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Abstract: In service (or manufacturing) industries the lifetime penfiance assessment is important, hence, the lifetimerpeaface
indexCy is used to measure the potential and performance of a pragbsesel is the lower specification limit. In this paper, we study
different estimators o€ under the compound Rayleigh distribution with general oezd scheme called progressively first-failure-
censored scheme, which is quite useful in many practiazsins. The results in the cases of first-failure censppragressive Type Il
censoring, Type |l censoring and complete sample are aadasies. The study will apply data transformation techmoto constructs

a maximum likelihood (ML) and Bayes estimators@f under the compound Rayleigh distribution based on the pssively first-
failure-censored sample with assuming the conjugate gistribution and squared-error loss function. ML and Bagstimators o€
are utilized to develop the new hypothesis testing alganittprocedure in the condition of known Finally, we give two examples and
the Monte Carlo simulation to assess the behavior of confilarterval for the lifetime performance ind€x under given confidence
levely.

Keywords: Compound Rayleigh distribution; Lifetime performanceérpProgressive first-failure-censoring; Maximum likeli
estimator; Bayes estimators: Monte Carlo simulation.

1 Introduction

Process capability analysis is an effective means of magpprocess performance and potential capability. In theice

(or manufacturing) industry, process capability indices @tilized to assess whether product quality meets theinextju
level. In practice, lifetime performance ind€x is used as a means of measuring business performance, wisetiee
lower specification limit. The purchasers can then empl@ytdsting procedure to determine whether the lifetime of
electronic components adheres to the required level. Mahuifers can also utilize this procedure to enhance process
capability. For more details see for example Montgoméhahd Kane ] proposed the process capability indgxfor
evaluating the lifetime performance of electronic compuseHong et al. 3,4] discussed the performance assessment
of lifetime index of Pareto lifetime businesses based oridence interval and service industries, Lee et%llagsessed
the lifetime performance index of Rayleigh products basedhe Bayesian estimation under progressive Type Il right
censored samples. The theoretical and practical resuliseotine process capability index relationships in indaekamnd
economic systems during the last decades are collectedigested in Tong et alg], Hong et al. [7], Lee et al. B] and
Chen et al.9]. Therefore, some incomplete data could be collected, asgrogressive type | censoring (see Wu and Lin
[10,11]). Wei et al. [L2] estimated Multi-parameter in semitransparent gradei@imedia based on coupled optical and
thermal information.

There are many situations in life-testing and reliabilitydies in which the experimenter may be unable to obtain
complete information on failure times of all experimentahis. There are also situations wherein the removal of items
prior to failure is pre-planned in order to reduce the cost time associated with testing. The most common censoring
schemes are Type-l and Type-Il censoring, but the convealtibype-I and Type-Il censoring schemes do not have the
flexibility of allowing removal of items at points other thalme terminal point of the experiment. A generalization of
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Type-ll censoring is the progressive Type-Il censoringalitallows for units to be removed from the test at points other
than the final termination point. Inference, sampling desigd generalization based on progressively censored sampl
were studied by Balakrishnan and Aggarwalgd][ Balakrishnan et al.]4], Asgharzadeh5], Wu et al. [L6] and Wu et
al. [17]. Johnson 18] described a life test in which the experimenter might dec¢algroup the test units into several sets,
each as an assembly of test units, and then run all the tdstsimultaneously until occurrence the first failure in each
group. Such a censoring scheme is called a first-failureazgrgsscheme. If an experimenter desires to remove some sets
of test units before observing the first failures in these @ life test plan is called a progressive first-failuesgoring
scheme (first-failure censoring scheme is combined witly@ssive censoring scheme) which introduced by Wu and Kus
[29].

Suppose that independent groups witkiitems within each group are put in a life teBy, groups and the group in
which the first failure is observed are randomly removed ftoetest as soon as the first failure (3d3,,,,) has occurred,
R> groups and the group in which the second failure is obsemehadomly removed from the test as soon as the second
failure (sayXf ) has occurred, and finallR, (m < n) groups and the group in which time—th failure is observed
are randomly removed from the test when the-th failure (sayXR,..,) has occurred. The observatiok§, ., <
XR ik < - < XR . are called progressively first-failure-censored ordetisites with progressive censoring scheme
R = (R1,Ry,...,Rm). Itis clear thatnis the number of the first failure observgid< m<n) andn=m+R; + Ry +... + Rn.
If the failure times of then x k items originally in the test are from a continuous populatiath distribution function
F(x) and probability density functiofi(x), the joint probability density function fokf . XXk s XRmmnk IS given
by

m
fl-,2-,-<-,m(x?:m:n:k7Xg:m:n:kv "'7X§1:m:n:k) =Ck" I_l f (leqim:n:k)(l —F (leqim:n:k))k<Rj+l>7l (1)
=1

