle becomes applicable: the validity of this approximation is proven by comparison of the
simulation results of the rigorous and the simplified system. Based upon the simplified equation, a time/fuel optimal lawfor space craft
attitude control is developed. This law is based upon definition of a fuel savings angle, a new way of defining the trade-offbetween
pure time optimality and pure fuel optimality. Chattering in the vicinity of zero angles and zero rates is limited by a simple adaptive
modification.
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SYMBOLS
The index I stands for yaw (i=x), roll (i=y) and pitch (i=z)
and is omitted when no distinction in the treatment of the
different axes is necessary.

aj= gravity gradient coefficients, j= x,y,z
I ii = moments of inertia, i= x,y,z
r = distance from earth center to spacecraft center
Tci= control torque, i = x,y,z
Tdi= disturbance torque, i=x,y,z
r+= line for switching from u = 0 to u= +k
r−= line for switching from u = 0 to u= -k
−= line for switching from u = k to u = 0
+= line for switching from u = -k to u = 0
µ = earth gravitational constant
ω0= orbital angular rate for circular equilateral orbit

All other variables are defined wherever needed in the text.

1 Introduction

Several spacecraft applications and experiments, e.g ,
laser communications and some types of earth
observation, make a precision of 0010 . Furthermore,
severe constraints on the amount of fuel available in
spacecraft make it necessary to develop economical
policies for attitude control. A promising approach is to
combine active control (e.g , by means of electric

propulsion devices) and passive (gravity gradient) control
7. The configuration and the equations of motion of
gravity gradient spacecraft (in the case considered here, a
synchronous earth satellite) will be presented in the
following.
Sengupta and Vadali (2005) present an orbit
transfer/formation control algorithm for an Earth orbiting
spacecraft. T heir approach employs Lyapunov analysis
with Euler parameters to characterize the orbit.
Vaddi et al., (2005) develop a control strategy for a two
spacecraft formation orbiting a central body. The strategy
utilizes orbital element difference s. Analysis shows the
solution is fuel-optimal and maintains homogenous fuel
consumption between spacecraft. Their results correlate
with similar numerical optimization studies.
Richard (2006) investigates Nonlinear Control Design
Techniques for Precision Formation Flying at Lagrange
Points where he examines the precision formation flying
control architecture, characterizing the relative
performance of linear and nonlinear controllers. By
minimize the influence of design parameters in the
comparison, analysis employs same controller gains, and
incorporates an integrator in the linear control design.
Simulation architecture includes a full gravitational
model and solar pressure effects were included while the
Spacecraft model properties are based on realistic mission
design parameters. The Nonlinear controllers are
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developed based on Lyapunov analysis, including both
non-adaptive and adaptive designs. While the linear
controller demonstrates greater robustness to model
uncertainty, both nonlinear controllers exhibit superior
performance.
Scott Y (2013) on his thesis work on simulation of
spacecraft damage tolerance and adaptive controls where
he expands on the topic, discussion on the application of
adaptive controls to spacecraft and simulating a possible
damage tolerant control implementation designed for
rapid changes in inertia by The developing of adaptive
controls and enabling technology for them to reached a
point where new and innovative uses are now becoming
possible. Also by introducing a modified adaptive PID
(Proportional Integral Derivative) controller with adaptive
feed forward control to this simulated spacecraft, it is
demonstrated that the controls have achieved significant
damage tolerance.

2 Configuration and Equation of Motion

The satellite under consideration is shown in figure1. The
control problem consists in bringing the attitude angles of
the spacecraft to zero. The attitude angles are defined as
the Euler angles between the xb, yb,zb – system and the
Attitude coordinates system (xo, yo, zo). The axes of the
letter are defined by the following directions:
xopointing from the earth center of mass to the spacecraft
center of mass
yonormal to xo, in the orbit plane and in the same sense as
the vehicle motion
zonormal to the orbit plane and such that (xo, yo, zo)
constitutes a right handed orthogonal coordinate system
Figure 2 shows both coordinate systems mentioned and the
Euler angles used.
According to standard definitions, and considering figure
2, we have:
Pitchα about zo1
Roll about –y1

yawψ about xb
The following equations of motion are valid for this

satellite:

[I]





xb

yb

zb



 =





δ xb

δ yb
δ zb



 (1)

where
δ xb = Mxb+ Mxdsin ρ2 + Mzdcos ρ2– (?ybHzb- zbHyb) –
Pcosρ2+ Tcx+ Tdx
δ yb = Myb+ Mxdcosρ2cosρ1 + MSDsin ρ1– Mzdsin ρ2cos
ρ1 - (zbHxb- xbHzb) (2)
+ Psinρ2cosρ1+ Tcy+ Tdy
and,
δ yb = Mzb+ Mxdcosρ2sin ρ1 + MSDcosρ1– Mzdsin ρ2sin
ρ1 - (xbHyb- ybHxb)
+ Psinρ2sinρ1+ Tcz+ Tdz
The torque Mib and Midare caused by the gravity gradient
effect (Zach F., 1970)

Also, P and MSD and the equation of motion for the
damper rod and the relationship between the time
derivatives of the Euler angles and theib(i= x,y,z) (Zach
F., 1970)
A digital program was written which allows the simulation
of the satellite motion according to the simulation of the
motion presented.

