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Abstract: In service (or manufacturing) industries the lifetime performance assessment is important, hence, the lifetime performance
indexCL is used to measure the potential and performance of a process, whereL is the lower specification limit. In this paper, we study
different estimators ofCL under the compound Rayleigh distribution with general censored scheme called progressively first-failure-
censored scheme, which is quite useful in many practical situations. The results in the cases of first-failure censoring, progressive Type II
censoring, Type II censoring and complete sample are a special cases. The study will apply data transformation technology to constructs
a maximum likelihood (ML) and Bayes estimators ofCL under the compound Rayleigh distribution based on the progressively first-
failure-censored sample with assuming the conjugate priordistribution and squared-error loss function. ML and Bayesestimators ofCL
are utilized to develop the new hypothesis testing algorithmic procedure in the condition of knownL. Finally, we give two examples and
the Monte Carlo simulation to assess the behavior of confidence interval for the lifetime performance indexCL under given confidence
level γ .

Keywords: Compound Rayleigh distribution; Lifetime performance index; Progressive first-failure-censoring; Maximum likelihood
estimator; Bayes estimators: Monte Carlo simulation.

1 Introduction

Process capability analysis is an effective means of measuring process performance and potential capability. In the service
(or manufacturing) industry, process capability indices are utilized to assess whether product quality meets the required
level. In practice, lifetime performance indexCL is used as a means of measuring business performance, whereL is the
lower specification limit. The purchasers can then employ the testing procedure to determine whether the lifetime of
electronic components adheres to the required level. Manufacturers can also utilize this procedure to enhance process
capability. For more details see for example Montgomery [1] and Kane [2] proposed the process capability indexCL for
evaluating the lifetime performance of electronic components. Hong et al. [3,4] discussed the performance assessment
of lifetime index of Pareto lifetime businesses based on confidence interval and service industries, Lee et al. [5] assessed
the lifetime performance index of Rayleigh products based on the Bayesian estimation under progressive Type II right
censored samples. The theoretical and practical results onthe the process capability index relationships in industrial and
economic systems during the last decades are collected and digested in Tong et al. [6], Hong et al. [7], Lee et al. [8] and
Chen et al. [9]. Therefore, some incomplete data could be collected, suchas progressive type I censoring (see Wu and Lin
[10,11]). Wei et al. [12] estimated Multi-parameter in semitransparent graded-index media based on coupled optical and
thermal information.

There are many situations in life-testing and reliability studies in which the experimenter may be unable to obtain
complete information on failure times of all experimental items. There are also situations wherein the removal of items
prior to failure is pre-planned in order to reduce the cost and time associated with testing. The most common censoring
schemes are Type-I and Type-II censoring, but the conventional Type-I and Type-II censoring schemes do not have the
flexibility of allowing removal of items at points other thanthe terminal point of the experiment. A generalization of
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Type-II censoring is the progressive Type-II censoring which allows for units to be removed from the test at points other
than the final termination point. Inference, sampling design and generalization based on progressively censored samples
were studied by Balakrishnan and Aggarwala [13], Balakrishnan et al. [14], Asgharzadeh [15], Wu et al. [16] and Wu et
al. [17]. Johnson [18] described a life test in which the experimenter might decide to group the test units into several sets,
each as an assembly of test units, and then run all the test units simultaneously until occurrence the first failure in each
group. Such a censoring scheme is called a first-failure censoring scheme. If an experimenter desires to remove some sets
of test units before observing the first failures in these sets this life test plan is called a progressive first-failure-censoring
scheme (first-failure censoring scheme is combined with progressive censoring scheme) which introduced by Wu and Kuş
[19].

Suppose thatn independent groups withk items within each group are put in a life test,R1 groups and the group in
which the first failure is observed are randomly removed fromthe test as soon as the first failure (sayXR

1:m:n:k) has occurred,
R2 groups and the group in which the second failure is observed are randomly removed from the test as soon as the second
failure (sayXR

2:m:n:k) has occurred, and finallyRm (m ≤ n) groups and the group in which them− th failure is observed
are randomly removed from the test when them− th failure (sayXR

m:m:n:k) has occurred. The observationsXR
1:m:n:k <

XR
2:m:n:k < ... < XR

m:m:n:k are called progressively first-failure-censored order statistics with progressive censoring scheme
R = (R1,R2, ...,Rm). It is clear thatm is the number of the first failure observed(1<m≤ n) andn=m+R1+R2+ ...+Rm.
If the failure times of then× k items originally in the test are from a continuous population with distribution function
F(x) and probability density functionf (x), the joint probability density function forXR

1:m:n:k, XR
2:m:n:k, ..., XR

m:m:n:k is given
by

f1,2,...,m(x
R
1:m:n:k,x

R
2:m:n:k, ...,x

R
m:m:n:k) =Ckm

m

∏
j=1

f (xR
j:m:n:k)(1−F(xR

j:m:n:k))
k(R j+1)−1 (1)