R R R
0< Ximnk < X2mnk < - < Xmmnk < %,

where
C= n(n— R — 1)(n— Ri— Ry — 1)...(n— Ri—Ry—..Rp1—m+ 1). (2)

Special cases
It is clear from () that the progressive first-failure censored scheme auintathe following censoring schemes as
special cases:

1.The first-failure censored scheme whe- (0,0, ...,0).

2.The progressive type Il censored order statistiks=1.

3.Usually type Il censored order statistics whea 1 andR = (0,0,...,n—m).
4.The complete sample case whea 1 andR = (0,0, ...,0).

R R R i i
Also, It should be noted thaXp, ., X3m k- Xmmnk €N be viewed as a progressive type Il censored sample

from a population with distribution function 1 (1 — F(x))¥. For this reason, results for progressive type Il censored
order statistics can be extend to progressive first-faderesored order statistics easily. Also, the progressiseffilure-
censored plan has advantages in terms of reducing thertestiti which more items are used, but omyf n x k items
are failures.
For more application about progressive-first-failure cgimg data the readers may refer to Soliman et20],[Soliman
et al. 21,22,23], Modhesh P4], Modhesh and Abd-Elmoudo@$] and Ahmadi et al.26].

The two-parameter compound Rayleigh distribution (whighkiénoted by CRIX, 8) provides a population model
which is useful in several areas of statistics, includifegtiésting and reliability. The probability density furanipdf and
the cumulative distribution functiocdf of CRD(a, ) are given, respectively, by

f(x) = 20B%X(B+x°) @D x>0, (B, a > 0), ()
F(x):l—(1+%2)“,x>0, (4)

and the reliability and failure rate functions, at soimare

2
S(t):(1+t§)“’,t>0, (5)
H(t):%,t>0, (6)
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wherea andf3 are the shape and scale parameter respectively.

The main aim of this paper is to construct a ML and Bayes estintdC_ under thecompound Rayleigh distribution with
progressively first-failure-censored sample. These estim ofC_ is then utilized to develop a confidence and credible
intervals ofC_. These intervals can be employed by managers to assessawttettproduct performance adheres to the
required level in the condition of knowln In addition, a Bayesian test (also see Casella and Be2geapd Lanping
[28]) is also used to determine whether the product performadberes to the required level, the organization of this
paper is as follows. In Section 2, we introduce some progedf the lifetime performance ind€ when the lifetime of
the products is coming from the compound Rayleigh distidruand we discussed the relationship between the lifetime
performance inde&; and the conforming rate (the ratio of conforming produdts)Section 3, we investigated the ML
and Bayes estimators of the lifetime performance index enstatistical properties. Section 4 develops a lower bdond
the lifetime performance inde3; . Two illustrative examples are analyzed in Section 5. IniSad®, Sensitivity study via
a Monte Carlo method are conducted. Some concluding reraagkinally made in Section 7.

2 The Lifetime Performance Index

Process capability analysis is utilized to assess the womal quality data under a specific non-normal distribution
Hence, the lifetime performance index (or larger-thedrgitocess capability indek) is also utilized to measure product
quality with the CRD@, 3). Let X denote the lifetime of such a product adhas the CRDg, 3) with the pdf is
given as 8). Clearly, a longer lifetime implies a better product qtyalHence, the lifetime is a larger-the-better type
quality characteristic. The lifetime is generally reqdite exceed- unit times to both be economically profitable and
satisfy customers. Montgomer$][developed a capability inde®_ for properly measuring the larger-the-better quality
characteristicCy is defined as follows:

Coo=—, (7)

where the process mean the process standard deviationandL is the lower specification limit.

