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Abstract: In this paper, step-stress partially accelerated life tests (SS-PALT) are considered when the lifetime of a product follows
a two-parameter bathtub-shaped lifetime distribution (Chen distribution). Based on progressive Type-II censoring,the maximum
likelihood estimates (MLEs) are obtained for the distribution parameters and acceleration factor. In addition, asymptotic variance
and covariance matrix of the estimators are given. Approximate confidence intervals (CIs) for the parameters based on normal
approximation to the asymptotic distribution of the MLEs and the bootstrap (CIs) are derived. An iterative procedure isused to obtain
the estimators numerically using (Mathematica Package). Anumerical example is presented to illustrate the method of estimation
developed here. Finally, a Monte Carlo simulation study is performed to investigate the precision of the MLEs and to compare the CIs
considered.
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1 Introduction

Life tests are usually conducted to assess the reliability of
products in many industrial production processes. In
industrial experiments, products that are tested are often
extremely reliable with large mean times to failure under
normal operating conditions. However, for some high
reliability products which are designed to operate without
failures for an extended period of time, few units would
fail at normal condition even censoring schemes are
employed. Consequently, with conventional life-testing
experiments under Type-II censoring, it is almost
impossible to obtain adequate information about the
failure time distribution and its associated parameters. To
overcome these problems, the experimenter may resort to
accelerated life testing (ALT) where in the units are
subjected to higher stress levels than normal. The data
collected from such an accelerated test may then be
extrapolated to estimate the underlying distribution of
failure times under design (use) conditions which is

non-accelerated. Thus, ALT are widely used to collect
information for the assessment of reliability of the tested
products. In ALT, test items are run only at accelerated
conditions, while in partially accelerated life tests
(PALT), they are run at both normal and accelerated
conditions. The major assumption in ALT is that the
mathematical model relating the lifetime of the unit and
the stress are known or can be assumed. In some cases,
such life–stress relationships are not known and cannot be
assumed, i.e ALT data cannot be extrapolated to use
condition. So, in such cases, partially accelerated life test
(PALT) is a more suitable test to be performed for which
tested units are subjected to both normal and accelerated
conditions.

According to Nelson [1] there are mainly three ALT
methods. The first method is called the constant-stress
ALT, the stress is kept at a constant level throughout the
life of test products See [2,3] . The second one is referred
to as progressive-stress ALT, the stress applied to a test
product is continuously increasing in time [4,5]. The third
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is the step-stress ALT, in which the test condition changes
at a given time or upon the occurrence of a specified
number of failures, this type has been studied by several
authors. In general, the problem of modeling data from
ALT and making inference from such data have been
studied by many authors. See, for example [6,7].

Models with bathtub shaped or increasing failure rate
function (FRF) are useful in reliability analysis and
particularly in reliability related decision making and cost
analysis. The bathtub shape provides an appropriate
conceptual model for the hazard of some electronic and
mechanical products. In recent years, some lifetime
distributions with bathtub-shaped hazard function have
been investigated by several authors. See for example,
Xie and Lai [8], Xie et al. [9] and Soliman et al. [10]. In
this article, we focus on a two-parameter distribution with
the bathtub shape or increasing FRF proposed by Chen
[11]. This lifetime distribution has bathtub-shaped FRF if
α < 1; increasing FRF ifα ≥ 1 and this distribution
becomes the exponential power distribution ifβ = 1. Wu
et al. [12] proposed the optimal estimation of the
parameters of this lifetime distribution based on the
doubly Type-II censored sample. Let random variableT
have a Chen distribution (CD) with parameterβ and α,
where β is the scale parameter andα is the shape
parameter. The probability density function (pdf ),
cumulative distribution function (cdf), reliability function
S(t), and hazard rate functionh(t) given by

f1(t) =αβ tα−1exp(tα +β [1−exp(tα)]), t > 0, α,β > 0,
(1)

F1(t)=1−exp(β [1−exp(tα)]), (2)

S1(t) = exp(β [1−exp(tα)]), (3)

and
h1(t) = αβ tα−1exp(tα) . (4)

The CD with known shape parameter has been considered
in literature and applied in practice. Based on the
progressive Type II censoring scheme, Ahmadi et al [13]
used the maxp-value method to select the optimum value
of the shape parameter of the Weibull distribution and
hence supposed that shape parameter is known. They
constructed the ML estimator for and developed a testing
procedure for the lifetime performance index of the
products with CD on the basis of the progressive Type II
censored sample with maxp-value method

