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Abstract: In this paper, step-stress partially accelerated lifest€S8-PALT) are considered when the lifetime of a produdofes

a two-parameter bathtub-shaped lifetime distributiongiCldistribution). Based on progressive Type-ll censorihg, maximum
likelihood estimates (MLESs) are obtained for the distributparameters and acceleration factor. In addition, asyticpvariance
and covariance matrix of the estimators are given. Appratémconfidence intervals (Cls) for the parameters based omaho
approximation to the asymptotic distribution of the MLEslahe bootstrap (Cls) are derived. An iterative proceduresédd to obtain
the estimators numerically using (Mathematica Package)uierical example is presented to illustrate the methodstifnation

developed here. Finally, a Monte Carlo simulation studyeidgrmed to investigate the precision of the MLEs and to camaphe Cls
considered.
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1 Introduction non-accelerated. Thus, ALT are widely used to collect
information for the assessment of reliability of the tested

Life tests are usually conducted to assess the reliability oproducts. In ALT, test items are run only at accelerated
products in many industrial production processes. Inconditions, while in partially accelerated life tests
industrial experiments, products that are tested are oftekPALT), they are run at both normal and accelerated
extremely reliable with large mean times to failure underconditions. The major assumption in ALT is that the
normal operating conditions. However, for some high mathematical model relating the lifetime of the unit and
reliability products which are designed to operate withoutthe stress are known or can be assumed. In some cases,
failures for an extended period of time, few units would such life—stress relationships are not known and cannot be
fail at normal condition even censoring schemes aredssumed, i.e ALT data cannot be extrapolated to use

employed. Consequently, with conventional life-testing condition. So, in such cases, partially accelerated Ige te
experiments under Type-ll censoring, it is almost (PALT) is a more suitable test to be performed for which

impossible to obtain adequate information about thetested units are subjected to both normal and accelerated
failure time distribution and its associated parametens. T conditions.

overcome these problems, the experimenter may resortto According to Nelson 1] there are mainly three ALT
accelerated life testing (ALT) where in the units are methods. The first method is called the constant-stress
subjected to higher stress levels than normal. The datéLT, the stress is kept at a constant level throughout the
collected from such an accelerated test may then bdife of test products See[3] . The second one is referred
extrapolated to estimate the underlying distribution ofto as progressive-stress ALT, the stress applied to a test
failure times under design (use) conditions which isproductis continuously increasing in tim& p]. The third
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is the step-stress ALT, in which the test condition changeof the literature on progressive censoring see
at a given time or upon the occurrence of a specifiedBalakrishnan and Aggarwald4]. Supposen units are
number of failures, this type has been studied by severaplaced on a life testing experiment andTet Ty, ..., T, be
authors. In general, the problem of modeling data fromtheir corresponding lifetimes. We assume that =1, 2,
ALT and making inference from such data have been..., n are independent and identically distributed with pdf
studied by many authors. See, for examglé&T]. f(t) and cdfF (t). With progressively Type Il censoring,
Models with bathtub shaped or increasing failure rateunits are placed on test. Consider tfigin < Tomn < ...
function (FRF) are useful in reliability analysis and < Tmmn is the corresponding progressively Type |l
particularly in reliability related decision making andsto  censored sample, with censoring scheme
analysis. The bathtub shape provides an appropriat® = (Ri, Ry, ...,Rm). Since the joint pdf off;;mn < Tomn
conceptual model for the hazard of some electronic and ... < Tmmn is given by
mechanical products. In recent years, some lifetime

distributions with bathtub-shaped hazard function have m

been investigated by several authors. See for example, fiz. m(tumn,tamn, - tmmn) = A_rlf(ti?m!”)

