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Abstract: In this paper point and interval estimations of the parameters of Weibull-Gamma populations based on Type-II hybrid
censoring scheme are obtained. The maximum likelihood and Bayes methods are used to obtain point estimations for the distribution
parameters. The Bayes estimators cannot be obtained explicitly, hence Lindley’s approximation is used to obtain the Bayes estimators.
Furthermore, Markov Chain Monte Carlo technique is used to obtain the Bayes estimators and their corresponding credible intervals.
The results of Bayes estimators are computed under the squared error loss function. An explanatory example is given to explicate the
precision of the estimators.

Keywords: Hybrid Type-II censoring; Bayes estimation; Lindley approximation; maximum likelihood estimation; Markov Chain
Monte Carlo technique.

Acronym:

HCS hybrid censoring scheme MCMC Markov Chain Monte Carlo
T-I HCS Type-I hybrid censoring scheme SEL squared error loss
T-II HCS Type-II hybrid censoring scheme MLE maximum likelihood estimate
PDF probability density function AFIM asymptotic Fisher information matrix
CDF cumulative distribution function ACI Approximate confidence interval
WGD Weibull-Gamma distribution CRI Credible Interval
ML maximum likelihood

1 Introduction

The process of extrapolating conclusions about populationfrom data is called statistical inference. This extrapolation
can be implemented either testing certain hypotheses aboutpopulation parameters or estimating these parameters. For
instance, to make an inference about the life time population of certain electronic units, life testing should be prepared for
some units belonging to the whole population. The aim of the life testing is obtaining information from the test units, where
knowing these information or data help statisticians to estimate population parameters. The available data in most practical
situations are not complete, so statisticians have utilized a lot of censoring schemes to obtain good estimators, such as,
Type-I and Type-IIcensoring schemes. HCS is a combination of Type-I and Type-II schemes and it can be elucidated as
follows. Supposen identical units are put to test. The test is terminated when apre-specified numberR out of units are
failed, or when a pre-determined timeT on the test has been reached. Hence, ifYi:n represents thei-th ordered failure
time, then the test may be terminated either at timeT1 = min{YR:n,T} or at timeT2 = max{YR:n,T}. The timeT1 is the
termaination time of an experiment for testing units under T-I HCS. While,T2 is the termaination time of an experiment
for testing units under T-II HCS. Epstein [8] introduced the T-I HCS, and considered lifetime experiments assuming that
the lifetime of each unit follows an exponential distribution. Several authors have published on T-I HCS; see for example
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Ebrahimi [6], Gupta and Kundu [9], Childs et al. [4] and Singh et al. [18]. It is noted that under this T-I HCS, little numbers
of failures can be occurred up to the pre-fixed timeT, which is one of the disadvantages of this censoring scheme.Childs
et al. [4] introduced the T-II HCS, which guarantees at leastR failures will be occurred. For more details about the merits
and the flexibility of T-II HCS see Childs et al. [4] and Banerjee and Kundu [2]. The WGD is appropriate for phenomenon
of loss of signals in telecommunications which is called fading when multipath is superimposed on shadowing, see Bithas
[3]. A random variableX is said to have WGD, with scale parameterα and two shape parametersθ andβ , if its PDF
given by:

f (x;α,θ ,β ) =
θβ
α

( x
α

)θ−1
(

1+
( x

α

)θ
)−(β+1)

,x> 0;α,θ ,β > 0, (1)

and the CDF is

F(t) = 1−

(

1+
( x

α

)θ
)−β

,x> 0;α,θ ,β > 0. (2)

For more detials about WGD and its properties see, Molenberghs and Verbeke [15] and Mahmoud et al. [12]. The
theme of this paper is to propose the classical and Bayesian estimation procedures for the unknown parameters of WGD
under Type-II hybrid censoring scheme. The rest of this paper is organized as follows: in Section 2 the MLEs of the
parameters under consideration are obtained in addition tothe corresponding ACIs. Section 3 is devoted to the Bayesian
approach that uses Lindley approximation and the MCMC technique. An illustrative example is presented to explain the
theoretical results in Section 4. Eventually conclusion isinserted in Section 5.