Censoring is very common in life tests. There are
several types of censored tests. The most common
censoring schemes are Type-I (time) censoring and
Type-II (failure) censoring. However, the conventional
Type-I and Type-II censoring schemes do not have the
flexibility of allowing removal of units at points other
than the terminal point of the experiment. Because of this
lack of flexibility, a more general censoring scheme called
progressive Type-II right censoring, for extensive reviews

of the literature on progressive censoring see
Balakrishnan and Aggarwala [14]. Supposen units are
placed on a life testing experiment and letT1, T2, ..., Tn be
their corresponding lifetimes. We assume thatTi, i = 1, 2,
..., n are independent and identically distributed with pdf
f (t) and cdfF(t). With progressively Type II censoring,n
units are placed on test. Consider thatT1;m,n < T2;m,n < ...
< Tm;m,n is the corresponding progressively Type II
censored sample, with censoring scheme
R = (R1,R2, ...,Rm). Since the joint pdf ofT1;m,n < T2;m,n
< ...< Tm;m,n is given by

f1,2,...,m(t1;m,n, t2;m,n, ..., tm;m,n) = A
m

∏
i=1

f (ti;m,n)

[S(ti;m,n)]
Ri, (5)

0< t1;m,n < t2;m,n < ... < tm;m,n < ∞,

where

A =
m

∏
i=1

(

n−
i−1

∑
j=1

R j − i+1

)

. (6)

ALTs are preferred to be used in manufacturing industries
to obtain enough failure data, in a short period of time,
necessary to make inferences regarding its relationship
with external stress variables. In ALTs, the test items are
tested only at accelerated conditions. According to
Nelson [1] there are mainly three ALT methods. The first
method is called the constant-stress ALT, the stress is kept
at a constant level throughout the life of test products See
[9,10]. The second one is referred to as progressive-stress
ALT, the stress applied to a test product is continuously
increasing in time [4,5]. The third is the step-stress ALT,
in which the test condition changes at a given time or
upon the occurrence of a specified number of failures, this
type has been studied by several authors. Several authors
have dealt with this type of ALT, including [6,7].

2 Model Description and Basic Assumptions

In SS-PALT, all of then units are tested first under normal
condition, if the unit does not fail for a prespecified time ,
then it runs at accelerated condition until failure. This
means that if the item has not failed by some prespecified
time , the test is switched to the higher level of stress and
it is continued until items fails. The effect of this switch is
to multiply the remaining lifetime of the item by the
inverse of the acceleration factor . In this case the
switching to the higher stress level will shorten the life of
test item. Thus the total lifetime of a test item, denoted by
Y , passes through two stages, which are the normal and
accelerated conditions. Then the lifetime of the unit in
SS-PALT is given as follows

Y =

{

T, T < τ∗
τ∗+λ−1(T − τ∗), T > τ∗, (7)
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whereT , is the lifetime of an item at use condition,τ∗ is
the stress change time andλ is the acceleration factor
which is the ratio of mean life at use condition to that at
accelerated condition, usuallyλ > 1. Assume that the
lifetime of the test item follows CD with parametersα
andβ . Therefore, the probability density function of total
lifetime Y of an item is given by

f (y) =







0, y < 0
f1(y), 0< y ≤ τ∗
f2(y), y > τ∗,

(8)

where f1(y), is given by (1) and,

f2(y) = αβ λ (τ∗+λ (y− τ∗))α−1

exp
{

(τ∗+λ (y− τ∗))α +β1−exp(τ∗+λ (y− τ∗))α}

(9)

is obtained by the transformation variable technique
using equations (1) and (7). cdf ,S2(t), and h2(t) of is
given by

F2(x)=1−exp(β [1−exp((τ∗+λ (y− τ∗))α )]), (10)

S2(t) = exp(β [1−exp((τ∗+λ (y− τ∗))α )]), (11)

and

h2(t) = αβ tα−1exp((τ∗+λ (y− τ∗))α) . (12)

In progreessive Type II censoring the test terminates
when the number of observations is reached tom < n.
The observed values of the total lifetimeY are :y1 < y2 <
... < yJ < τ∗ < yJ+1 < ... < ym whereJ are the number of
items failed at normal conditions andm− J at accelerated
conditions. Let us define the two indicator functionsalign

δ1i =

{

1, yi ≤ τ∗
0, o.w.