0< xR
1:m:n:k < xR

2:m:n:k < ... < xR
m:m:n:k < ∞,

where
C = n(n−R1−1)(n−R1−R2−1)...(n−R1−R2− ...Rm−1−m+1). (2)

Special cases
It is clear from (1) that the progressive first-failure censored scheme containing the following censoring schemes as

special cases:

1.The first-failure censored scheme whenR = (0,0, ...,0).
2.The progressive type II censored order statistics ifk = 1.
3.Usually type II censored order statistics whenk = 1 andR = (0,0, ...,n−m).
4.The complete sample case whenk = 1 andR = (0,0, ...,0).

Also, It should be noted thatXR
1;m,n,k,X

R
2;m,n,k, ...,X

R
m;m,n,k can be viewed as a progressive type II censored sample

from a population with distribution function 1− (1−F(x))k. For this reason, results for progressive type II censored
order statistics can be extend to progressive first-failurecensored order statistics easily. Also, the progressive first-failure-
censored plan has advantages in terms of reducing the test time, in which more items are used, but onlym of n× k items
are failures.
For more application about progressive-first-failure censoring data the readers may refer to Soliman et al. [20], Soliman
et al. [21,22,23], Modhesh [24], Modhesh and Abd-Elmoudod [25] and Ahmadi et al. [26].

The two-parameter compound Rayleigh distribution (which is denoted by CRD(α,β ) provides a population model
which is useful in several areas of statistics, including life testing and reliability. The probability density functionpdf and
the cumulative distribution functioncdf of CRD(α,β ) are given, respectively, by

f (x) = 2αβ α x(β + x2)−(α+1), x > 0, (β , α > 0), (3)

F(x) = 1− (1+
x2

β
)−α , x > 0, (4)

and the reliability and failure rate functions, at somet, are

S(t) = (1+
t2

β
)−α , t > 0, (5)

H(t) =
2αt

β + t2 , t > 0, (6)
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whereα andβ are the shape and scale parameter respectively.
The main aim of this paper is to construct a ML and Bayes estimator ofCL under thecompound Rayleigh distribution with

progressively first-failure-censored sample. These estimators ofCL is then utilized to develop a confidence and credible
intervals ofCL. These intervals can be employed by managers to assess whether the product performance adheres to the
required level in the condition of knownL. In addition, a Bayesian test (also see Casella and Berger [27] and Lanping
[28]) is also used to determine whether the product performanceadheres to the required level, the organization of this
paper is as follows. In Section 2, we introduce some properties of the lifetime performance indexCL when the lifetime of
the products is coming from the compound Rayleigh distribution and we discussed the relationship between the lifetime
performance indexCL and the conforming rate (the ratio of conforming products).In Section 3, we investigated the ML
and Bayes estimators of the lifetime performance index and its statistical properties. Section 4 develops a lower boundfor
the lifetime performance indexCL. Two illustrative examples are analyzed in Section 5. In Section 6, Sensitivity study via
a Monte Carlo method are conducted. Some concluding remarksare finally made in Section 7.

2 The Lifetime Performance Index

Process capability analysis is utilized to assess the non-normal quality data under a specific non-normal distribution.
Hence, the lifetime performance index (or larger-the-better process capability index)CL is also utilized to measure product
quality with the CRD(α,β ). Let X denote the lifetime of such a product andX has the CRD(α,β ) with the pdf is
given as (3). Clearly, a longer lifetime implies a better product quality. Hence, the lifetime is a larger-the-better type
quality characteristic. The lifetime is generally required to exceedL unit times to both be economically profitable and
satisfy customers. Montgomery [1] developed a capability indexCL for properly measuring the larger-the-better quality
characteristic.CL is defined as follows:

CLx =
µ −L

σ
, (7)

where the process meanµ , the process standard deviationσ , andL is the lower specification limit.
To assess the lifetime performance of products,CLx can be defines as the lifetime performance index. UnderX has the

CRD(α,β ) and the data transformationY = log(1+ X2

β ), β > 0, the distribution ofY is a exponential distribution. Hence,
thepdf andcdf of Y are

fY (y;α) = α exp(−αy), y > 0,α > 0, (8)

and
FY (y;α) = 1−exp(−αy), y > 0,α > 0, (9)

respectively. Moreover, there are several important properties, as follows:
The lifetime performance indexCL can be rewritten as

CL =
µ −L

σ
=

1
α −L

1
α

= 1−αL, −∞ <CLy < 1, (10)

where the process meanµ = E(Y ) = 1lα, the process standard deviationσ =
√

Var(Y ) = 1lα, and L is the lower
specification limit.