Xie and Lai [8], Xie et al. [9] and Soliman et al.1(Q]. In - R

this article, we focus on a two-parameter distribution with [Stimn)]™,  (5)
the bathtub shape or increasing FRF proposed by Chen

[11]. This lifetime distribution has bathtub-shaped FRF if 0 <tymn <tzmn < .. <tmmn <,

a < 1; increasing FRF ifa > 1 and this distribution
becomes the exponential power distributiofBit= 1. Wu m i1
et al. [L2] proposed the optimal estimation of the A= ﬂ(”‘ZRJ““)' (6)
parameters of this lifetime distribution based on the i= j=1

doubly Type-Il censored sample. Let random variable
have a Chen distribution (CD) with paramefgrand a,
where 8 is the scale parameter and is the shape
parameter. The probability density function (pdf ),
cumulative distribution function (cdf), reliability fution
S(t), and hazard rate functidrit) given by

where

ALTs are preferred to be used in manufacturing industries
to obtain enough failure data, in a short period of time,
necessary to make inferences regarding its relationship
with external stress variables. In ALTs, the test items are
tested only at accelerated conditions. According to
Nelson [1] there are mainly three ALT methods. The first
a-1 a a method is called the constant-stress ALT, the stress is kept
fa(t) = aBt™ “exp(t” + B [1 —exp(t)]),t > 0, a, B >(% at a constant level throughout the life of test products Sel?a
[9,10]. The second one is referred to as progressive-stress
ALT, the stress applied to a test product is continuously

a
F1(t)=1—exp(B[1 - exp(t™)]), @) increasing in time4,5]. The third is the step-stress ALT,
in which the test condition changes at a given time or
Si(t) = exp(B[1—expt?)]), ©) upon the occurrence of a specified number of failures, this
type has been studied by several authors. Several authors
and have dealt with this type of ALT, including[7].
hi(t) = a Bt *exp(t?). 4

The CD with known shape parameter has been considered

in literature and applied in practice. Based on the2 Model Description and Basic Assumptions

progressive Type Il censoring scheme, Ahmadi etlg] [

used the may-value method to select the optimum value |n SS-PALT, all of then units are tested first under normal

of the shape parameter of the Weibull distribution andcondition, if the unit does not fail for a prespecified time ,

hence supposed that shape parameter is known. Theyien it runs at accelerated condition until failure. This

constructed the ML estimator for and developed a testingmeans that if the item has not failed by some prespecified

procedure for the lifetime performance index of the time , the test is switched to the higher level of stress and

products with CD on the basis of the progressive Type llit is continued until items fails. The effect of this switch i

censored sample with mgxvalue method to multiply the remaining lifetime of the item by the
Censoring is very common in life tests. There areinverse of the acceleration factor . In this case the

several types of censored tests. The most commoRrwitching to the higher stress level will shorten the life of

censoring schemes are Type-l (time) censoring andestitem. Thus the total lifetime of a test item, denoted by

Type-Il (failure) censoring. However, the conventional Y, passes through two stages, which are the normal and

Type-I and Type-ll censoring schemes do not have theaccelerated conditions. Then the lifetime of the unit in

flexibility of allowing removal of units at points other SS-PALT is given as follows

than the terminal point of the experiment. Because of this

lack of flexibility, a more general censoring scheme called T, T<T1*

progressive Type-Il right censoring, for extensive rexdew A { AT —1%), T>r1%, )
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whereT, is the lifetime of an item at use conditior; is functionL(a,8,Ay) in (14) without normalized constant
the stress change time aidis the acceleration factor isthen givenby

which is the ratio of mean life at use condition to that at 3
accelerated condition, usually > 1. Assume that the L(a, B, Aly) O (aB)mAmd exp{( 1) 2 logy;
lifetime of the test item follows CD with parameteos i=1

andp. Therefore, the probability density function of total S| 1) (1 —
lifetime Y of an item is given by Ha- )2 0gyi + A Z(R'+ )3 —expiy)) +(@—1)

o yeo xi_:z'"+1log[r +A<i— >]+i=§+l<r Ay —T)°
= f , <T* m " o\ a
v { figg 3§¥<T ® B 3 (R (L-exp(T +A (i —1))%) -