,δ2i =

{

1, yi > τ∗
0, o.w.

, i = 1, 2, ..., m

(13)
For the lifetimesy1 < y2 < ... < ym of m items are

independent and identically distributed random variables,
then from (5) and (13) the likelihood function is given by

L(α,β ,λ |y) = A
m
∏
i=1

[

f1(yi)[S1(yi)]
Ri
]δ1i
[

f2(yi)[S2(yi)]
Ri
]δ2i

0< y1 < y2 < ... < yJ < τ∗ < yJ+1 < ... < ym < ∞,

(14)
whereA given in (6)

3 Maximum Likelihood Estimation

3.1 MLEs

From two populations whose cdfs and pdfs given in (1),
(2) (9) and (10), withR = (R1, R2, ...,Rm). the likelihood

functionL(α,β ,λ |y) in (14) without normalized constant
is then given by

L(α, β , λ |y) ∝ (αβ )mλ m−J exp

{

(α −1)
J
∑

i=1
logyi

+(α −1)
J
∑

i=1
logyi +β

J
∑

i=1
(Ri +1)(1−exp(yα

i ))+ (α −1)

×
m
∑

i=J+1
log[τ∗ +λ (yi − τ∗)]+

m
∑

i=J+1
(τ∗+λ (yi − τ∗))α

+β
m
∑

i=J+1
(Ri +1)

(

1−exp(τ∗+λ (yi − τ∗))α)
.

(15)

Then the log-likelihood function ofL(α,β ,λ |y) given
by

ℓ(α, β , λ |y) = m logαβ +(m− J) logλ +
J
∑

i=1
yα

i

+(α −1)
J
∑

i=1
logyi +β

J
∑

i=1
(Ri +1)(1−exp(yα

i ))+ (α −1)

×
m
∑

i=J+1
log[τ∗ +λ (yi − τ∗)]+

m
∑

i=J+1
(τ∗+λ (yi − τ∗))α

+β
m
∑

i=J+1
(Ri +1)

(

1−exp(τ∗+λ (yi − τ∗))α)
.

(16)

Calculating the first partial derivatives of (16) with
respect toα, β andλ and equating each to zero, we get
the likelihood equations as

∂ℓ(α ,β ,λ |y)
∂α = m

α +
J
∑

i=1
logyi +

J
∑

i=1
yα

i logyi −β
J
∑

i=1
(Ri +1)yα

i

× logyi exp(yα
i )+

m
∑

i=J+1
log[τ∗+λ (yi − τ∗)]

+
m
∑

i=J+1
[τ∗+λ (yi − τ∗)]α log[τ∗+λ (yi− τ∗)]

−β
m
∑

i=J+1
(Ri +1) [τ∗+λ (yi − τ∗)]α

× log[τ∗+λ (yi − τ∗)]exp([τ∗+λ (yi − τ∗)]α ,
(17)

∂ℓ(α, β , λ |y)
∂β

=
m
β
+

J

∑
i=1

(Ri +1)(1−exp(yα
i ))

+
m

∑
i=J+1

(Ri +1)
(

1−exp(τ∗+λ (yi − τ∗))α) = 0, (18)

and

∂ℓ(α, β , λ |t)
∂λ

=
m− J

λ
+(α −1)

J

∑
i=1

(yi − τ∗)
τ∗+λ (yi − τ∗)

+α
J

∑
i=1

(yi − τ∗)(τ∗+λ (yi − τ∗))α−1−αβ
m

∑
i=J+1

(Ri +1)

× (yi − τ∗)(τ∗+λ (yi − τ∗))α−1exp
(

(τ∗+λ (yi− τ∗))α)

= 0. (19)
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From (18), we can write

β (α,λ ) =
m
D

(20)

where

D =
J

∑
i=1

(Ri +1)(exp(yα
i )−1)

+
m

∑
i=J+1

(Ri +1)exp
(

τ∗+λ (yi − τ∗)α −1
)

. (21)