To assess the lifetime performance of produCts,can be defines as the lifetime performance index. UXdeas the
CRD(a, B) and the data transformatidh= log(1+ %2), B > 0, the distribution off is a exponential distribution. Hence,
thepdf andcdf of Y are

fy(y;a) = aexp(—ay), y>0,a >0, (8)
and
F(y;a)=1—exp—ay), y>0,a >0, (9)

respectively. Moreover, there are several important pitegs as follows:
The lifetime performance inde3_ can be rewritten as

L i
CL:“T:G =l-al, —0<C, <1, (10)

Q-

where the process megn= E(Y) = 1lla, the process standard deviation= /Var(Y) = 1la, andL is the lower
specification limit.
The failure rate functiohly (y) is defined by

Hy (y) = fy(ya) aexp—ay)

TTRGa I [-ew-ay 70 a

The important properties can be determined by using Idyaiially transformed datd = log(1+ XFZ), B > 0. Since,

the logarithmic transformatiolf = log(1 + %2), B > 0 is one-to-one and strictly increasing, so data seXcdnd
transformed data set of have the same effect in assessing the business performéanmeesinesses. Moreover, the
logarithmic transformatiolN = log(1+ %2), B > 0 enables the calculation of important properties to be.a&en the

mean l1a (> L), then the lifetime performance ind€ > 0. From Egs. ) and @), we can see that the larger the mean
lla, the smaller the failure rate and the lager the lifetime grenfince indexC_. Therefore, the lifetime performance
indexCy, reasonably and accurately represents the business parfoennf new businesses.

By the transformatioly = log(1+ %2), B > 0, and the distribution of has a one-parameter exponential distribution
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Table 1: The lifetime performance inde®,, versus the conforming rat for § = 0.37

C|_ Pr C|_ Pr CL Pr CL Pr C|_ Pr

—oc  0.00000 -1.7 0.06721 -1.0 0.13534 -0.3 0.27253 0.4 0.54881
-2.3 0.03688 -1.6 0.07427 -0.9 0.14957 -0.2 0.30119 0.5 6580
-2.2 0.04076 -1.5 0.08208 -0.8 0.16530 -0.1 0.33287 0.6 03B7
-2.1 0.04505 -1.4 0.09072 -0.7 0.18268 0.0 0.36788 0.7 8Z40
-2.0 0.04979 -1.3 0.10026 -0.6 0.20190 0.1 0.40657 0.8 @B18
-1.9 0.05502 -1.2 0.11080 -0.5 0.22313 0.2 0.44933 0.9 6404
-1.8 0.06081 -1.1 0.12246 -04 0.24660 0.3 0.49659 1.0 0MOO

with thepdf Eq. 8) and cumulative distribution functicedf as @). If the new lifetime of a product exceeds the lower
specification limit (i.eY > L) then the product is labeled as a conforming product. Otlservthe product is labeled as a
non-conforming product. The conforming rate can be defirsed a

P =P(Y>L)=exp—aL) =explCL—1), —o<C_ <1 (12)

Obviously, a strictly increasing relationship exists be#w conforming rat® and the lifetime performance indéx .
Thus, the larger the index val@g, the larger conforming rat, for given3 > 0. For example, if3 = 0.37, then Table
1 lists various values df, and the corresponding conforming raisFor given3 = 0.37 and theC, values which are
not listed in Table 1, the conforming ra@e can be calculated by EdlL2).

3 Estimation of Lifetime Performance Index

In this section, we first estimate the parameter by considettie maximum likelihood (ML) methods, and then we
describe how to obtain the Bayes estimates and the corrdsmperedible intervals of parameterwhenf is known.

3.1 Maximum likelihood estimator of lifetime performance index

LetXR .. i=12--- mbe the progressive first-failure censored sample from armemts population withgdf) and
(cdf) given byf(.) andF(.), respectively. Following upon substituting) @nd @) into (1), andx; is used instead O(if*m:n:k.
The likelihood function may then be written as

m

L(a,B[x) =CkMa™ rlxiﬁak“**” (B+x2) akRAL-L (13)

For knownf, the ML estimator ofx is readily derived from13) as

. m
= — 14
G = (14)
where
W=k (R + 1log(1+ %) (15)
izi B
By using the invariance property of ML estimators, the MLiresttor ofC_ is given by
A N mL
C|_:1—aL:1—W. (16)

Theorem 1.Let Xﬁmn, i=1 2 ...,mbe an progressive first-failure censored order statistin fiwo-parameterompound
Rayleigh distribution(3) with censored scheni Then