15
wheref(y), is given by (1) and, 13)
Then the log-likelihood function df(a, 3,A]y) given
by N
fa(y) = aBA(T" +A(y— 1))+ J
exp{ (T" - A(y—19)% + BL—exp(T" + A(y— 1°))%} ((a, B, Aly) =mlogaB + (m—J)logA + zy-"

O a1 3 logn B3 (R+1)(1- exsyf) + (@1

is obtained by the transformation variable technique =1
using equations (1) and (7). cdfS(t), and hy(t) of is X Z log[t* +A(yi — 1)+ 2 (T"+A(yi — 1))

given by =31 : i=Jr1 a)
+B8 Y R+ (1—exp(t"+Ayi—T1%))").
Fo(x)=1— exp(B [L—exp((T" +A(y—1%)%)]), (10) =T | .
t) — 1 A (v— 7)) 11 Calculating the first partial derivatives of (16) with
(1) = expB 1 —expl(T" +Aly—1))7)]), (11) respect toa, B andA and equating each to zero, we get
and the likelihood equations as
ha(t) = aBtdtexp((T" + A (y—1°)%).  (12) ;
L(a,B.Aly) _

In progreessive Type Il censoring the test terminates da —at Z logy; + 2 yf'logyi — B Z (Ri+1)yf
when the number of observations is reachednte: n. ol | .
The observed values of the total lifetinfeare :y; <y, < x logy; exp(y’) + |_z+1 og[T" +A(Yi —17)]

L <Y3< TF <Y3i1 < ... < YymWhered are the number of m .
items failed at normal conditions amd— J at accelerated +i:32+1[ AW =17 log[t* + A (yi — )]
conditions. Let us define the two indicator functionsalign m . o

—B 3 REDIC+AM—T)]
1vi<r* 1visTt . x log[T* + A (yi — T%)] exp([T* + A (yi — )%,
R A i
fet teme ) <aﬁA|y m
For the lifetimesy; < y> < ... < ym of mitems are . (R +1) (1—expy?))
independent and identically distributed random varigbles B Zl
then from (5) and (13) the likelihood function is given by m
. . - + ¥ (R+1)(1—exp(T"+A(yi—1)%) =0, (18)
L(mBM\X):A,ﬂl[fl(yi)[SL(Yi)}R'] () [So ()] ] i=J+1
=
0<y1 <Y< ... <Y< T  <Y141 < oo < Ym < 0, and
(14)
whereA given in (6) @B A 5 ( )
0‘€ aa ) L _ m_J yi — T*
I WA D Moy yryaurey
3 Maximum Likelihood Estimation 3 m
Fa3 T AL )t -aB Y (R+1)
3.1 MLEs i= =771

ok LAV — T a-1 1A (v — TN
From two populations whose cdfs and pdfs given in (1), XO =TT AL =) exp((T A (i — 1))
(2) (9) and (10), wittR = (Ry, Ry, ..., Rm). the likelihood =0. (19)
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From (18), we can write

m m
Plar)=p 20) W — —a(a-1p F R+DH-T)?

where rala—1) § (i-TP+AG—T)0

3 ) i=J+1 m ( .,r*)z

DZIZ(RH—l ) (exply{") — —(Az —(a—l)i:#lm (26)
m ) . X[+ ALy = 1)) Zexp([T + A (v = T)))

R <F<+1>(y.—r*>2[r*+uyi—r*)]z“’—“
By substituting (20) in (17) and (19) we have * exp([ )]a)

J J
ot 2 logy+ z Wlogyi =5 2, (REIWIONEXYT)  soyq g Ay %@ p Ay (R +1yF
+ ¥ gl A § (Ao sap ~opoa AN
i=J+1 =T m .
log[t* +A(i— )] =5 S R+ DT +AM —17))° xlogyiexpy) = § (R+D(T +A 1))

i=1 =
xlog[T* +A(yi — T)]exp(T* + A (yi — 1) =0, ) xlog[T*+ Ay —T°)] exp(T +A(yi —1°)%,  (27)
and
02(a,B,Aly)  9%(a,B,Aly) g (i —1%)