By substituting (20) in (17) and (19) we have

m
α +

J
∑

i=1
logyi +

J
∑

i=1
yα

i logyi − m
D

J
∑

i=1
(Ri +1)yα

i logyi exp(yα
i )

+
m
∑

i=J+1
log[τ∗+λ (yi− τ∗)]+

m
∑

i=J+1
(τ∗+λ (yi − τ∗))α

× log[τ∗+λ (yi − τ∗)] − m
D

m
∑

i=1
(Ri +1)(τ∗+λ (yi− τ∗))α

× log[τ∗+λ (yi − τ∗)]exp(τ∗+λ (yi − τ∗))α = 0,
(22)

and

m− j
λ +(α −1)

m
∑

i=J+1

(yi−τ∗)
τ∗+λ (yi−τ∗) +α

m
∑

i=J+1
(yi − τ∗)

×(τ∗+λ (yi − τ∗))α−1− mα
D

m
∑

i=J+1
(Ri +1)(yi − τ∗)

×(τ∗+λ (yi − τ∗))α−1exp
(

(τ∗+λ (yi − τ∗))α)= 0.
(23)

Thus, likelihoods equations are reduced to a two
nonlinear equation (22) and (23) which could be solved
numerically with respect toα and λ using any iteration
procedure such as quasi-Newton Raphson, to get the
MLE, α̂ andλ̂ , and hencêβ by using (20).

3.2 Approximate interval estimation

From the log-likelihood function in (16), we have

∂ 2ℓ(α ,β ,λ |y)
∂α2 = −m

α2 +
J
∑

i=1
yα

i (logyi)
2

+
m
∑

i=J+1
[τ∗+λ (yi − τ∗)]α (log[τ∗+λ (yi − τ∗)])2

−β
J
∑

i=1
(Ri +1)yα

i (1+ yα
i )(logyi)

2exp(yα
i )

−β
m
∑

i=J+1
(Ri +1)(log[τ∗+λ (yi− τ∗)])2

× [τ∗+λ (yi − τ∗)]α (1+[τ∗+λ (yi− τ∗)]α)
×exp([τ∗+λ (yi − τ∗)]α)

(24)

∂ 2ℓ(α,β ,λ |y)
∂β 2 =− m

β 2 (25)

∂ 2ℓ(α ,β ,λ |y)
∂λ 2 =−α(α −1)β

m
∑

i=J+1
(Ri +1)(yi − τ∗)2

+α(α −1)
m
∑

i=J+1
(yi − τ∗)2 [τ∗+λ (yi − τ∗)]α−2

− (m−J)
λ 2 − (α −1)

m
∑

i=J+1

(yi−τ∗)2

[τ∗+λ (yi−τ∗)]2

× [τ∗+λ (yi− τ∗)]α−2exp
(

[τ∗+λ (yi − τ∗)]α
)

−α2β
m
∑

i=J+1
(Ri +1)(yi− τ∗)2 [τ∗+λ (yi− τ∗)]2(α−1)

×exp
(

[τ∗+λ (yi − τ∗)]α
)

(26)

∂ 2ℓ(α, β , λ |y)
∂α∂β

=
∂ 2ℓ(α, β , λ |y)

∂β∂α
=−

J

∑
i=1

(Ri +1)yα
i

× logyi exp(yα
i )−

m

∑
i=J+1

(Ri +1)(τ∗+λ (yi − τ∗))α

× log[τ∗+ λ (yi − τ∗)] exp(τ∗+λ (yi − τ∗))α
, (27)

∂ 2ℓ(α, β , λ |y)
∂α∂λ

=
∂ 2ℓ(α, β , λ |y)

∂λ∂α
=

m

∑
i=J+1

(yi − τ∗)
(τ∗+λ (yi − τ∗))2

+α
m

∑
i=J+1

(yi − τ∗)(τ∗+λ (yi − τ∗))α−1 log[τ∗+λ (yi − τ∗)]

+
m

∑
i=J+1

(yi − τ∗)(τ∗+λ (yi − τ∗))α−1−αβ
m

∑
i=J+1

(Ri +1)

× (yi − τ∗)(τ∗+λ (yi − τ∗))α−1 log[τ∗+λ (yi − τ∗)]

×exp(τ∗+λ (yi − τ∗))α −β
m

∑
i=J+1

(Ri +1)(yi − τ∗)