2aW ~ X (17)
whereW given by (L5)
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2
Proof. let LetZ = alog(1+ %’) It can be seen thzitf;m’n!k < ZzR;m,n,k <. < Zﬁ‘tm’n!k is progressive first-failure-censored

order statistic from an standard exponential distribut@onsider the following transformations
W = nZ:IL?;m,n,k7

wZ = (n - Rl - 1) (ZZR;m,n,k B Z]B;mvnvk) ’ (18)

@n=(N—Ri—Ro— .~ R 1- M+ 1) (ZR 00— Z8 1)

The generalized spacings , @, ..., Wy are independent and identically distributed as standgodreential distribution,
see Tomas and Wilso29]. Hence, Zt + @y + ... + Wm) ~ X(22m) ,where

2(w1+@+...+wm)=2aki(Ra+1)log(1+%2)=20'Wv (19)

Remark 1. The expectation of, can be derived as follows

A mL 1 amL
E(CL)_E(l—W> =1-2amLE (W) =1-—— (20)

The ML estimatoC,_ is not an unbiased estimator 6f. But whenm — oo, E(CL) — CL, so the ML estimato€, is
asymptotically unbiased estimator. Moreover, we also sthatC, is consistent.

3.2 Bayes estimator of lifetime performance index

Bayesian approach has received large attention for amgjyailure data and other time-to-event data, and has béen of
proposed as a valid alternative to traditional statistagakpectives. In the Bayesian estimation unknown paramate
assumed to behave as random variables with distributiamsrmmly known as prior probability distributions. This deat
deals with finding Bayes estimates for unknown parameterere we considered is a random variable having the
conjugate gamma prior distribution with tipef

b? a—1,—ba ;
mi(atla,b) = —I'(a)a e ifa>0 21)
0 if a <O0.
Then the posterior distribution @f is obtained as usind.8) and 1),
_ (W*)ma m+a—1 _ *
m(a) = 7F(m+a)a exp(—aW™), (22)
where
S Xiz) b 23)
W=k (R+1)log(l+-1)+b.
i;( )log( B

By consider a squared-error loss functiap(¢r, @) = (a — &)?, then the Bayes estimator afis the posterior mean

~ m+a
a—E(a|T[(O!))—W, (24)
Hence, the Bayes estimatdr of C_ can be written by usinglQ) and @2) as
~ m+a)L
& = E(G (o)) =1 AL (25)

Theorem 2.Let Xi'?m’n, i=1,2, ..., mbe an progressive first-failure censored order statistim fiwo-parametetompound
Rayleigh distribution(3) with censored schent Then

ZUW* ~ X22(m+a), (26)

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

464 NS 2 A. A. Modhesh: Analysis of lifetime performance...

whereW* given by @3)
Proof. LetY = 2aW*, whereW* as in 3), by using the change of variables (see Casella and Be2@gmpp. 184—-185),
then we obtain that thedf. of Y is given by

_ y _ y oy
0v(y) = ) IV =~ @0 3) (27)
2°%0r ( ! )
hence, 2W* ~ X22(m+a>.
Remark 2. The expectation of,. can be derived as follows
Ay B (m+a)alL
E(CL) =1—-2(m+a)aLE 2aW*) =1 mra -1 (28)

The Beyas estimatdl, is not an unbiased estimator®f. But whenm — o, E(C ) — C, so the Beyas estimat;
is asymptotically unbiased estimator. Moreover, we alsmstihatCy_ is consistent.

4 Confidence Interval for C_

In this section, we construct a statistical testing procedo assess whether the lifetime performance index adieres
the required level. A 10@ — y)% lower bound foiC, is obtained by using the ML and Bayes estimator given18) (
and @5) then, based on this lower bound, a hypothesis testing guweds developed in order to determine whether the
lifetime performance index of products meets the preddterdhlevel. To this end, let denote the lower bound & .
Notice thatC, of products must be larger thanThe null hypothesisiy : C. < c¢ (the product is unreliable) against the
alternativeH; : C_ > c (the product is reliable) are constructed.