The failure rate functionHY (y) is defined by

HY (y) =
fY (y,α)

1−FY(y,α)
=

α exp(−αy)
1− [1−exp(−αy)]

= α, α > 0. (11)

The important properties can be determined by using logarithmically transformed dataY = log(1+ X2

β ), β > 0. Since,

the logarithmic transformationY = log(1+ X2

β ), β > 0 is one-to-one and strictly increasing, so data set ofX and
transformed data set ofY have the same effect in assessing the business performance of businesses. Moreover, the
logarithmic transformationY = log(1+ X2

β ), β > 0 enables the calculation of important properties to be easy. When the
mean 1lα (> L), then the lifetime performance indexCL > 0. From Eqs. (7) and (8), we can see that the larger the mean
1lα, the smaller the failure rate and the lager the lifetime performance indexCL. Therefore, the lifetime performance
indexCLy reasonably and accurately represents the business performance of new businesses.

By the transformationY = log(1+ X2

β ), β > 0, and the distribution ofY has a one-parameter exponential distribution
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Table 1: The lifetime performance indexCLy versus the conforming ratePr for β = 0.37
CL Pr CL Pr CL Pr CL Pr CL Pr

−∞ 0.00000 -1.7 0.06721 -1.0 0.13534 -0.3 0.27253 0.4 0.54881
-2.3 0.03688 -1.6 0.07427 -0.9 0.14957 -0.2 0.30119 0.5 0.60653
-2.2 0.04076 -1.5 0.08208 -0.8 0.16530 -0.1 0.33287 0.6 0.67032
-2.1 0.04505 -1.4 0.09072 -0.7 0.18268 0.0 0.36788 0.7 0.74082
-2.0 0.04979 -1.3 0.10026 -0.6 0.20190 0.1 0.40657 0.8 0.81873
-1.9 0.05502 -1.2 0.11080 -0.5 0.22313 0.2 0.44933 0.9 0.90484
-1.8 0.06081 -1.1 0.12246 -0.4 0.24660 0.3 0.49659 1.0 1.00000

with thepdf Eq. (8) and cumulative distribution functioncdf as (9). If the new lifetime of a product exceeds the lower
specification limit (i.e.Y ≥ L) then the product is labeled as a conforming product. Otherwise, the product is labeled as a
non-conforming product. The conforming rate can be defined as

Pr = P(Y ≥ L) = exp(−αL) = exp(CL −1), −∞ <CL < 1. (12)

Obviously, a strictly increasing relationship exists between conforming ratePr and the lifetime performance indexCL.
Thus, the larger the index valueCL, the larger conforming ratePr, for givenβ > 0. For example, ifβ = 0.37, then Table
1 lists various values ofCLy and the corresponding conforming ratesPr. For givenβ = 0.37 and theCLy values which are
not listed in Table 1, the conforming ratePr can be calculated by Eq. (12).

3 Estimation of Lifetime Performance Index

In this section, we first estimate the parameter by considering the maximum likelihood (ML) methods, and then we
describe how to obtain the Bayes estimates and the corresponding credible intervals of parameterα whenβ is known.

3.1 Maximum likelihood estimator of lifetime performance index

Let XR
i:m:n:k, i = 1,2, · · · ,m be the progressive first-failure censored sample from a continuous population with (pdf ) and

(cdf ) given by f (.) andF(.), respectively. Following upon substituting (3) and (4) into (1), andxi is used instead ofXR
i:m:n:k.

The likelihood function may then be written as

L(α,β |x) =Ckmαm
m

∏
i=1

xiβ αk(Ri+1)(β + x2
i )

−αk(Ri+1)−1. (13)

For knownβ , the ML estimator ofα is readily derived from (13) as

α̂ =
m
W

, (14)

where

W = k
m

∑
i=1

(Ri +1) log(1+
x2

i

β̂
). (15)

By using the invariance property of ML estimators, the ML estimator ofCL is given by

ĈL = 1− α̂L = 1−
mL
W

. (16)

Theorem 1.Let XR
i;m,n, i = 1, 2, ..., m be an progressive first-failure censored order statistic from two-parametercompound

Rayleigh distribution(3) with censored schemeR. Then

2αW ∼ χ2
(2m), (17)

whereW given by (15)
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Proof. let LetZi = α log(1+ X2
i

β ) It can be seen thatZR
1;m,n,k < ZR

2;m,n,k < ... < ZR
m;m,n,k is progressive first-failure-censored

order statistic from an standard exponential distribution. Consider the following transformations


























ϖ1 = nZR
1;m,n,k,

ϖ2 = (n−R1−1)
(

ZR
2;m,n,k −ZR

1;m,n,k

)

,

...