× (τ∗+λ (yi − τ∗))α−1exp(τ∗+λ (yi − τ∗))α

−αβ
m

∑
i=J+1

(Ri +1)(yi − τ∗)(τ∗+λ (yi − τ∗))2α−1

× log[τ∗+ λ (yi − τ∗)] ×exp(τ∗+λ (yi − τ∗))α
, (28)

and

∂ 2ℓ(α, β , λ |y)
∂β ∂λ

=
∂ 2ℓ(α, β , λ |y)

∂λ ∂β
=−α

m

∑
i=J+1

(Ri +1)

×(yi−τ∗)[τ∗+λ (yi − τ∗)]α−1×exp([τ∗+λ (yi − τ∗)]α .
(29)

The observed Fisher information matrixI (α,β ,λ ),
for the MLEs (α̂, β̂ andλ̂ ), see [1], is the 3×3 symmetric
matrix of negative second partial derivatives of the
log-likelihood function with respect to (α, β and λ ). In
practice , we usually estimateI−1(α,β ,λ ) by
I−1
0 (α̂ , β̂ , λ̂ ), where
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Fig. 1: The probability density function under normal and
accelerate condition.

I0(α,β ,λ ) = −









∂ 2ℓ(α ,β ,λ |t)
∂α2

∂ 2ℓ(α ,β ,λ |t)
∂α∂β

∂ 2ℓ(α ,β ,λ |t)
∂α∂λ

∂ 2ℓ(α ,β ,λ |t)
∂β ∂α

∂ 2ℓ(α ,β ,λ |t)
∂β 2

∂ 2ℓ(α ,β ,λ |t)
∂β ∂λ

∂ 2ℓ(α ,β ,λ |t)
∂λ ∂α

∂ 2ℓ(α ,β ,λ |t)
∂λ ∂β

∂ 2ℓ(α ,β ,λ |t)
∂λ 2









at (α,β ,λ ) = (α̂ , β̂ , λ̂ ). (30)

The observed Fisher information matrix enables us to
construct confidence intervals for the parameters based on
limiting normal distribution. Thus, the 100(1-γ)%
approximate confidence intervals forα,β andλ are

α̂ ∓ z γ
2

√
v11, β̂ ∓ z γ

2

√
v22 andλ̂ ∓ z γ

2

√
v33 and (31)

respectively, wherev11, v22 and v33 are the elements on
the main diagonal of the covariance matrixI−1(α̂ , β̂ , λ̂ )
andz α

2
is the percentile of the standard normal distribution

with right-tail probability γ
2.

4 Bootstrap Confidence Intervals

The bootstrap is a resampling method for statistical
inference. It is commonly used to estimate confidence
intervals, but it can also be used to estimate bias and
variance of an estimator or calibrate hypothesis tests. Mor
survey of the nonparametric and parametric bootstrap
methods Davison and Hinkley [15], Efron and Tibshirani
[16]. In this section, the two confidence intervals based on
the parametric bootstrap methods are proposed: (i)
percentile bootstrap method Efron [17], (ii) bootstrap-t
method Hall, [18]. The algorithms for estimating the
confidence intervals of parameters using both methods are
illustrated below.

1. Based on the original progressively Type-II sample,
y = (y1 < y2 < ... < yJ < τ∗ < yJ+1 < ... < ym),

obtainα̂ andλ̂ from (21) and (22) and hencêβ from
(20).

2. Based onα̂ and β̂ and the values ofn andm andτ∗
with the same values ofR,(i = 1,2, ...,m j), generate
t∗ = (t∗1 < t∗2 < ... < t∗m) using the algorithm described
in Balakrishnan and Sandhu [18], and henceλ̂ in (7)
the sample obtainedy∗ = (y∗1 < y∗2 < ... < y∗J < τ∗ <
y∗J+1 < ... < y∗m).

3. As in step 1 based ony∗ compute the bootstrap sample

estimates of̂α, β̂ , andλ̂ sayα̂∗, β̂ ∗ andλ̂ ∗.
4. Repeat the above steps 2 and 3N times representingN

different bootstrap samples. The value ofN has been
taken to be 1000.