Theorem 3.Let Xfmn, i=1,2, ..., mbe an progressive first-failure censored order statistim fiwo-parameterompound

Rayleigh distribution(3) with censored schen, C_ is asymptotically unbiased ML estimator 6f, then 1001 - y)%
lower bound foIC, is

(éL - 1)X127 y,2m

LBye =1+ >m

(29)

Proof. In the non-Bayesian approach, for kno@ngiven the specified significance leyednd using the fact th2aW) ~
x(22m> (Theorem 1), we have

1-y=P (ZGW < Xlzfy,Zm)

X127y2m
— P < ’
= <C¥

Lx%
—P <cL >1- 7;\/6*2”‘)

CL—1)x2

_p (CL >14 (C )le,Zm) .
2m

In the Bayesian approach, given the specified significanad e the level 1001 — y)% one-sided credible interval for
C. can be derived as following thereom
Theorem 4. Let Xi;Rm’n, i=1, 2, ..., mbe an progressive first-failure censored order statisbenftwo-parameter
compound Rayleigh distributiof3) with censored schem® and conjugate gamma prior distributio21y, ¢, is
asymptotically unbiased ML estimator Gf, then 1001 — y)% lower bound foC_ is

(CL - 1)X127y,2(m+a)

LB =1
=2 Bayes + 2(m+ a)

(30)
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Proof. In the Bayesian approach, for knoy8n given the specified significance leyeand using the fact thg2aW*) ~
X<22m) (Theorem 2), we have.

1-y=P (ZaW* < Xf—y,Z(m+a))

Xt_y2imia)
_ < Al-y2(mia
P (a S oW )

—plc >1- Xlzfy,Z(era)
AN+
(CL B 1)X127y,2(m+a)

The managers can then employ the one-sided hypothesisgiéstidetermine whether the lifetime performance index
adheres to the required level. The proposed testing proeedioulC; can be organized as follows:

Step 1ln order to estimate the shape paramgtéan the CRD@, ), the Gini statistic is suggested, see for instance, Gdil an
Gastwirth BQ], Lee et. al. b] and Ahmadi et al.26], the Gini statistic is defined as
m-1
> iDia
Gmn= |:17m7 (31)
(m-1) 5 Di

i=1

m-1 2
whereD; = (n— Y R —m+1)(Tim — Ti—1m) for i =2,3,--- ;m and D1 = nTy;m while Ty, = log(1+ %’). For
i=1

m > 20, 1/12(n—1)(gn — 0.5) tends to the standard normal distributiod(0,1). Hence, the p-value
= P{|Z| > [v/12(m—1)(gm— 0.5)|}, wheregn is the observed value @y, andZ has an approximation ®(0,1).
So, by using the maximump-value method, the optimum value Bfis selected and then we suppdgses known.
Step 2From the observed progressive first-failure-censoring @& .1, X3 ks -+ X k), We can obtained/f
. . 2
Y mnks -+ Yok » DY USing transformatio¥f = log(1+ %).

Step 3Determine the lower lifetime limik = log(1+ %) for products and performance index value c, then the testitig
hypothesidp: C. < ¢ and the alternative hypothests : C_ > cis constructed.

Step SHpecify a significance level R .

Step 5Calculate the value of test statis@c andC using (L5) and @1).

Step 6Calculate the value of lower bound kBg and LBs,yesfor C from (25) and @7).

Step 7The decision rule of statistical test is provided as follols ¢ [LBy g, ) Or ¢ ¢ [LBgayes ), We reject the null
hypothesis and it is concluded that the lifetime perforneeindex of product meets the required level.

m:n:k’

5 lllustrative examples

The application of the above testing procedures is predeatene practical data set and one simulated data set.
Example 1 (Real life data). We performed a real data analysis. Theirmiglata is a subset of data reported by
Bekker et al. 1] and Stablein et al.32], represent the survival times in years of a group of pasigiten chemotherapy
treatment alone. The data consisting of 46 survival timegéars) for 46 patients are: 0.047, 0.115, 0.121, 0.13840.1
0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458&60.4.501, 0.507, 0.529, 0.534, 0.540, 0.570, 0.641, 0.644,
0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.44B51.4.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825,
2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033. Bekkek €8 and Stablein et al.32] indicated that the Compound
Rayleigh model is acceptable for these data. In order tmesti the shape paramefein the CRD@, 3), the Gini statistic
is suggested as defined iBg). For the data set which given above, the valueg @ind the correspondingvalues are
shown in Table 2. Table 2 indicates thfat= 0.37 is very close to the optimum value and the maxinmuralue= 0.98998.
So, we assume that the survival times in years of a grof patfetiow a CRD@, 8) with the shape parametgr= 0.37.
The data are randomly grouped into 23 groups whth-(2) items within each group. The relief times of the groups
are: {0.047,0.11%, {0.121,0.132, {0.164,0.19F, {0.203,0.26, {0.282,0.296, {0.334,0.39%, {0.458,0.466,

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

466

N SS ¥

A. A. Modhesh: Analysis of lifetime performance...

Table 2: Numerical values op -values for ball bearing data set.