3 Small Angle Approximation of the
Equations of Motion

It is shown in that for small angles and negligible inner
damping, the equations of motion can be approximated by:
(yaw) +ω2

0
Izz−Iyy

Ixx
ψ - Izz−Iyy−Ixx

Ixx
ω0 ?? =Tcx+Tdx

Ixx
(3)

(roll) + 4 ω2
0

Izz−Ixx
Iyy

?Izz−Ixx−Iyy
Iyy

ω0 ψ =
Tcy+Tdy

Iyy
(4)

and
(pitch)ä + 3 ω2

0
Izz−Ixx

Iyy
a =Tcz+Tdz

Izz
(5)

It is now assumed that
Izz≈Iyy+ Ixx (6)

As is true, e.g., for the ATS-D and ATS-E spacecraft.
Thus, Equations 3-5 become

Ψ + aψψ = uψ + dψ (7)
+ a?? = u?+ d? (8) and
ä + a???? = u?? + d?? (9)

where the ai ,ui , and di can be gain immediately by
comparison with Equations 3-5.(Zach F. and Frick R.H, )
When d= d = dα = 0 and uψ ,u, uα are constant each of the
equation 7-9 gives circles for each of the phase plane plots
(ψ , ψ?/vaψ ) , (, /va), (α, α?/vaα ) respectively.
Simulations of the GGS under the same conditions result
in circles for the phase plane plots (trajectories) for angles
up to 10o. This, together with the result of (Zach F., 1970),
proves the applicability of the approximations used.
Zach F (1970) treated the case of coupled satellite axes is.
However, no unique switching lines in the angle angular
rate phase can be derived.

4 Derivation of the Time/Fuel Optimal
Control Law.

The maximum principle 4,5 will be applied to derive the
time/fuel optimal control for? ax=u in order to drive x and
? to zero, where x stands for ? , ,α of Eqs. 7 and 9.
The performance index is given by

P=
∫ te
to (λe+ λ f |u|)dt (10)

Where t is the start and tethe end of control action.λ f the
fuel weighting factor.

E.g ,λ f = 0 leads to a pure time optimal solution. The
Hamiltonian 5 for this case is with x=x1and x?=x2.

H= p1x2+p2(u-ax1) –λ t -λ f |u|(11)
H is maximized at every instant of time by

u = k sgn p2 for |p2|= λ f (12)
and

u = 0 for |p2|<λ f (13)
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With Equation 11 and dpi/dt= - ?H/?xi (see Reference5),
one obtains (14)

P2 = Pmsin(a1/2t + ϕ) (15)

where Pm and are integration constants.

The final arc:Figure 3 shows p2 and u versus time t. From
this figure it can be said that u has to be on at the final
time te; this is true since the state would never reach the
origin as center. The on time before reaching the origin is
between 0 and tc , tcbeing the maximum on time. Therefore
the part of the trajectory which leads the state to the origin
has to be part of a semicircle with its center at +k/a or –k/a
as shown in figure 2. The longest arc leading to the origin
is given byβ = ω tc , whereω = a1/2

Coasting before final arc:From Figure3 it is obvious that
the state has to have a coasting period reaching this final
arc unless the initial condition happened to be on this
final arc. The length of the coasting period is limited by ?
= ω to f f .If the initial conditions are far enough from the
origin that more thrust intervals than the final one leading
to the origin are required todrive the state to the origin the
coasting interval is given by ?=ω to f f . This means that by
going back in time by to f f the time of switching from
control to coasting has been found. In the phase plane this
can be depicted by drawing circular arcs with the center
in the origin and starting at each point of the arcs of
Figure 4. The length of these arcs for coasting is given by
?. The endpoints of these arcs again form circle arcs of
Figure 4.by an angle counter clockwise about the origin.
This is shown in Figure 5. It can be seen from this Figure
that each initial state lying within he hatched area can be
brought to the origin in a time-fuel optimal maneuver by
coasting tor+ or r−,respectively and then by control
application.

Thrusting before final coasting period:If the initial state
does not lie in the hatched area of the Figure 5 one sees
from Figures 3 and 5 that another thrusting period is
required with control of the reverse sign when compared
with the final control. This thrusting period again can last
up to a time interval of tc. Again shorter intervals than tc
for thrusting’s are applicable for cases where the initial
condition is located such that it can be brought toΛ−by
thrusting intervals less than tc. In the general case of
thrust application of exactly tc duration of all possible
trajectories for this period again are circular arcs with an
angle β and their centers at –k/a or +k/a or +/a,
respectively. This means that the geometric locus of their
starting points can be constructed by rotation ofΛ− or
Λ+, respectively, in Figure5 counterclockwiseby an angle
β . The result is shown in figure6.

Complete switching lines: The procedures outlined can be
pursued in the same manner as above. The geometric
relationship produced by rotating the circle arcs byβ or ?,
respectively, show that all arcs which form the switching
lines have their center on straight lines as shown in
Figure7. Also, the intersection points of the arcs lie on a
straight line.