5. Arrange allα̂∗, β̂ ∗ and λ̂ ∗ in an ascending order to

obtain the bootstrap sample (ϕ̂∗[1]
k , ϕ̂∗[2]

k , ...,ϕ̂∗[N]
k ), k =

1,2,3 where (ϕ∗
1 = α∗, ϕ∗

2 = β ∗, ϕ∗
3 = λ ∗).

Percentile bootstrap confidence interval:
Let G(z) = P(ϕ̂∗

k 6 z) be cumulative distribution
function of ϕ̂∗

k . Define ϕ̂∗
kboot = G−1(z) for given z. The

approximate bootstrap 100(1− γ)% confidence interval
of ϕ̂∗

k given by
[

ϕ̂∗
kboot(

γ
2
), ϕ̂∗

kboot(1−
γ
2
)
]

. (32)

Bootstrap-t confidence interval
First, find the order statisticsδ ∗[1]

k < δ ∗[2]
k < ... < δ ∗[N]

k ,
where

δ ∗[ j]
k =

ϕ̂∗[ j]
k − ϕ̂k

√

var
(

ϕ̂∗[ j]
k

)

, j = 1,2, ...,N, k = 1,2,3, (33)

whereϕ̂1 = α̂, ϕ̂2 = β̂ , ϕ̂3 = λ̂ .
Let H(z) = P(δ ∗

k < z) be the cumulative distribution
function ofδ ∗

k . For a givenz, define

ϕ̂kboot−t = ϕ̂k +
√

Var(ϕ̂k)H
−1(z). (34)

The approximate 100(1− γ)% confidence interval of̂ϕk is
given by

(

ϕ̂kboot−t(
γ
2), ϕ̂kboot−t(1− γ

2)
)

.

5 Illustrative Example

In this section, we present an example to illustrate the
estimation procedure of MLE and the two considered
bootstrap CIs methods for the parametersα, β andλ . In
this example, we simulate a samples of size (m = 30 from
n = 50) are generated from Chen distribution with (α, β ,
λ ) = (1.5, 1.0, 2) and censoring scheme (CS)R ={2, 0,
0, 3, 0, 0, 1, 0, 0, 3, 2, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0,
2, 0, 0, 2, 0} by using the algorithm described in
Balakrishnan and Sandhu [18] and using tranformation
(8) with τ∗ = 0.7. The data are presented in Table 1
below. Fig 1 show the probability density functions under
normal conditions and accelarate coinditions. We can use
any iteration procedure such as quasi-Newton Raphson to
solve the two non-linear equation in (22) and (23). The
point estimates of the parameters as well as ( 95%)
approximate confidence intervales are presented in Table
2. Also the point estimates and relate of the parameters as
well as (95%) Percentile bootstrap (BPCIs) and
bootstrap-t (BTCIs) confidence intervales are presented
also in Table 2.We, observed that the BTCIs and ACIs
intervals are narrower than the PBCIs and always include
the population parameters values.
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Table 1: Simulated progressively censored samples with SS-PALTs.
0.253584 0.260912 0.302932 0.30793 0.35838 0.360785 0.416776 0.418423 0.43369 0.441461

0.461691 0.484631 0.510462 0.552298 0.565323 0.600714 0.607132 0.643923 0.651039 0.719479

0.736579 0.785256 0.794652 0.795427 0.803143 0.833382 0.840279 0.845124 0.877254 0.978564

Table 2: MLEs, bootstrap and (95%) approximate confidence intervales and length
Pa.s (.)ML (.)Boot 95%(ACI) length 95%(BPCI) length 95%(BPCI) length

α =1.5 2.3171 2.7178 (1.4423, 3.1919) 1.7496 (1.2420, 4.3371) 3.0951 (1.0429, 3.7772) 2.7313

β =1.0 1.0667 1.2234 (0.4396, 1.6938) 1.2542 (0.4541, 2.9882) 2.5341 (0.3691, 1.9241) 1.5550

λ =2 1.5534 1.7021 (0.2484, 2.8584) 2.6099 (0.1289, 4.9321) 4.8032 (0.3325, 2.9998) 2.6673

Table 3: MLEs and MSEs for the parameters (α,β ,λ ) at (0.8, 1.2, 2.5).
τ∗ MLE Boot
0.4 (n,m) CS AVG MSE AVG MSE