. m - T * . %)) 2
%ﬂa—l)izjzﬂ%wl %1(' ) 2a0) 9Ada 5 (T A — 1))
X(T*—f— ( )) _ mC{ I_E (R|+1)(YI_T ) +ai:§+1(yi_r )(T +)‘(yi_r )) Iog[r J")‘(yi_r )]
(T +A(yi — 1)) exp((T* + A (yi — 1)) =0. Ly (i — )T+ Ay — 1) L —ap 3 (R+1)

(23) i=JF1 i=J+1
ok * . T* a—1 % —
Thus, likelihoods equations are reduced to a two <O =TT AL = T) log [T+ Ay — )]

nonlinear equation (22) and (23) which could be solved <
numerically with respect ter and A using any iteration
procedure such as quasi-Newton Raphson, to get the

MLE, & andA, and henceﬁ by using (20).

<exp(T" +A(yi =) =B 5 (R+1(i—1")

=1

X (T 4+ A (i — 1)) exp(t + A (y; — 7))

Natural Sciences Publishing Cor.

m
—aB Y R+ —T) (T +A 1)
i=J+1
3.2 Approximateinterval estimation xlog[T* + Ay — )] xexp(t +A(yi —19)%, (28)
From the log-likelihood function in (16), we have and
9%((a B AlY) J
dar =+ 5 Y (logy)® 2°((a, B Aly)  0%(a,B,Aly) m
m " 2 apor ~  orep o 2 (RHD
+ Y [T HAY - )] (log[T* + A (yi — T)]) =+
i=J+1 * * * — * *
= , XY= T A (= )" xexpl(T + A (i — 1))
—B 3 (R+Dy (1+y7) (logy:)”exply’) (24) (29)
1=
m
* * 2
—ﬁi:J2+1(Ri+1)(|09[T +AYi— 1)) The observed Fisher information matrixa,,7),
X [T A (Y — )% (L4 [T+ A (Y — T9)]9) for the MLEs @, 8 andA), see L], is the 3x3 symmetric
xexp([T" + A (yi — 9)]) matrix of negative second partial derivatives of the
log-likelihood function with respect toa(, 8 andA). In
2%¢(a,B,Aly) m practice , we usually estimatel™(a,8,A) by
—o@ @) 1%a,pA), wh
ap2 B2 o (@,B,A), where
(@© 2017 NSP
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3. Asin step 1 based grf compute the bootstrap sample
estimates ofr, B3, andA saya*, B* andA*.

P 4. Repeat the above steps 2 and 8mes representiniy
oo i different bootstrap samples. The valueNohas been
J \ taken to be 100Q. R
| ! 5. Arrange alla*, B* andA* in an ascending order to

g obtain the bootstrap samplé;él], 45;[2], (ﬁ;[N]), k=
Fig. 1: The probability density function under normal and 1,2,3where p; =a”, ¢; =", ¢p3=2").
accelerate condition. Percentile bootstrap confidence interval:
Let G(z) = P(¢; < 2z) be cumulative distribution
function of ;. Define ¢}, = G (2) for given z. The
approximate bootstrap 100— y)% confidence interval

P20(a.BAl 92(a.BAl 92(a.BAl * i
, daz , 0a0p , 000 of ¢ given by
_ | PuapA o*(a pAl d2(a BAl . .
lo(a,B,A) opoa P2 9BoA Brivoot (2), Binoor (1 - X)} : (32)
Q20 BAlt) 0%(a.BAl) 0% (a BAl) 2 2
oAda oAdB oA2

nor Bootstrap-t confidence interval
at(a,B,A)=(a,B,A). (30) First, find the order statistiay " < &% < ... < &™)
The observed Fisher information matrix enables us toVhere

construct confidence intervals for the parameters based on il ¢*[H — Pk
limiting normal distribution. Thus, the 100-y)% 5k’ = ki_, j=12...N k=123 (33)
approximate confidence intervals for3 andA are var(cﬁ;m)

ar Zx,zm/Vl , B T z%/,/vzz andA T z%\/v33 and (31)

respectively, where1, Voo andvsz are the elemept§ on
the main diagonal of the covariance mattix'(a,3,A)

ar?dz%. is thg percentl'lg of the standard normal distribution Prvoort = P + /Var(dH (2. (34)
with right-tail probabllltylz’.