ϖm = (n−R1−R2− ...−Rm−1−m+1)
(

ZR
m;m,n,k −ZR

m−1;m,n,k

)

(18)

The generalized spacingsϖ1,ϖ2, ...,ϖm are independent and identically distributed as standard exponential distribution,
see Tomas and Wilson [29]. Hence, 2(ϖ1+ϖ2+ ...+ϖm)∼ χ2

(2m),where

2(ϖ1+ϖ2+ ...+ϖm) = 2αk
m

∑
i=1

(Ri +1) log(1+
x2

i

β̂
) = 2αW, (19)

Remark 1. The expectation of̂CL can be derived as follows

E(ĈL) = E

(

1−
mL
W

)

= 1−2αmLE

(

1
2αW

)

= 1−
αmL
m−1

(20)

The ML estimatorĈL is not an unbiased estimator ofCL. But whenm −→ ∞, E(ĈL) −→ CL, so the ML estimator̂CL is
asymptotically unbiased estimator. Moreover, we also showthatĈL is consistent.

3.2 Bayes estimator of lifetime performance index

Bayesian approach has received large attention for analyzing failure data and other time-to-event data, and has been often
proposed as a valid alternative to traditional statisticalperspectives. In the Bayesian estimation unknown parameters are
assumed to behave as random variables with distributions commonly known as prior probability distributions.This section
deals with finding Bayes estimates for unknown parameterα. Here we consideredα is a random variable having the
conjugate gamma prior distribution with thepdf

π(α|a,b) =







ba

Γ (a)
αa−1e−bα if α > 0

0 if α ≤ 0.
(21)

Then the posterior distribution ofα is obtained as using (13) and (21),

π(α) =
(W ∗)m+a

Γ (m+ a)
αm+a−1exp(−αW ∗) , (22)

where

W ∗ = k
m

∑
i=1

(Ri +1) log(1+
x2

i

β
)+ b. (23)

By consider a squared-error loss function ,φ(α, α̃) = (α − α̃)2, then the Bayes estimator ofα is the posterior mean

α̃ = E(α|π(α)) =
m+ a
W ∗

, (24)

Hence, the Bayes estimatorC̃L of CL can be written by using (10) and (22) as

C̃L = E(CL|π(α)) = 1−
(m+ a)L

W ∗
. (25)

Theorem 2.Let XR
i;m,n, i = 1, 2, ..., m be an progressive first-failure censored order statistic from two-parametercompound

Rayleigh distribution(3) with censored schemeR. Then

2αW ∗ ∼ χ2
2(m+a), (26)
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whereW ∗ given by (23)
Proof. Let Y = 2αW ∗, whereW ∗ as in (23), by using the change of variables (see Casella and Berger [27], pp. 184–185),
then we obtain that thepdf. of Y is given by

gY (y) = π(
y

2W∗
)||Iy||=

y
2(m+a)

2 −1

2
2(m+a)

2 Γ
(

2(m+a)
2

) exp
(

−
y
2

)

, (27)

hence, 2αW ∗ ∼ χ2
2(m+a).

Remark 2. The expectation of̃CL can be derived as follows

E(ĈL) = 1−2(m+ a)αLE(
1

2αW ∗
) = 1−

(m+ a)αL
(m+ a)−1

. (28)

The Beyas estimator̃CL is not an unbiased estimator ofCL. But whenm −→ ∞, E(C̃L) −→ CL, so the Beyas estimator̃CL
is asymptotically unbiased estimator. Moreover, we also show thatC̃L is consistent.

4 Confidence Interval for CL

In this section, we construct a statistical testing procedure to assess whether the lifetime performance index adheresto
the required level. A 100(1− γ)% lower bound forCL is obtained by using the ML and Bayes estimator given by (16)
and (25) then, based on this lower bound, a hypothesis testing procedure is developed in order to determine whether the
lifetime performance index of products meets the predetermined level. To this end, letc denote the lower bound ofCL.
Notice thatCL of products must be larger thanc. The null hypothesisH0 : CL ≤ c (the product is unreliable) against the
alternativeH1 : CL > c (the product is reliable) are constructed.
Theorem 3.Let XR

i;m,n, i = 1, 2, ..., m be an progressive first-failure censored order statistic from two-parametercompound

Rayleigh distribution(3) with censored schemeR, ĈL is asymptotically unbiased ML estimator ofCL, then 100(1− γ)%
lower bound forCL is

LBMLE = 1+
(ĈL −1)χ2

1−γ,2m

2m
. (29)

Proof. In the non-Bayesian approach, for knownβ , given the specified significance levelγ and using the fact that(2αW )∼
χ2
(2m) (Theorem 1), we have

1− γ = P
(

2αW ≤ χ2
1−γ,2m

)

= P

(

α ≤
χ2

1−γ,2m

2W

)

= P

(

CL ≥ 1−
Lχ2

1−γ,2m

2W

)

= P

(

CL ≥ 1+
(ĈL −1)χ2

1−γ,2m

2m

)

.