2 Maximum Likelihood Estimation

The log-likelihood functions are the basis for deriving estimators of parameters, given data. ML estimators enjoy with
different advantages such as asymptotically normally distributed, asymptotically minimum variance, asymptotically
unbiased and satisfy the invariant property, see Azzalini [1] and Royall [17] for more information on likelihood theory.
Under T-II HCS, one of the following two types of censored data can be observed:

Case I:{Y1:n < ... <YR:n} if T <YR:n.

Case II:{Y1:n < ... < YR:n < YR+1:n < ... < Ym:n < T} if T > YR:n and them-th failure took place beforeT,R≤ m≤ n. The
likelihood function for the Case I is

L1(α,θ ,β |data) = c1
θ Rβ R

αR

(

1+
(yR:n

α

)θ
)−β (n−R) R

∏
i=1

(yi

α

)θ−1
(

1+
(yi

α

)θ
)−(β+1)

, if T <YR:n,

wherec1 =
n!

(n−R)! , while the likelihood function for the Case II is

L2(α,θ ,β |data) = c2
θ mβ m

αm

(

1+

(

T
α

)θ
)−β (n−m)

m

∏
i=1

(yi

α

)θ−1
(

1+
(yi

α

)θ
)−(β+1)

, if T >YR:n,

wherec2 =
n!

(n−m)! . The two likelihood functions can be combined, and can be written as

L(α,θ ,β |data) = c
θ Hβ H

αH

(

1+
( u

α

)θ
)−β (n−H) H

∏
i=1

(yi

α

)θ−1
(

1+
(yi

α

)θ
)−(β+1)

, (3)

wherec= n!
(n−H)! andH stands for the number of failures;u= yR:n if H = R andu= T if H > R. The log-likelihood

function may then be written as

logL(α,θ ,β |data) = logc+H logθ +H logβ −H logα −β (n−H) log

(

1+
( u

α

)θ
)

+(θ −1)
H

∑
i=1

log
(yi

α

)

− (β +1)
H

∑
i=1

log

(

1+
(yi

α

)θ
)

,

and thus we have the likelihood equations forα,θ andβ respectively, as

θβ (n−H)

α
(

1+
(α

u

)θ
) −

θH
α

+
θ (β +1)

α

H

∑
i=1

1
(

1+
(

α
yi

)θ
) = 0, (4)
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H
θ
−

β (n−H) ln
(

u
α
)

(

1+
(α

u

)θ
) +

H

∑
i=1

log
(yi

α

)

− (β +1)
H

∑
i=1

ln
( yi

α
)

(

1+
(

α
yi

)θ
) = 0, (5)

and

H
β
− (n−H) log

(

1+
( u

α

)θ
)

−
H

∑
i=1

log

(

1+
(yi

α

)θ
)

= 0. (6)

The Equations (4), (5) and (6) are nonlinear simultaneous equations in three unknown vaiablesα, θ and β . It is
obvious that an exact solution is not easy to get. Therefore,a numerical method such as Newton Raphson can be used to
find approximate solution. The steps of Newton Raphson algorithm is described in details in EL-Sagheer [7]. The final
estimates ofα,θ andβ are the MLEs of the parameters, denoted asα̂, θ̂ andβ̂ .

2.1 Approximate confidence intervals

The(1−ϑ)100% ACIs for the parametersα,θ andβ can be written as

(α̂L, α̂U ) = α̂ ± z
1− ζ

2

√

var(α̂)

(θ̂L, θ̂U ) = θ̂ ± z
1− ζ

2

√

var(θ̂)

(β̂L, β̂U) = β̂ ± z
1− ζ

2

√

var(β̂)



















,

wherez1− ϑ
2
is the percentile of the standard normal distribution with left-tail probability 1− ϑ

2 andvar(α̂),var(θ̂ ) and

var(β̂ ) represent the asymptotic variances of MLEs which can be calculated using the inverse of the AFIM. Let
I(Ω1,Ω2,Ω3) denote the AFIM of the parametersΩ1 = α, Ω2 = θ andΩ3 = β ,

where

I(Ω1,Ω2,Ω3) =−

(

∂ 2 logL
∂Ωi∂Ω j

)

, i, j = 1,2,3.