B p-value p-value p-value p-value

0.21 038334 032 083108 043 080646 054 055279
0.22 042427 033 086867 044 077917 055 053431
0.23 046569 034 090538 045 075279 056 051651
024 050738 035 094119 046 072730 057 049934
025 054914 036 097608 047 070267 058 048280
0.26 059079 037 098998 048 067889 059 046686
0.27 063217 038 095700 049 065594 060 045149
028 067317 039 092498 050 063380 061 043669
029 071364 040 089392 051 061243 062 042242
030 075351 041 086382 052 059182 063 040867
031 079268 042 083467 053 057195 064 039541

2
Table 3: Progressive first-failure censored sample for survivasirtin years) for 46 patients with transformatip,n.x = log(1+ xb’g?" )-
i 1 2 3 4 5 6 7
8 9 10 11 12 13 14
Xi-menek 0.047 0.121 0.164 0.203 0.282 0.334 0.458
0.529 0.540 0.696 0.863 1.326 2.178 3.743
Vimenk 0.006 0.039 0.070 0.106 0.195 0.264 0.449
0.563 0.581 0.837 1.103 1.750 2.626 3.660
R 1 1 1 1 1 1 1
1 1 0 0 0 0 0
2
Table 4: Simulated progressive first-failure censored sample frédD(1.5,0.37 with transformatiory.mn.x = log(1+ ‘6’_"3191" )-
i 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35
X:mnk 0.024  0.056 0.074 0.081 0.084 0.085 0.097 0.103 0.129 0.1491610 0.161
0.162 0.176 0.187 0.206 0.212 0.216 0.217 0.239 0.242 0.2482540 0.255
0.256 0.262 0.267 0.297 0.301 0.302 0.323 0.332 0.343 0.4757340
Yimnk 0.002 0.008 0.015 0.018 0.019 0.020 0.025 0.028 0.044 0.0580680 0.069
0.070 0.080 0.090 0.109 0.115 0.119 0.120 0.143 0.147 0.1541610 0.162
0.163 0.170 0.176 0.214 0.219 0.220 0.248 0.261 0.27 0.4768990.
R 2 2 2 2 2 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

{0.501,0.507, {0.529,0.534,

{0.54,0.570, {0.641, 0.643, {0.696,0.84}, {0.863,1.099, {1.219,1.27},

{1.326,1.44F, {1.485,1.553, {1.581, 1.589, {2.178,2.343, {2.416,2.444, {2.825,2.83, {3.578,3.658,
{3.743,3.978, {4.003,4.033. Suppose that the pre-determined progressively firatfaitensoring plan is applied using
progressive censoring schee- {1,1,1,1,1,1,1,1 1, 0,0, 0, 0, 0}. The progressively first-failure censored data of
size (n= 14) out of 23 groups of patients were observed as in Taple 3

Using progressive first-failure censored with the progvessensoring scheme which are given in Table 3, The vector

2
of it is transformatiorY.mnx = log(1+ ‘gjg;k) were presented in Table 3.

The lower lifetime limitLy is assumed to be.835, hencd.y = log(1+ %) = 0.2649. To deal with the product
managers’ concerns regarding operational performaneesahforming ratd™r of operational performances is required
to exceed 80%. Referring to Table 1, 6g value operational performances are required to exce®tB@. Thus, the
performance index value is set@at 0.80. The testing hypothesi: C. < 0.80 against the alternativé; : C, > 0.80 is
constructed.

Since we do not have any prior information and to find the Bagtisnates, small values are given to the gamma hyper
parameters to reflect vague prior information. Namely, veeiaed that = b = 0,0001. Hence the results in the Bayesian
and non-Bayesian are conforming, hence from (27), the 9%%ribound foiC, is obtained as LB, es= 0.8220. Since
c=0.80¢ [0.8219 «), so the null hypothesidy : C. < 0.8 is rejected.

Example 2 (Simulated data set): A progressive first-failure censseedple withn = 200 k=4, m=35and R, =
..=Rs=2,Rs = ... = Rijp = 1,Ry1...,R35 = 0) was generated from a CR®(B) with the (df). (8) and (a, )
(1.5,0.37). The observed data and it is transformation were report@dlte 4.