In the Bayesian approach, given the specified significance level γ, the level 100(1− γ)% one-sided credible interval for
CL can be derived as following thereom
Theorem 4. Let XR

i;m,n, i = 1, 2, ..., m be an progressive first-failure censored order statistic from two-parameter
compound Rayleigh distribution(3) with censored schemeR and conjugate gamma prior distribution (21), C̃L is
asymptotically unbiased ML estimator ofCL, then 100(1− γ)% lower bound forCL is

LBBayes= 1+
(C̃L −1)χ2

1−γ,2(m+a)

2(m+ a)
(30)
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Proof. In the Bayesian approach, for knownβ , given the specified significance levelγ and using the fact that(2αW ∗)∼
χ2
(2m) (Theorem 2), we have.

1− γ = P
(

2αW ∗ ≤ χ2
1−γ,2(m+a)

)

= P

(

α ≤
χ2

1−γ,2(m+a)

2W ∗

)

= P

(

CL ≥ 1−
Lχ2

1−γ,2(m+a)

2W ∗

)

= P

(

CL ≥ 1+
(C̃L −1)χ2

1−γ,2(m+a)

2(m+ a)

)

.

The managers can then employ the one-sided hypothesis testing to determine whether the lifetime performance index
adheres to the required level. The proposed testing procedure aboutCL can be organized as follows:

Step 1.In order to estimate the shape parameterβ in the CRD(α,β ), the Gini statistic is suggested, see for instance, Gail and
Gastwirth [30], Lee et. al. [5] and Ahmadi et al. [26], the Gini statistic is defined as

Gm =

m−1
∑

i=1
iDi−1

(m−1)
m
∑

i=1
Di

, (31)

whereDi = (n −
m−1
∑

i=1
Ri − m + 1)(Ti:m − Ti−1:m) for i = 2,3, · · · ,m and D1 = nT1:m while Ti:m = log(1+

X2
i

β ). For

m > 20,
√

12(n−1)(gn − 0.5) tends to the standard normal distributionN(0,1). Hence, the p-value

= P
{

|Z|> |
√

12(m−1)(gm −0.5)|
}

, wheregm is the observed value ofGm andZ has an approximation ofN(0,1).

So, by using the maximump-value method, the optimum value ofβ is selected and then we supposeβ is known.
Step 2.From the observed progressive first-failure-censoring data (xR

1:m:n:k,x
R
2:m:n:k, ...,x

R
m:m:n:k), we can obtainedyR

1:m:n:k,

yR
2:m:n:k, ..., yR

m:m:n:k , by using transformationYi = log(1+
X2

i
β ).

Step 3.Determine the lower lifetime limitL = log(1+ L2
X

β ) for products and performance index value c, then the testingnull
hypothesisH0: CL < c and the alternative hypothesisH1 : CL > c is constructed.

Step 4Specify a significance levelγ.
Step 5.Calculate the value of test statisticĈL andC̃L using (15) and (21).
Step 6.Calculate the value of lower bound LBMLE and LBBayesfor CL from (25) and (27).
Step 7.The decision rule of statistical test is provided as follows: If c /∈ [LBMLE, ∞) or c /∈ [LBBayes, ∞), we reject the null

hypothesis and it is concluded that the lifetime performance index of product meets the required level.

5 Illustrative examples

The application of the above testing procedures is presented to one practical data set and one simulated data set.
Example 1 (Real life data). We performed a real data analysis. The original data is a subset of data reported by

Bekker et al. [31] and Stablein et al. [32], represent the survival times in years of a group of patients given chemotherapy
treatment alone. The data consisting of 46 survival times (in years) for 46 patients are: 0.047, 0.115, 0.121, 0.132, 0.164,
0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.570, 0.641, 0.644,
0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825,
2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033. Bekker et al. [31] and Stablein et al. [32] indicated that the Compound
Rayleigh model is acceptable for these data. In order to estimate the shape parameterβ in the CRD(α,β ), the Gini statistic
is suggested as defined in (28). For the data set which given above, the values ofβ and the correspondingp-values are
shown in Table 2. Table 2 indicates thatβ = 0.37 is very close to the optimum value and the maximump-value= 0.98998.
So, we assume that the survival times in years of a grof patients follow a CRD(α,β ) with the shape parameterβ = 0.37.