where¢; = a, ¢2:ﬁ7 ¢3=}\-
Let H(z) = P(§ < 2) be the cumulative distribution
function of §;. For a giverg, define

The approximate 10Q — y)% confidence interval afy is
given b)’(‘ﬁkboot—t(%)a Prboot-t(1— %)) .

4 Bootstrap Confidence Intervals

The bootstrap is a resampling method for statistical5 lllustrative Example

inference. It is commonly used to estimate confidencel, this section, we present an example to illustrate the
intervals, but it can also be used to estimate bias angstimation procedure of MLE and the two considered
variance of an estimator or calibrate hypothesis tests. Mobootstrap Cls methods for the parameters3 andA. In
survey of the nonparametric and parametric bootstragyig example, we simulate a samples of size<{30 from
methods Davison and Hinkley §], Efron and Tibshirani |, _ 50) are generated from Chen distribution with 3,
[16]. In this section, the two confidence intervals based OM\) = (1.5, 1.0, 2) and censoring scheme (CR)={2, 0,
the parametric bootstrap methods are proposed: (ib, 3,0,0,1,0,0,3,2,0,0,2,0,0,1,0,1,0,0,0, 1,0, 0,
percentile bootstrap method 'Efroﬂ7|, (ii) b_ootgtrapt 2, 0,0, 2, by using the algorithm described in
method Hall, L8]. The algorithms for estimating the pgg|akrishnan and Sandhdd] and using tranformation
confidence intervals of parameters using both methods arg) with t* = 0.7. The data are presented in Table 1
illustrated below. below. Fig 1 show the probability density functions under
1. Based on the original progressively Type-Il sample,Normal conditions and accelarate coinditions. We can use
Y= (1 <Y2 <o <Y3 < T < Yi1 < oo < V), any iteration proced.ure such as quaerewton Raphson to
btaing andA from (21) and (22) and hencféfrom sol_ve the_ two non-linear equation in (22) and (2Bhe
020 point estimates of the parameters as well as ( 95%)
(20). . A . approximate confidence intervales are presented in Table
2. Based ort and3 and the values ofi andm and t 2. Also the point estimates and relate of the parameters as
with the same values @, (i = 1,2,...,m;), generate —\ye|| a5 (95%) Percentile bootstrap (BPCIs) and
"= (tf <t <.. <ty) using the algorithm described 5otstrap-t (BTCIs) confidence intervales are presented
in Balakrishnan and Sandhu [18], and hedcé (7)  also in Table 2.We, observed that the BTCIs and ACls
the sample obtaineg = (y; <y, < ... <Yy; < 1" < intervals are narrower than the PBClIs and always include
Yigr <o <Y the population parameters values.