α̂ β̂ λ̂ α̂ β̂ λ̂ α̂ β̂ λ̂ α̂ β̂ λ̂
(30,20) I 0.871 1.437 2.611 0.411 0.810 1.274 1.095 1.830 2.211 0.931 1.213 1.472

II 0.863 1.442 2.561 0.312 0.691 0.908 0.899 1.502 2.411 0.495 0.856 1.008

III 0.891 1.346 2.633 0.384 0.731 0.999 0.993 1.496 2.213 0.722 0.999 1.325

IV 0.896 1.221 2.617 0.378 0.776 1.002 0.990 1.524 2.011 0.569 0.987 0.996

(50,30) I 0.842 1.452 2.665 0.310 0.621 0.872 0.954 1.732 2.311 0.701 0.800 0.954

II 0.823 1.243 2.513 0.100 0.321 0.601 0.865 1.425 2.200 0.401 0.550 0.751

III 0.834 1.314 2.421 0.230 0.444 0.741 0.964 1.477 2.223 0.522 0.562 0.902

V 0.845 1.325 2.600 0.330 0.452 0.720 0.983 1.472 2.621 0.622 0.524 0.801

0.8 (30,20) I 0.864 1.399 2.321 0.358 0.785 0.999 0.987 1.547 2.313 0.839 1.000 1.112

II 0.834 1.295 2.430 0.300 0.599 0.801 0.812 1.533 2.477 0.408 0.754 0.908

III 0.855 1.347 2.333 0.399 0.621 0.947 0.914 1.591 2.313 0.777 0.823 0.999

IV 0.854 1.330 2.601 0.377 0.699 0.955 0.845 1.533 2.213 0.533 0.725 0.965

(50,30) I 0.833 1.312 2.607 0.299 0.555 0.772 0.974 1.533 2.414 0.623 0.654 0.752

II 0.813 1.202 2.483 0.108 0.300 0.524 0.815 1.412 2.445 0.371 0.452 0.654

III 0.834 1.311 2.431 0.201 0.480 0.642 0.903 1.408 2.277 0.466 0.535 0.802

V 0.842 1.337 2.613 0.300 0.423 0.666 0.922 1.431 2.423 0.472 0.501 0.833

6 Simulation Studies

Simulation studies have been performed to illustrating the
theoretical results of estimation problem. The
performance of the resulting estimators of the
acceleration, shape and scale parameters has been
considered in terms of their average (AVG) and mean
square error (MSE), where

ϕ̂k =
1
M

M

∑
i=1

ϕ̂(i)
k ,(ϕ1 = α,ϕ2 = β ,ϕ3 = λ ) (35)

,and

MSE=
1
M

M

∑
i=1

(

ϕ̂(i)
k −ϕk

)2
. (36)

We also compare different confidence intervals, namely
the confidence intervals obtained by using asymptotic
distributions of the MLEs and the two different bootstrap
confidence intervals in terms of the average confidence
lengths (AC) and coverage percentages (CP). For each
simulated sample under a particular setting, we computed
95% confidence intervals and checked whether the true
value lay within the interval and recorded the length of
the confidence interval. This procedure was repeated 1000
times. The estimated coverage probability was computed

as the number of confidence intervals that covered the
true values divided by 1000 while the estimated expected
width of the confidence interval was computed as the sum
of the lengths for all intervals divided by 1000. In our
study we have used three different censoring schemes
(C.S), namely:

schemeI : Rm = n−m, Ri = 0 for i 6= m.
schemeII : R1 = n−m, Ri = 0 for i 6= 1.
scheme III : R m+1

2
= n − m, Ri = 0 for

i 6= m+1
2 ; if m odd, and

R m
2
= n−m, Ri = 0 for i 6= m

2 ; if m even.
schemeIV : R 2m−n

2 +1 = ...= R n
2
= 1, otherRi = 0.

schemeV : R2m−n+1 = ...= R m
2 +5 = 1, otherRi = 0.

In simulation studies, we consider the population
parameter values (α = 0.8,β = 1.2,λ = 2.5) and two
case separately.(i) τ∗ = 0.4. and(ii)τ∗ = 0.8.