The asymptotic variance–covariance matrix for the maximumlikelihood estimates can be put as follows:

I−1 =

[

−

(

∂ 2 logL
∂Ωi∂Ω j

)]−1

↓(Ω̂1,Ω̂2,Ω̂3)
, (7)

for more details see Cohen [5].

3 Bayesian Estimation

Let the prior knowledge of parametersα,θ andβ be described by the following prior distributions :

π1(α) =
λ µ1

1
Γ (µ1)

αµ1−1 e−λ1α , α > 0,

π2(θ ) =
λ µ2

2
Γ (µ2)

θ µ2−1 e−λ2θ
, θ > 0,

π3(β ) = λ3e−λ3β , β > 0,

µ1,µ2,λ1,λ2,λ3 > 0,















(8)

whereα,θ andβ are independent random variables.
Hence, the joint prior of the parametersα,θ andβ can be written as follows:

π (α,θ ,β ) =
λ µ1

1 λ µ2
2 λ3

Γ (µ1)Γ (µ2)
αµ1−1 θ µ2−1e−(λ1α+λ2θ+λ3β )

. (9)
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The joint posterior density function ofα,θ andβ , denoted byπ∗(α,θ ,β |data) can be written as:

π∗(α,θ ,β |data) =
L(α,θ ,β |data)×π (α,θ ,β )

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(α,θ ,β |data)×π (α,θ ,β )dαdθdβ

. (10)

The joint posterior distribution combines the informationin both prior distributions and the likelihood function. This
makes the joint posterior distribution contains more accurate information, and getting a narrower range of possible values
for the parameters. The Bayes estimate of any function of theparameters, sayg(α,θ ,β ) using SEL function is

ĝBS(α,θ ,β ) = Eα ,θ ,β |data [g(α,θ ,β )]

=

∫ ∞
0

∫ ∞
0

∫ ∞
0 g(α,θ ,β )×L(α,θ ,β )×π (α,θ ,β )dαdθdβ
∫ ∞

0

∫ ∞
0

∫ ∞
0 L(α,θ ,β )×π (α,θ ,β )dαdθdβ

. (11)

While the Bayes estimate ofg(a,b,θ ,β ) using LINEX loss function is

ĝBL(α,θ ,β ) =
−1
ε

log
[

Eα ,θ ,β |data

[

e−ε g(α ,θ ,β )
]]

, ε 6= 0, (12)

where

Eα ,θ ,β |data

[

e−ε g(α ,θ ,β )
]

=

∫ ∞
0

∫ ∞
0

∫ ∞
0 e−ε g(α ,θ ,β )×L(α,θ ,β )×π (α,θ ,β )dαdθdβ
∫ ∞

0

∫ ∞
0

∫ ∞
0 L(α,θ ,β )×π (α,θ ,β )dαdθdβ

. (13)

It is noticed that the ratio of two integrals given by (11) and (13) cannot be obtained in a explicit form. In this case
Lindley’s approximation and MCMC technique can be used to obtain the Bayes estimators forα,θ andβ .

3.1 Lindley Approximation

Lindley approximation, which introduced by Lindley [11] can approximate the Bayes estimators into a form containing no
integrals. This approximation has been used by a lot of statisticians for obtaining the Bayes estimators for some lifetime
distributions; see among others, Sultan et al. [19] and Preda et al [16].