Based on the censored data in Table 4, we estimate the shameqiara in the CRD@, 3) by usig the Gini statistic
with maximumP-value method.

Table 5 shown that the values Bf= 0.38 is very close to the optimum value and the maxinfavalue= 0.99380

assuming.x = 0.12, hencé.y = log(1+ %2)7) = 0.0382. Suppose that the conforming rBteof operational performances
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Table 5: Numerical values op-values for simulated data set.

B p-value g p-value g p-value p p-value
021 060995 032 088757 043 003454 054 (081490
022 064076 033 090708 044 092171 055 080601
023 067033 034 092582 045 090933 056 079738
024 069869 035 094383 046 089738 057 078901
025 072590 036 096114 047 089738 058 078090
026 075199 037 097779 048 087467 059 077301
027 077701 038 099380 049 086387 060 076536
028 080100 039 099078 050 085343 061 075793
029 082400 040 097593 051 084333 062 075070
030 084607 041 096163 052 083355 063 074368
031 086724 042 094784 053 082408 064 073685

is required to exceed 80%. Referring to Table 1,@hevalue operational performances are required to exce&BU.
Thus, the performance index value is setat 0.80. The testing hypotheskd, : C. < 0.80 against the alternativé; :
CL > 0.80 is constructed.

In non-Bayesian approach, the 95% lower boundois obtained as LR g = 0.8692. Since = 0.80¢ [0.8692 ),
so we reject the null hypothedi : C. < 0.80 in favor ofH; : C. > 0.80.

In the Bayesian approach, for = 1.5 we choose the best hyperparametersf to satisfies &f) = £ = actual
population parameter, hence we put 3 andb = 2. The 95% lower bound fdZ, is obtained as LB,ys= 0.8674. Since
c=0.80¢ [0.8674 ), so we reject the null hypothedik : C. < 0.80 in favor ofH; : C_ > 0.80.

6 Monte Carlo Simulations

In this section, we report some numerical experiments padd to evaluate the behavior of the lifetime performance
indexCy for different sample sizes, different effective sample sizes, differentk, different values of3 = 0.2, 0.4 and
1.3. We also considear = 1.5, Lx = 0.25 and three different sampling schemes. The samples weerajed by using
the algorithm described in Balakrishnan and Sand@8) We take into consideration that the progressively fiediife
censored order statistiof . < Xxmnk < - < XX IS @ progressively Type Il censored sample from a population
with distribution function 1- (1— F(x))k. We consider the following different sampling schemes:

Scheme IRy =n—mR =0fori #£ 1.

Scheme IRy =n-mR = Ofori# 3.

Scheme IRy =n—mR =0 fori # m.
The simulation algorithm of1 — y)% lower bound is given see Ahmadi et &6][. The results of the simulation study
were reported in Tables 6 and 7.

7 Conclusions

Process capability indices are widely utilized by manufeats to assess the performance and potential of their ggese
In lifetime testing experiments in which a failure time of eg@uct is recorded if it exceeds all preceding failure times
Therefore, censored samples may arise in practice. Thegusige first-failure censored sampling plan has an adganta
in terms of shorter test-time, a saving of resources, anchiolwa specific fraction of individuals at risk may be removed
from the experiment at each of several ordered failure tifhbe familiar complete, Type Il right censored, first-fadu
censored and progressively Type Il right censored sampkesecial cases of the progressive first-failure censored
sampling plan.

From empirical evidence in Tables 6 and 7, we have:

() The results obtained in this paper can be specialize@jdirst-failure-censored order statistics by takRg- (0, ..., 0).

(b) progressively type Il censored statistics for= 1. (c) usually type Il censored order statistics foe= 1 and
R=(0,...,n—m). (d) complete sample fdt=1,n=m; andR= (0, ...,0).

(i The lower bound foIC, is quite sensitive to the value @. Also, whenf is underestimated<( 0.37), the actual
coverage probabilities of the confidence lower boundJpis less than the nominal level, while the overestimated
value of 3 (> 0.37) leads to the larger values for these coverage prokiabiti¢lative to the nominal level. Thus, the
exact determination @ seems very important.