The Equations for the switching lines are given in
Refernce5.
For the case whereλ f =0 the pure time optimal control
law is derived. This means for the switching lines that ?=
0 which leads to the well known semicircles as switching
lines for the system x? +ax= u (see Fig.8).
On the other hand, forλ t= 0 the pure fuel optimal control
law is derived. In this case thrusting is only provided
when the state is exactly on the x?a−1/2 –axis, which
means an impulse at this time. This corresponds with the
results derived in reference, where it is shown that most
economic control for a system given by x+ ax= u is
achieved when the thruster is only in operation when the
state falls on the x?−1/2 –axis.

5 Adaptive Features and Application

The optimal control law derived has been applied to a
seven degree of freedom computer simulation for gravity
gradient spacecraft. The results show that very good
consistency is obtained between this simulation and the
simplified plant x + ax = u. However, this is only valid as
long as the distance sq of the state from the origin is

Sq =
√

x12+ ẋ22/a =0.2 degrees (16)
In many spacecraft attitude control cases, much higher
accuracy ids required. For such requirements, the
nonlinearities and cross-coupling between the different
axes becomes crucial.
The application for the optimal control (as derived for the
linearized plant model) leads to chattering in the vicinity
of the phase plane origin. Two principles can be applied
which eliminates such chattering. One is based upon
(disturbances) identification, the other, is based on control
performance. We only apply the second method here.

6 Adaptive Control Based upon Control
Performance

Chattering about the origin is caused by deviations of the
trajectory the trajectory of the plant x + ax = u. These
results in missing of the origin (see Figure 9).
Because missing of the origin is more severe when the
applied control torque is higher, we developed a control
level k based upon the behavior of the trajectory as it
approaches the origin or (if overshoot occurs) as it departs
from it. We define this behavior as control performance;
this type of performance obviously is related to control
accuracy.
Out test have shown that the control level adjustment is
best achieved by letting (for states approaching the origin)

Kdb= C1
sq
dbk (17)

where
C1 = constant

sq=
√

x12+ ẋ22/a
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and db is a dead band for sq, such that kdb<k for sq<db
and kdb= k for sq =db.
This means that this control level adaptation is only
applied within a certain dead band. C1 and db are
optimized by experimentation. For states going away
from the origin we have found that
kdb= C2(sqi+1– sq1) . k for C2 (sqi+1– sqi) =1
and (18)
kdb= k for C2(sqi+1- sqi) =1
Provides very satisfying and stable control performance.
In the last equation, sqiand sq1+1 are two distances of the
phase of the origin in two subsequent sampling times.
(Obviously we assume here that sqi is measured in
discrete time fashion.) C2 has been optimized by
experimentation.
We want emphasize that the combination of the more
mathematically derived time-fuel optimal control law and
the more empirically found control level adaptation are
essential for stable working conditions; this results in
much higher pointing accuracy of the S/C (i.e.,
maintaining the state close to the origin) and high fuel
savings when compared to conventional control. In
particular, the pointing can be improved from .0018o(in
roll) and .000390(in pitch) to better than 10−6degrees,
while fuel expenditure is decreased by a factor of 0.1.

7 Concluding Comments

Time/fuel optimal control procedures have been derived
for gravity gradient satellites where yaw and roll axes
decoupled. Because it seems to be impossible to derive
such control laws for the complete, coupled satellite
equation of motion, it is recommended to decouple the
yaw and roll axes by proper choice of the satellite
moments of inertia. Adaptive features have to be added to
the control law to make it applicable for small angles. We
want to point out that here, as in many other cases, the
definition of optimality is more or less arbitrary. Exact
definitions, however, provide a basis for optimal control
developments. Control laws gained by purely theoretical
methods are usually more sufficient for practical
applications, e.g., due to uncertainty in the mathematical
model, or in the knowledge of disturbances, or because
the mathematical model only could be treated in the
approximate form. This requires additional efforts, such
as adaptive control, and, most important, extensive
experimentation with either the real system or a
sufficiently realistic computer simulation. Furthermore,it
should be pointed out that optimal control laws, due to
their trade-off characteristics, are only of practical
importance if they are easy to realize. This seems to
postulate a new optimality criterion which takes the
simplicity of application and realization into
consideration.
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Appendix

Fig. 1: Gravity Gradient Satellite. Xb and yb lie in the plane of
the four booms and are fixed to the spacecraft, xd, ydand zd are
fixed to the damper rod.

Fig. 2: Body fixed coordinate system and attitude coordinate
system.
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Fig. 3: Control u and auxiliary variable P2.

Fig. 4: Final arc.

Fig. 5: Coasting regions and switching lines.

Fig. 6: Extension of Fig. 5, showing regions where u = +k, 0, -k
is applied.

Fig. 7: Switching lines with sample optimal trajectory.
Cik. . . centers of switching circle arcs.

Fig. 8: Reduction of the time/fuel optimal switching lines to pure
time optimal case
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Fig. 9: Behavior of the real and idealized trajectories.
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