Consider the ratio of integralI(Y), where

I(Y) =

∫

(α ,θ ,β )w(α,θ ,β )el(α ,θ ,β )+ρ(α ,θ ,β )d(α,θ ,β )
∫

(α ,θ ,β )el(α ,θ ,β )+ρ(α ,θ ,β )d(α,θ ,β )
, (14)

wherew(α,θ ,β ) is a function ofα or θ or β , l(α,θ ,β ) is the log-likelihood and
ρ(α,θ ,β ) = logπ (α,θ ,β ) . If n is sufficiently large, according to Lindley [11], the ratio of the integral of the formI(Y)
can be calculated as

I(Y) = w(α̂ , θ̂ , β̂ )+ (ŵ1â1+ ŵ2â2+ ŵ3â3+ â4+ â5)+
1
2
[Â(ŵ1σ̂11+ ŵ2σ̂12+ ŵ3σ̂13)

+B̂(ŵ1σ̂21+ ŵ2σ̂22+ ŵ3σ̂23)+Ĉ(ŵ1σ̂31+ ŵ2σ̂32+ ŵ3σ̂33)], (15)

whereα̂, θ̂ andβ̂ are the MLE ofα,θ andβ , respectively, ˆai = ρ̂1σ̂i1+ ρ̂2σ̂i2+ ρ̂3σ̂i3, i = 1,2,3,
â4 = ŵ12σ̂12+ ŵ13σ̂13+ ŵ23σ̂23, â5 =

1
2 (ŵ11σ̂11+ ŵ22σ̂22+ ŵ33σ̂33) ,

Â= σ̂11l̂111+2σ̂12l̂121+2σ̂13l̂131+2σ̂23l̂231+ σ̂22l̂221+ σ̂33l̂331,

B̂= σ̂11l̂112+2σ̂12l̂122+2σ̂13l̂132+2σ̂23l̂232+ σ̂22l̂222+ σ̂33l̂332,

Ĉ= σ̂11l̂113+2σ̂12l̂123+2σ̂13l̂133+2σ̂23l̂233+ σ̂22l̂223+ σ̂33l̂333,

, subscripts 1,2,3 on the rigth-hand sides stand forα,θ andβ , respectively,

ρ̂i =
(

∂ρ
∂Ωi

)

↓(Ω̂1,Ω̂2,Ω̂3)
, i = 1,2,3, Ω1 = α, Ω2 = θ andΩ3 = β ,

ŵi j =
(

∂ 2w(Ω1,Ω2,Ω3)
∂Ωi∂Ω j

)

↓(Ω̂1,Ω̂2,Ω̂3)
, i, j = 1,2,3, l̂ i j =

(

∂ 2L(Ω1,Ω2,Ω3)
∂Ωi∂Ω j

)

↓(Ω̂1,Ω̂2,Ω̂3)
, i, j = 1,2,3,
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l̂ i jk =
(

∂ 3L(Ω1,Ω2,Ω3)
∂Ωi∂Ω j ∂Ωk

)

↓(Ω̂1,Ω̂2,Ω̂3)
, i, j,k = 1,2,3 andσ̂i j =− 1

l̂ i j
, i, j = 1,2,3.

From (9), ρ(α,θ ,β ) can be written as:

ρ(α,θ ,β ) = µ1 lnλ1+ µ2 lnλ2+ lnλ3− lnΓ (µ1)− lnΓ (µ2)+ (µ1−1) lnα +

(µ2−1) lnθ − (λ1α +λ2θ +λ3β ).

and then we obtain

ρ̂1 =
(µ1−1)

α̂
−λ1, ρ̂2 =

(µ2−1)

θ̂
−λ2 andρ̂3 =−λ3.