The data are randomly grouped into 23 groups with (k = 2) items within each group. The relief times of the groups
are: {0.047,0.115}, {0.121,0.132}, {0.164,0.197}, {0.203,0.26}, {0.282,0.296}, {0.334,0.395}, {0.458,0.466},
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Table 2: Numerical values ofp -values for ball bearing data set.
β p-value β p-value β p-value β p-value
0.21 0.38334 0.32 0.83108 0.43 0.80646 0.54 0.55279
0.22 0.42427 0.33 0.86867 0.44 0.77917 0.55 0.53431
0.23 0.46569 0.34 0.90538 0.45 0.75279 0.56 0.51651
0.24 0.50738 0.35 0.94119 0.46 0.72730 0.57 0.49934
0.25 0.54914 0.36 0.97608 0.47 0.70267 0.58 0.48280
0.26 0.59079 0.37 0.98998 0.48 0.67889 0.59 0.46686
0.27 0.63217 0.38 0.95700 0.49 0.65594 0.60 0.45149
0.28 0.67317 0.39 0.92498 0.50 0.63380 0.61 0.43669
0.29 0.71364 0.40 0.89392 0.51 0.61243 0.62 0.42242
0.30 0.75351 0.41 0.86382 0.52 0.59182 0.63 0.40867
0.31 0.79268 0.42 0.83467 0.53 0.57195 0.64 0.39541

Table 3: Progressive first-failure censored sample for survival times (in years) for 46 patients with transformationYi:m:n:k = log(1+
X2

i:m:n:k
0.37 ).

i 1 2 3 4 5 6 7
8 9 10 11 12 13 14

xi:m:n:k 0.047 0.121 0.164 0.203 0.282 0.334 0.458
0.529 0.540 0.696 0.863 1.326 2.178 3.743

yi:m:n:k 0.006 0.039 0.070 0.106 0.195 0.264 0.449
0.563 0.581 0.837 1.103 1.750 2.626 3.660

Ri 1 1 1 1 1 1 1
1 1 0 0 0 0 0

Table 4: Simulated progressive first-failure censored sample from CRD(1.5,0.37 with transformationYi:m:n:k = log(1+
X2

i:m:n:k
0.37 ).

i 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35

xi:m:n:k 0.024 0.056 0.074 0.081 0.084 0.085 0.097 0.103 0.129 0.149 0.161 0.161
0.162 0.176 0.187 0.206 0.212 0.216 0.217 0.239 0.242 0.248 0.254 0.255
0.256 0.262 0.267 0.297 0.301 0.302 0.323 0.332 0.343 0.475 0.734

yi:m:n:k 0.002 0.008 0.015 0.018 0.019 0.020 0.025 0.028 0.044 0.058 0.068 0.069
0.070 0.080 0.090 0.109 0.115 0.119 0.120 0.143 0.147 0.154 0.161 0.162
0.163 0.170 0.176 0.214 0.219 0.220 0.248 0.261 0.27 0.476 0.899

Ri 2 2 2 2 2 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

{0.501,0.507}, {0.529,0.534}, {0.54,0.570}, {0.641, 0.644}, {0.696,0.841}, {0.863,1.099}, {1.219,1.271},
{1.326,1.447}, {1.485,1.553}, {1.581, 1.589}, {2.178,2.343}, {2.416,2.444}, {2.825,2.83}, {3.578,3.658},
{3.743,3.978},{4.003,4.033}. Suppose that the pre-determined progressively first-failure censoring plan is applied using
progressive censoring schemeR = {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0}. The progressively first-failure censored data of
size (m = 14) out of 23 groups of patients were observed as in Taple 3

Using progressive first-failure censored with the progressive censoring scheme which are given in Table 3, The vector

of it is transformationYi:m:n:k = log(1+
X2

i:m:n:k
0.37 ) were presented in Table 3.

The lower lifetime limit Lx is assumed to be 0.335, henceLy = log(1+ L2
x

0.37) = 0.2649. To deal with the product
managers’ concerns regarding operational performance, the conforming ratePr of operational performances is required
to exceed 80%. Referring to Table 1, theCL value operational performances are required to exceed 0.8187. Thus, the
performance index value is set atc = 0.80. The testing hypothesisH0: CL < 0.80 against the alternativeH1 : CL > 0.80 is
constructed.

Since we do not have any prior information and to find the Bayesestimates, small values are given to the gamma hyper
parameters to reflect vague prior information. Namely, we assumed thata = b= 0,0001. Hence the results in the Bayesian
and non-Bayesian are conforming, hence from (27), the 95% lower bound forCL is obtained as LBBayes= 0.8220. Since
c = 0.80 /∈ [0.8219,∞), so the null hypothesisH0 : CL ≤ 0.8 is rejected.

Example 2 (Simulated data set): A progressive first-failure censoredsample withn = 200, k = 4, m = 35 and (R1 =
... = R5 = 2,R6 = ... = R10 = 1,R11...,R35 = 0) was generated from a CRD(α,β ) with the (pdf ). (8) and (α,β ) =
(1.5,0.37). The observed data and it is transformation were reported inTable 4.

Based on the censored data in Table 4, we estimate the shape parameterα in the CRD(α,β ) by usig the Gini statistic
with maximumP-value method.