(@© 2017 NSP
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Table 1: Simulated progressively censored samples witRAI-s.
0.253584  0.260912  0.302932 0.30793  0.35838  0.360785 Tiél6 0.418423 0.43369  0.441461
0.461691 0.484631 0.510462 0552298 0.565323  0.600714 07188  0.643923  0.651039  0.719479
0.736579  0.785256  0.794652  0.795427  0.803143  0.833382 40878 0.845124 0.877254  0.978564
Table 2: MLEs, bootstrap and (95%) approximate confidenesvales and length
Pa.s (e (oot  95%(ACI) length  95%(BPCI) length 95%(BPCI) length
o =15 23171 27178 (1.4423,3.1919) 17496  (1.2420,4.3371) 9530 (1.0429,3.7772) 2.7313
B=10 10667 1.2234 (0.4396,1.6938) 1.2542  (0.4541,2.9882) 34a5 (0.3691,1.9241)  1.5550
A =2 15534 17021  (0.2484,2.8584) 2.6099  (0.1289,4.9321) 0328 (0.3325,2.9998)  2.6673
Table 3: MLEs and MSEs for the parametens8,A) at (0.8, 1.2, 2.5).
T MLE Boot
04 | (n,m) | CS AVG MSE AVG MSE
a B A a B A a B A a B A
(30,20 | | 0.871 1.437 2611 0411 0.810 1274/ 1.095 1.830 2.211] 0931 1213 1.472
1 0.863 1.442 2561 0.312 0.691 0.908/ 0.899 1502 2.411] 0.495 0.856  1.008
Il | 0.891 1346 2.633 0.384 0.731 0999 0.993 1.496 2.213| 0.722 0999 1.325
IV | 0.896 1221 2617 0.378 0.776 1.002| 0.990 1.524 2.011] 0.569 0.987  0.996
(50,30) | | 0.842 1452 2665 0.310 0.621 0.872] 0.954 1732 2.311] 0.701 0.800 0.954
1 0.823 1.243 2513 0.100 0.321 0.601| 0.865 1.425 2.200| 0.401 0.550 0.751
Il | 0.834 1.314 2421 0230 0.444 0.741| 0.964 1.477 2.223| 0.522 0.562  0.902
\% 0.845 1.325 2600 0.330 0.452 0.720] 0.983 1472 2.621] 0.622 0.524  0.801
0.8 | (30,20) | | 0.864 1.399 2321 0.358 0.785 0.999| 0.987 1547 2.313] 0.839 1.000 1.112
1 0.834 1.295 2430/ 0.300 0.599 0.801| 0.812 1533 2.477| 0.408 0.754  0.908
Il | 0855 1.347 2333 0.399 0621 0.947| 0.914 1.591 2.313| 0.777 0.823  0.999
IV | 0.854 1330 2601 0377 0.699 00955 0.845 1533 2213 0533 0725 0.965
(50,30) | | 0.833 1.312 2607| 0.299 0555 0.772| 0.974 1533 2.414/ 0.623 0.654 0.752
1 0.813 1.202 2483 0.108 0.300 0.524| 0.815 1412 2.445 0371 0452 0.654
Il | 0.834 1311 2431] 0201 0480 0.642| 0.903 1.408 2.277| 0466 0535 0.802
\% 0.842 1.337 2613 0.300 0.423 0.666| 0.922 1431 2423 0472 0501 0.833

6 Simulation Studies as the number of confidence intervals that covered the
true values divided by 1000 while the estimated expected
Simulation studies have been performed to illustrating thewidth of the confidence interval was computed as the sum
theoretical results of estimation problem. The of the lengths for all intervals divided by 1000. In our
performance of the resulting estimators of the study we have used three different censoring schemes
acceleration, shape and scale parameters has beg@.S), namely:

considered in terms of their average (AVG) and mean schemd: Ry=n-m R =0 fori#m.
square error (MSE), where schemdl: Ry=n-m, R =0 fori#1l
scheme Il Rm+2_1 =n-m R =0 for

i # ™2 if modd and
Rgzwzn—m, R =0 fori # 7;if meven.

M .
=gy o (@i=abe=pbs=2) @

and schemdV : Rmﬂ =.= Rg =1, otherR = 0.
’ scheme/ : Rom ni1=... = Rg+5 =1, otherR = 0.

M . 2

MSE:%Z(@S)—%) : (36) In simulation studies, we consider the population
= parameter valuesa(= 0.8, = 1.2,.A = 2.5) and two

We also compare different confidence intervals, namelycase separatelfi) * = 0.4. and(ii)7* = 0.8.

the confidence intervals obtained by using asymptotic

distributions of the MLEs and the two different bootstrap

confidence intervals in terms of the average confidencé/ Concluding Remarks

lengths (AC) and coverage percentages (CP). For each

simulated sample under a particular setting, we computed simulation study was conducted to examine and

95% confidence intervals and checked whether the trueompare the performance of the proposed methods for

value lay within the interval and recorded the length of different sample sizes, different censoring schemes,

the confidence interval. This procedure was repeated 1008ifferent acceleration factor and different change time.

times. The estimated coverage probability was computedrrom the results, we observe the following.
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Table 4: Comparisons of (AC) and (CP) of 95% Cds 8,A) at (0.8, 1.2, 2.5).