If w(α̂, θ̂ , β̂ ) = α̂ then the Bayes estimate of the parameterα under SEL function from (15) is

α̂BLind−SEL = α̂ +(ŵ1â1+ ŵ2â2+ ŵ3â3+ â4+ â5)+
1
2
[Â(ŵ1σ̂11+ ŵ2σ̂12+ ŵ3σ̂13)

+B̂(ŵ1σ̂21+ ŵ2σ̂22+ ŵ3σ̂23)+Ĉ(ŵ1σ̂31+ ŵ2σ̂32+ ŵ3σ̂33)],

while, if w(α̂ , θ̂ , β̂ ) = θ̂ then the Bayes estimate of the parameterθ under SEL function is

θ̂BLind−SEL = θ̂ +(ŵ1â1+ ŵ2â2+ ŵ3â3+ â4+ â5)+
1
2
[Â(ŵ1σ̂11+ ŵ2σ̂12+ ŵ3σ̂13)

+B̂(ŵ1σ̂21+ ŵ2σ̂22+ ŵ3σ̂23)+Ĉ(ŵ1σ̂31+ ŵ2σ̂32+ ŵ3σ̂33)],

and if w(α̂, θ̂ , β̂ ) = β̂ then the Bayes estimate of the parameterβ under SEL function is

β̂BLind−SEL= β̂ +(ŵ1â1+ ŵ2â2+ ŵ3â3+ â4+ â5)+
1
2
[Â(ŵ1σ̂11+ ŵ2σ̂12+ ŵ3σ̂13)

+B̂(ŵ1σ̂21+ ŵ2σ̂22+ ŵ3σ̂23)+Ĉ(ŵ1σ̂31+ ŵ2σ̂32+ ŵ3σ̂33)].

If w(α̂, θ̂ , β̂ ) = e−εα̂ then the Bayes estimate of the parameterα under LINEX loss function from (15) is

α̂BLind−LINEX = e−εα̂ +(ŵ1â1+ ŵ2â2+ ŵ3â3+ â4+ â5)+
1
2
[Â(ŵ1σ̂11+ ŵ2σ̂12+ ŵ3σ̂13)

+B̂(ŵ1σ̂21+ ŵ2σ̂22+ ŵ3σ̂23)+Ĉ(ŵ1σ̂31+ ŵ2σ̂32+ ŵ3σ̂33)],

while, if w(α̂ , θ̂ , β̂ ) = e−εθ̂ then the Bayes estimate of the parameterθ under LINEX loss functionis

θ̂BLind−LINEX = e−εθ̂ +(ŵ1â1+ ŵ2â2+ ŵ3â3+ â4+ â5)+
1
2
[Â(ŵ1σ̂11+ ŵ2σ̂12+ ŵ3σ̂13)

+B̂(ŵ1σ̂21+ ŵ2σ̂22+ ŵ3σ̂23)+Ĉ(ŵ1σ̂31+ ŵ2σ̂32+ ŵ3σ̂33)],

and if w(α̂, θ̂ , β̂ ) = e−εβ̂ then the Bayes estimate of the parameterβ under LINEX loss function is

β̂BLind−LINEX = e−εβ̂ +(ŵ1â1+ ŵ2â2+ ŵ3â3+ â4+ â5)+
1
2
[Â(ŵ1σ̂11+ ŵ2σ̂12+ ŵ3σ̂13)

+B̂(ŵ1σ̂21+ ŵ2σ̂22+ ŵ3σ̂23)+Ĉ(ŵ1σ̂31+ ŵ2σ̂32+ ŵ3σ̂33)].

3.2 MCMC Technique

The main goal of the MCMC technique is to compute an approximate value of integrals in (11). A lot of papers dealt with
MCMC technique such as, EL-Sagheer [7], Mahmoud et al. [13] and among others. An important sup-class of MCMC
methods are Gibbs sampling and more general Metropolis within-Gibbs samplers. The Metropolis algorithm is a random
walk that uses an acceptance/rejection rule to converge to the target distribution. The Metropolis algorithm was first
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proposed in Metropolis et al. [14] and it was then generalized by Hastings in Hastings [10]. From (3), (9) and (10), the
joint posterior density function ofα,θ andβ can be written as:

π∗(α,θ ,β |data) ∝ αµ1−H−1 θ H+µ2−1β H
(

1+
( u

α

)θ
)−β (n−H)