Table 5 shown that the values ofβ = 0.38 is very close to the optimum value and the maximumP-value= 0.99380

assumingLx = 0.12, henceLy = log(1+ L2
x

0.37) = 0.0382. Suppose that the conforming ratePr of operational performances
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Table 5: Numerical values ofp-values for simulated data set.
β p-value β p-value β p-value β p-value
0.21 0.60995 0.32 0.88757 0.43 0.93454 0.54 0.81490
0.22 0.64076 0.33 0.90708 0.44 0.92171 0.55 0.80601
0.23 0.67033 0.34 0.92582 0.45 0.90933 0.56 0.79738
0.24 0.69869 0.35 0.94383 0.46 0.89738 0.57 0.78901
0.25 0.72590 0.36 0.96114 0.47 0.89738 0.58 0.78090
0.26 0.75199 0.37 0.97779 0.48 0.87467 0.59 0.77301
0.27 0.77701 0.38 0.99380 0.49 0.86387 0.60 0.76536
0.28 0.80100 0.39 0.99078 0.50 0.85343 0.61 0.75793
0.29 0.82400 0.40 0.97593 0.51 0.84333 0.62 0.75070
0.30 0.84607 0.41 0.96163 0.52 0.83355 0.63 0.74368
0.31 0.86724 0.42 0.94784 0.53 0.82408 0.64 0.73685

is required to exceed 80%. Referring to Table 1, theCL value operational performances are required to exceed 0.8187.
Thus, the performance index value is set atc = 0.80. The testing hypothesisH0 : CL ≤ 0.80 against the alternativeH1 :
CL > 0.80 is constructed.

In non-Bayesian approach, the 95% lower bound forCL is obtained as LBMLE = 0.8692. Sincec = 0.80 /∈ [0.8692,∞),
so we reject the null hypothesisH0 : CL < 0.80 in favor ofH1 : CL > 0.80.

In the Bayesian approach, forα = 1.5 we choose the best hyperparameters (a, b) to satisfies E(α) = a
b
∼= actual

population parameter, hence we puta = 3 andb = 2. The 95% lower bound forCL is obtained as LBBayes= 0.8674. Since
c = 0.80 /∈ [0.8674,∞), so we reject the null hypothesisH0 : CL ≤ 0.80 in favor ofH1 : CL > 0.80.

6 Monte Carlo Simulations

In this section, we report some numerical experiments performed to evaluate the behavior of the lifetime performance
indexCL for different sample sizesn, different effective sample sizesm, differentk, different values ofβ = 0.2, 0.4 and
1.3. We also considerα = 1.5, LX = 0.25 and three different sampling schemes. The samples were generated by using
the algorithm described in Balakrishnan and Sandhu [33]. We take into consideration that the progressively first-failure
censored order statisticsxR

1:m:n:k < xR
2:m:n:k < ... < xR

m:m:n:k is a progressively Type II censored sample from a population
with distribution function 1− (1−F(x))k. We consider the following different sampling schemes:

Scheme I:R1 = n−m,Ri = 0 for i 6= 1.
Scheme II:R m

2
= n−m,Ri = 0 for i 6= m

2 .

Scheme III:Rm = n−m,Ri = 0 for i 6= m.
The simulation algorithm of(1− γ)% lower bound is given see Ahmadi et al. [26]. The results of the simulation study
were reported in Tables 6 and 7.

7 Conclusions

Process capability indices are widely utilized by manufacturers to assess the performance and potential of their processes.
In lifetime testing experiments in which a failure time of a product is recorded if it exceeds all preceding failure times.
Therefore, censored samples may arise in practice. The progressive first-failure censored sampling plan has an advantage
in terms of shorter test-time, a saving of resources, and in which a specific fraction of individuals at risk may be removed
from the experiment at each of several ordered failure times. The familiar complete, Type II right censored, first-failure
censored and progressively Type II right censored samples are special cases of the progressive first-failure censored
sampling plan.

From empirical evidence in Tables 6 and 7, we have:

(i)The results obtained in this paper can be specialized to:(a) first-failure-censored order statistics by takingR= (0, ...,0).
(b) progressively type II censored statistics fork = 1. (c) usually type II censored order statistics fork = 1 and
R = (0, ...,n−m). (d) complete sample fork = 1,n = m; andR = (0, ...,0).

(ii)The lower bound forCL is quite sensitive to the value ofβ . Also, whenβ is underestimated (< 0.37), the actual
coverage probabilities of the confidence lower bound forCL is less than the nominal level, while the overestimated
value ofβ (> 0.37) leads to the larger values for these coverage probabilities relative to the nominal level. Thus, the
exact determination ofβ seems very important.