(i) When the effective sample proportion/n increases, the mean of lower bounds of different Bayes agtirs and
MLEs are reduced, also the censoring sché&re (n—m,...,0) is most efficient for all choices, it seems to usually
provide the smallest MSE for all estimators.
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Table 6: The mean square errors of lower bounds and the coveragehiiites of the confidence intervals & for the different
values off3 and the various progressive first-failure censoringscisemith o = 1.5.

k n m Scheme p MLE Bayes
a=1,b=1 a=2,b=2 a=3,b=3

1 20 15 | 0.2 0.484(0.22713) 0.466(0.21654) 0.455(0.21896)438(0.20804)
Il 0.445(0.25909) 0.422(0.25027) 0.437(0.24536) 0.424(907)
1l 0.373(0.33525)  0.359(0.3217)  0.342(0.33158) 0.32B[B26)
I 0.4 0.925(0.00262) 0.918(0.00212) 0.906(0.00252) Qq®96298)
Il 0.894(0.00481) 0.884(0.00462) 0.873(0.00648) 0.8@MNA35)
1 0.854(0.01157) 0.849(0.01112) 0.843(0.01172) 0.832(034)
I 1.3 0.985(0.00223) 0.978(0.00219) 0.982(0.00228) Qq@©H217)
Il 0.977(0.00398) 0.980(0.00368) 0.991(0.00354) 0.98%B19)
1 0.985(0.00425) 0.978(0.00420) 0.982(0.00429) 0.968BF399)

3 I 0.2 0.838(0.01219) 0.824(0.01126) 0.813(0.01214) 4A®@P1031)
Il 0.801(0.02402) 0.783(0.02477) 0.769(0.02363) 0.7HR059)
1l 0.732(0.05931) 0.760(0.05918) 0.682(0.05155) 0.69%(387)
I 0.4 0.976(0.00089) 0.971(0.00066) 0.966(0.00055) Q@6R050)
Il 0.989(0.00264) 0.988(0.00159) 0.978(0.00152) 0.96M052)
1l 0.956(0.00288) 0.965(0.00274) 0.975(0.00276) 0.974254)
I 1.3 0.993(0.00561) 0.985(0.00489) 0.988(0.00501) Qq@DV478)
Il 0.971(0.00612) 0.977(0.00578) 0.976(0.00547) 0.96EB39)
1 0.969(0.00674) 0.971(0.00542) 0.978(0.00612) 0.963y619)

Table 7: The mean square errors of lower bounds and the coveragehilitbs of the confidence intervals &f for the different values
of B and the various progressive first-failure censoring scisemith o = 1.5.

k n m Scheme p MLE Bayes
a=1b=1 a=2b=2 a=3b=3
1 30 20 [ 0.2 0.493(0.21106) 0.472(0.21587) 0.452(0.22008)433(0.21322)
Il 0.372(0.23865)  0.354(0.2495)  0.335(0.24562) 0.3122823)
1 0.332(0.32328) 0.321(0.31896) 0.306(0.31814) 0.R98%109)
I 0.4 0.926(0.00251) 0.918(0.00201) 0.912(0.00202) Q®06208)
Il 0.877(0.00644) 0.866(0.00421) 0.852(0.00386) 0.83EB67)
1 0.875(0.00710) 0.866(0.00761) 0.857(0.00672) 0.84H{512)
I 1.3 0.981(0.00251) 0.968(0.00240) 0.958(0.00241) (Q@BH233)
Il 0.972(0.00282) 0.969(0.00280) 0.966(0.00283) 0.988P52)
1] 0.977(0.00330) 0.956(0.00312) 0.967(0.00323) 0.968F303)
3 I 0.2 0.896(0.00381) 0.891(0.00451) 0.886(0.00403) N@BB0O609)
Il 0.813(0.01979) 0.799(0.01609) 0.789(0.01609) 0.71A®H86)
1] 0.659(0.04673) 0.646(0.04392) 0.627(0.04331) 0.618{294)
I 0.4 0.977(0.00085) 0.976(0.00076) 0.974(0.00067) Q@®@VDO53)
Il 0.976(0.00218) 0.956(0.00215) 0.971(0.00211) 0.9@WDI5)
1 0.972(0.00245) 0.965(0.00244) 0.964(0.00244) 0.95H{243)
I 1.3 0.978(0.00244) 0.977(0.00241) 0.966(0.00239) Qq@©B232)
Il 0.980(0.00265) 0.959(0.00277) 0.972(0.00269) 0.978@81)
1 0.971(0.00379) 0.974(0.00358) 0.987(0.00344) 0.9543322)

(iv)The mean square errors for one-sided credible intervaldbaseBayes estimates are smaller than the mean square

errors for one-sided confidence interval based on the MLE.
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