×e−(λ1α+λ2θ+λ3β )

×
H

∏
i=1

{

(yi

α

)θ−1
(

1+
(yi

α

)θ
)−(β+1)

}

. (16)

The conditional posterior densities ofα,θ andβ can also be written as:

π∗
1(α|θ ,β ,data) ∝ αµ1−H−1e−λ1α×

exp

[

−

{

(θ −1)
H

∑
i=1

[logα]+ (β +1)
H

∑
i=1

[

log

(

1+
(yi

α

)θ
)]

+β (n−H) log

(

1+
( u

α

)θ
)

}]

, (17)

π∗
2(θ |α,β ,data) ∝ θ H+µ2−1e−λ2θ ×

(

1+
( u

α

)θ
)−β (n−H)

×
H

∏
i=1

{

(yi

α

)θ−1
(

1+
(yi

α

)θ
)−(β+1)

}

, (18)

and

π∗
3(β |α,θ ,data)≡ gamma

[

H +1,λ3+(n−H) log

(

1+
( u

α

)θ
)

+
H

∑
i=1

log

(

1+
(yi

α

)θ
)

]

. (19)

Now, the following steps illustrate the method of the Metropolis–Hastings algorithm within Gibbs sampling to
generate the posterior samples as suggested by Tierney [20], and so the Bayes estimates and the corresponding credible
intervals can be obtained:

(1)Start with an
(

α(0) = α̂ , θ (0) = θ̂ andβ (0) = β̂
)

.

(2)Put j = 1.
(3)Generateβ ( j) from

gamma

[

H +1,λ3+(n−H) log

(

1+

(

u

α( j−1)

)θ ( j−1))

+
H

∑
i=1

log

(

1+

(

yi

α( j−1)

)θ ( j−1))]

(4)Using the following Metropolis-Hastings method, generateα( j−1) andθ ( j−1) from (17) and (18) with the suggested
normal distributions

N(α( j−1)
,var(α)) andN(θ ( j−1)

,var(θ )), respectively,

wherevar(α) andvar(θ ) can be obtained from the main diagonal in asymptotic inverseFisher information matrix
(7).

i-Generate a proposalα∗ from N(α( j−1),var(α)) andθ ∗ from N(θ ( j−1),var(θ )).
ii-Evaluate the acceptance probabilities

Body Math

ρα = min

[

1, π∗
1(α

∗|θ ( j−1)
,β ( j)

,data)

π∗
1(α

( j−1)|θ ( j−1),β ( j),data)

]

,

ρθ = min

[

1,
π∗

2(θ
∗|α( j),β ( j),data)

π∗
2(θ

( j−1)|α( j),β ( j),data)

]























.

iii-Generateu1 andu2 from a Uniform(0,1) distribution.
iv-If u1 ≤ ρα , then accept the proposal and setα( j) = α∗, else setα( j) = α( j−1).

v-If u2 ≤ ρθ , then accept the proposal and setθ ( j) = θ ∗, else setθ ( j) = θ ( j−1).

(5)Computeα( j) andθ ( j).
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(6)Put j = j +1.
(7)Repeat Steps 3−6 Q times.
(8)In order to guarantee the convergence and to remove the influence of the selection of initial values, the firstM

simulated varieties are ignored. The selected samples areα( j) andθ ( j), j = M + 1, ...,Q, for sufficiently largeQ .
The approximate Bayes estimates forα,θ andβ based on SEL are

αBMC−SEL=
1

Q−M ∑Q
j=M+1 α( j),

θBMC−SEL=
1

Q−M ∑Q
j=M+1 θ ( j),

βBMC−SEL=
1

Q−M ∑Q
j=M+1 β ( j)

.



