(iii) When the effective sample proportionm/n increases, the mean of lower bounds of different Bayes estimators and
MLEs are reduced, also the censoring schemeR = (n−m, ...,0) is most efficient for all choices, it seems to usually
provide the smallest MSE for all estimators.
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Table 6: The mean square errors of lower bounds and the coverage probabilities of the confidence intervals ofCL for the different
values ofβ and the various progressive first-failure censoringschemes with α = 1.5.

k n m Scheme β MLE Bayes
a=1, b=1 a=2, b=2 a=3, b=3

1 20 15 I 0.2 0.484(0.22713) 0.466(0.21654) 0.455(0.21895)0.438(0.20804)
II 0.445(0.25909) 0.422(0.25027) 0.437(0.24536) 0.424(0.24907)
III 0.373(0.33525) 0.359(0.3217) 0.342(0.33158) 0.328(0.31826)
I 0.4 0.925(0.00262) 0.918(0.00212) 0.906(0.00252) 0.896(0.00298)
II 0.894(0.00481) 0.884(0.00462) 0.873(0.00648) 0.862(0.00435)
III 0.854(0.01157) 0.849(0.01112) 0.843(0.01172) 0.832(0.01034)
I 1.3 0.985(0.00223) 0.978(0.00219) 0.982(0.00228) 0.975(0.00217)
II 0.977(0.00398) 0.980(0.00368) 0.991(0.00354) 0.983(0.00319)
III 0.985(0.00425) 0.978(0.00420) 0.982(0.00429) 0.966(0.00399)

3 I 0.2 0.838(0.01219) 0.824(0.01126) 0.813(0.01214) 0.824(0.01031)
II 0.801(0.02402) 0.783(0.02477) 0.769(0.02363) 0.754(0.02059)
III 0.732(0.05931) 0.760(0.05918) 0.682(0.05155) 0.695(0.04387)
I 0.4 0.976(0.00089) 0.971(0.00066) 0.966(0.00055) 0.962(0.00050)
II 0.989(0.00264) 0.988(0.00159) 0.978(0.00152) 0.968(0.00152)
III 0.956(0.00288) 0.965(0.00274) 0.975(0.00276) 0.974(0.00254)
I 1.3 0.993(0.00561) 0.985(0.00489) 0.988(0.00501) 0.977(0.00478)
II 0.971(0.00612) 0.977(0.00578) 0.976(0.00547) 0.968(0.00539)
III 0.969(0.00674) 0.971(0.00542) 0.978(0.00612) 0.969(0.00619)

Table 7: The mean square errors of lower bounds and the coverage probabilities of the confidence intervals ofCLfor the different values
of β and the various progressive first-failure censoring schemes with α = 1.5.

k n m Scheme β MLE Bayes
a = 1,b = 1 a = 2,b = 2 a = 3,b = 3

1 30 20 I 0.2 0.493(0.21106) 0.472(0.21587) 0.452(0.22004)0.433(0.21322)
II 0.372(0.23865) 0.354(0.2495) 0.335(0.24562) 0.312(0.22823)
III 0.332(0.32328) 0.321(0.31896) 0.306(0.31814) 0.298(0.43109)
I 0.4 0.926(0.00251) 0.918(0.00201) 0.912(0.00202) 0.906(0.00208)
II 0.877(0.00644) 0.866(0.00421) 0.852(0.00386) 0.836(0.00367)
III 0.875(0.00710) 0.866(0.00761) 0.857(0.00672) 0.845(0.00512)
I 1.3 0.981(0.00251) 0.968(0.00240) 0.958(0.00241) 0.955(0.00233)
II 0.972(0.00282) 0.969(0.00280) 0.966(0.00283) 0.985(0.00252)
III 0.977(0.00330) 0.956(0.00312) 0.967(0.00323) 0.968(0.00303)

3 I 0.2 0.896(0.00381) 0.891(0.00451) 0.886(0.00403) 0.881(0.00609)
II 0.813(0.01979) 0.799(0.01609) 0.789(0.01609) 0.772(0.01586)
III 0.659(0.04673) 0.646(0.04392) 0.627(0.04331) 0.616(0.04294)
I 0.4 0.977(0.00085) 0.976(0.00076) 0.974(0.00067) 0.971(0.00053)
II 0.976(0.00218) 0.956(0.00215) 0.971(0.00211) 0.969(0.00195)
III 0.972(0.00245) 0.965(0.00244) 0.964(0.00244) 0.955(0.00243)
I 1.3 0.978(0.00244) 0.977(0.00241) 0.966(0.00239) 0.974(0.00232)
II 0.980(0.00265) 0.959(0.00277) 0.972(0.00269) 0.976(0.00281)
III 0.971(0.00379) 0.974(0.00358) 0.987(0.00344) 0.954(0.00322)

(iv)The mean square errors for one-sided credible interval based on Bayes estimates are smaller than the mean square
errors for one-sided confidence interval based on the MLE.
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