7 Concluding Remarks

A simulation study was conducted to examine and
compare the performance of the proposed methods for
different sample sizes, different censoring schemes,
different acceleration factor and different change time.
From the results, we observe the following.
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Table 4: Comparisons of (AC) and (CP) of 95% CIs (α,β ,λ ) at (0.8, 1.2, 2.5).
τ∗ (n,m) CS MLE Boot-P Boot-t

α β λ α β λ α β λ
0.4 (30,20) I 2.595 3.324 4.119 2.999 4.801 6.033 2.449 3.309 4.088

(0.90) (0.90) (0.88) (0.91) (0.87) (0.89) (0.91) (0.91) (0.90)

II 2.006 3.021 3.091 2.057 4.021 4.013 2.009 3.006 4.000

(0.93) (0.90) (0.91) (0.89) (0.94 (0.89) (0.92) (0.90) (0.91)

III 2.443 3.411 4.521 2.822 4.615 5.233 2.321 3.417 4.108

(0.92) (0.90) (0.89) (0.91) (0.93) (0.92) (0.93) (0.92) (0.90)

IV 2.405 3.402 4.499 2.811 4.555 5.245 2.381 3.408 4.111

(0.93) (0.90) (0.91) (0.93) (0.90) (0.91) (0.93) (0.94) (0.91)

(50,30) I 2.205 2.329 3.218 2.325 3.899 5.093 2.330 2.359 3.188

(0.91) (0.91) (0.90) (0.93) (0.90) (0.90) (0.93) (0.93) (0.93)

II 2.006 2.081 3.000 2.401 3.890 3.853 2.011 2.116 3.011

(0.92) (0.92) (0.93) (0.90) (0.92) (0.92) (0.91) (0.91) (0.93)

III 2.213 2.911 3.920 2.459 3.775 5.003 2.329 2.499 3.899

(0.92) (0.92) (0.92) (0.93) (0.91) (0.91) (0.93) (0.94) (0.94)

V 2.115 2.801 3.488 2.411 3.957 4.233 2.221 2.709 3.551

(0.92) (0.91) (0.92) (0.93) (0.91) (0.92) (0.92) (0.93) (0.92)

0.8 (30,20) I 2.465 3.258 4.108 3.000 4.724 6.122 2.420 3.296 4.72

(0.91) (0.90) (0.89) (0.91) (0.90) (0.90) (0.92) (0.92) (0.91)

II 2.102 3.011 3.080 2.040 4.001 3.999 2.011 2.987 3.900

(0.92) (0.91) (0.90) (0.90) (0.93) (0.90) (0.91) (0.93) (0.93)

III 2.422 3.409 4.503 2.811 4.599 5.198 2.299 3.311 4.100

(0.91) (0.92) (0.89) (0.92) (0.93) (0.93) (0.92) (0.92) (0.91)

IV 2.396 3.203 4.385 2.717 4.556 5.233 2.381 3.411 4.101

(0.92) (0.91) (0.92) (0.93) (0.91) (0.94) (0.92) (0.96) (0.93)

(50,30) I 2.300 2.274 3.199 2.204 3.785 5.091 2.289 2.299 3.200

(0.97) (0.92) (0.92) (0.92) (0.93) (0.91) (0.94) (0.94) (0.96)

II 2.001 2.066 3.011 2.333 3.785 3.759 2.012 2.122 3.006

(0.92) (0.93) (0.94) (0.92) (0.91) (0.91) (0.92) (0.92) (0.94)

III 2.205 2.881 3.895 2.369 3.655 5.000 2.400 2.485 3.823

(0.91) (0.96) (0.94) (0.97) (0.92) (0.94) (0.94) (0.94) (0.96)

V 2.201 2.745 3.501 2.401 3.882 4.185 2.201 2.711 3.523

(0.95) (0.93) (0.94) (0.93) (0.91) (0.91) (0.93) (0.94) (0.95)

1. For fixed values of the sample size, by increasing the
observed failure times the MSEs decrease.

2. For fixed values of the sample size, the scheme II in
which the censoring occurs after the first observed
failure gives more accurate results through the MSEs
than the other schemes.

3. Results in the censoring schemes III and IV are closed
to other.

4. The approximate CIs and bootstrap-t CIs give more
accurate results than the bootstrap-p CIs since the
lengths of the former are less than the lengths of latter,
for different sample sizes, and different schemes.

5. For fixed sample sizes and observed failures, the
second scheme II , in which censoring occurs after the
first observed failure, gives smallest lengths of the CIs
for all methods.
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