,

and the estimates for the aforementioned parameters under LINEX loss function are:

αBMC−LINEX = −1
ε

[

1
Q−M ∑Q

j=M+1e−ε α( j)
]

,

θBMC−LINEX = −1
ε

[

1
Q−M ∑Q

j=M+1e−ε θ ( j)
]

,

βBMC−LINEX = −1
ε

[

1
Q−M ∑Q

j=M+1e−ε β ( j)
]































. (20)

(9)To calculate the CRIs ofΩ j whereΩ1 = α, Ω2 = θ andΩ3 = β , we let the quantiles of the sample be the endpoints

of the intervals. Sort
{

ΩM+1
j ,ΩM+2

j , ...,ΩQ
j

}

as
{

Ω (1)
j ,Ω (2)

j , ...,Ω (Q−M)
j

}

, j = 1,2,3. Hence the 100(1−ϑ)%

symmetric credible interval ofΩ j is given by

[

Ω j
(ϑ

2 (Q−M)
)

, Ω j
((

1− ϑ
2

)

(Q−M)
)]

.

4 Application

In this section, a simulation example is presented to assessthe estimation procedures. In this example, hybrid Type-II
censored sample is generated from WGD as the following:

(1)Specify the values ofn.
(2)Specify the values of the parametersα,θ andβ to generate a sample from WGD.
(3)For given values ofR andT, calculate the number of failuresH.

(4)Compute the MLEs of the model parameters. The Newton–Raphson method is applied for solving the nonlinear system
to obtain the MLEs of the parameters.

(5)Compute the Bayes estimates of the parameters based on Lindley approximation and MCMC algorithm described in
Section 3.

A simulation data for hybrid Type-II censored sample from WGD is generated with true valuesα = 2, θ = 3 and
β = 1.5 atn= 40. The pre-specified numberR is planned to equal 15 andT = 2.5. According to the previous assumptions,
it was found thatH = 32. The hybrid Type-II censored data has been presented in Table1 as follows:

Table 1. Hybrid Type-II censored data
0.3603 0.9036 1.1096 1.2783 1.4564 1.6773 1.9478 2.3577
0.5337 0.9929 1.1327 1.2962 1.4783 1.7015 2.0944 2.3798
0.6889 1.0149 1.2733 1.3409 1.5735 1.7475 2.1017 2.4101
0.7872 1.0434 1.2763 1.4106 1.5855 1.8687 2.1339 2.4545

The different point estimates forα,θ andβ in case of non-Bayesian and Bayesian estimation, are presented in Table
2, whereQ= 22000 andM = 2000 in the MCMC technique and the prior knowledge parametersµ1,µ2,λ1,λ2 andλ3 are
the same and chosen to equal 0.001 .
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Table 2. Different point estimates forα,θ andβ .
(.)ML (.)

BLind−SEL
(.)

BLind−LINEX
(.)BMC−SEL (.)BMC−LINEX

ε = 0.0001 ε =−2 ε = 2 ε = 0.0001 ε =−2 ε = 2
α 1.9284 1.9369 1.9369 1.9625 1.9105 1.953 1.953 1.9531 1.953
θ 2.9533 2.9001 2.9001 3.0681 2.7604 2.9539 2.9539 2.954 2.9539
β 1.3769 1.3917 1.3917 1.446 1.3343 1.4549 1.4549 1.5242 1.3936

Table 3. 95% confidence intervals forα,θ andβ .
Method α Length θ Length β Length

ACI [−0.602,4.459] 5.06019 [1.1366,4.770] 3.63347 [−2.3168,5.071] 7.38732
CRI [1.933,1.9700] 0.03698 [2.9424,2.965] 0.02216 [1.0000,1.9925] 0.99249

5 Conclusion

In this paper, the estimation of WGD parameters has been studied under hybrid Type-II censored data. The MLEs of the
parameters are calculated. The importance of Lindley approximation and MCMC technique were noticeable in Bayesian
estimation. A comparison between the ACIs and the CRIs is provided for the estimated parameters through a simulated
example. It was found that the width of MCMC credible intervals is narrower than ACIs. We may judge that the Bayes
estimators obtained under Lindley or MCMC method can be preferred.
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