™ | (nnm) | CS MLE Boot-P Boot+
a B A a B A a B A
0.4 | (30,20) | | 2595  3.324  4.119| 2999 4.801  6.033| 2.449  3.309  4.088

(0.90) (0.90) (0.88)| (0.91) (0.87) (0.89)| (0.91) (0.91)  (0.90)
I 2.006 3.021 3.091| 2.057 4.021  4.013| 2.009 3.006  4.000
(0.93) (0.90) (0.91)| (0.89) (0.94  (0.89)| (0.92) (0.90) (0.91)
Il | 2.443 3411 4521| 2822 4615 5.233| 2.321 3.417 4.108
(0.92) (0.90) (0.89)| (0.91) (0.93) (0.92)| (0.93) (0.92) (0.90)
IV | 2405 3.402 4.499| 2.811 4555 5.245| 2.381 3.408 4.111
(0.93) (0.90) (0.91)| (0.93) (0.90) (0.91)| (0.93) (0.94) (0.91)
(50,30) | | 2.205 2329 3218 2.325 3.899 5.093| 2.330 2.359 3.188
(0.91) (0.91) (0.90)| (0.93) (0.90) (0.90)| (0.93) (0.93) (0.93)
I 2.006 2.081 3.000| 2.401 3.890 3.853| 2.011 2.116 3.011
(0.92) (0.92) (0.93)| (0.90) (0.92) (0.92)| (0.91) (0.91) (0.93)
Il | 2213 2911 3.920| 2459 3.775 5.003| 2.329 2499  3.899
(0.92) (0.92) (0.92)| (0.93) (0.91) (0.91)| (0.93) (0.94) (0.94)
Vv 2.115 2.801  3.488| 2.411 3.957 4.233| 2221 2709  3.551
(0.92) (0.91) (0.92)| (0.93) (0.91) (0.92)| (0.92) (0.93) (0.92)
0.8 | (30,20) | | 2.465 3.258  4.108| 3.000 4.724  6.122| 2.420 3.296  4.72
(0.91) (0.90) (0.89)| (0.91) (0.90) (0.90)| (0.92) (0.92) (0.91)
I 2.102 3.011 3.080| 2.040 4.001 3.999| 2.011 2.987  3.900
(0.92) (0.91) (0.90)| (0.90) (0.93) (0.90)| (0.91) (0.93) (0.93)
Il | 2.422 3.409 4.503| 2.811 4599 5.198| 2.299 3.311  4.100
(0.91) (0.92) (0.89)| (0.92) (0.93) (0.93)| (0.92) (0.92) (0.91)
IV | 2396 3.203 4.385| 2717 4556 5.233| 2.381 3.411  4.101
(0.92) (0.91) (0.92)| (0.93) (0.91) (0.94)| (0.92) (0.96) (0.93)
(50,30) | | 2.300 2274 3.199| 2204 3.785 5.091| 2.289 2.299  3.200
0.97) (0.92) (0.92)| (0.92) (0.93) (0.91)| (0.94) (0.94)  (0.96)
I 2.001 2066 3.011| 2.333 3.785 3.759| 2.012 2122  3.006
(0.92) (0.93) (0.94)| (0.92) (0.91) (0.91)| (0.92) (0.92) (0.94)
Il | 2205 2.881 3.895| 2.369 3.655 5.000| 2.400 2485  3.823
(0.91) (0.96) (0.94)| (0.97) (0.92) (0.94)| (0.94) (0.94) (0.96)
Vv 2.201 2745 3501| 2.401 3.882 4.185| 2.201 2.711  3.523
(0.95) (0.93) (0.94)| (0.93) (0.91) (0.91)| (0.93) (0.94) (0.95)
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