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Abstract: The problem of non-uniqueness arising in the integral formulation of an exterior boundary value problem for the elastic
two-dimensional case can be faced using the fundamental solution technique. In this work, a criterion based on the minimization of the
norm of the modified integral operator is established using simple multipole coefficients. As applications, the proposed procedure in
the case of circle and perturbations of circle are examined.
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1 Introduction

It is well known that the problem of non-uniqueness
arising in the integral formulation of an exterior boundary
value has been treated with the addition of series of
outgoing waves to the free-space fundamental solution,
that is with the modified Green’s function technique. This
method was introduced by Jones [9] and Ursell [20] to
treat the exterior Dirichlet and Neumann problem for the
Helmholtz equation. The appropriate choice of the simple
multipole coefficients of the added series to the free-space
fundamental solution guarantees the uniqueness
solvability of the boundary integral equation which
describes the problem. Kleinmann and Roach [12], have
shown that in addition to uniqueness solvability of the
integral equation, the simple multipole coefficients of the
modification could be chosen so that the modified Green’s
function is the best approximation to the actual Green’s
function for the problem in the least squares sense. In
[11], the same authors, motivated by a desire not only to
ensure uniqueness solvability, but also to provide a
constructive method of solving the integral equation, they
have chosen as a criterion, the minimization of the norm
of the modified integral operator. In the same way,
Kleinmann and Kress [10] presented another criterion
choosing the simple multipole coefficients of the
modification, that of the minimization of the condition

number of the integral equation. All the above mentioned
work referred to the acoustical case.

Applying the modified Green’s function technique for
the elastic case, the problem of the irregular frequencies
arising in the integral equation of Fredholm type can be
removed as well. Although, the main ideas in both
acoustic and elastic cases are the same, however, the
corresponding results for the elasticity case require more
complicated procedures compared with the acoustical
case. This is due to the complexity of the problem in
elasticity. The first work which adopts the modified
Green’s function technique in elasticity is due to Jones
[8], who examined the cavity inR3. In [5,7], Bencheikh
have been also consider elastic problems inR

2. In [2,4],
the exterior Dirichlet problem inR3 is investigated by
Argyropoulos, Kiriaki and Roach, and the
non-uniqueness of the boundary integral equation is
overcome with a suitable choice of simple mutipole
coefficients in the modification. Not so far, we have
presented another criterion choosing the coefficients of
the modification, that of the minimization of the norm of
the modified fundamental solution for the elastic
two-dimensional case [16,17].

In this paper, the criterion of operators of minimal
norm via modified Green’s function for the elastic
two-dimensional case is investigated. If the norm of the
modified integral operator can be made small enough then
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the modified integral equation can be solved by iteration.
So, if the simple multipole coefficients of the
modification are chosen to satisfy this criterion of the
minimal norm, then the unique solvability of the integral
equation is ensured. In the case of three-dimensional
elastic waves, some similar results are given by
Argyropoulos and Kiriaki [3].

This paper is organized as follows. In section 2, we
present the modified Green’s function technique, also the
free space fundamental solution and the regular part are
expressed via Hankel vector functions. In section 3, a
criterion of optimal modification, the criterion of
minimization of the norm of the modified integral
operator are adopted and based on the optimal simple
multipole coefficients for the modification are chosen.
The case of circle as an example of the proposed
procedure is considered in section 4. In order to give
deeper insights, boundaries which can be derived as
perturbation of the circle are investigated in section 5.

2 Formulation of the problem using modified
Green’s function technique

In order to treat an exterior boundary value problem, we
can reformulate it as an integral equation, using the direct
or indirect method. An exterior Dirichlet boundary value
problem for the elastic two-dimensional case can be
described through a boundary integral equation of the
form [6,15 and 18]:

(
1
2

I +K∗
0

)
ϕ (p) = g(p) p ∈ ∂D , (2.1)

where g is a Holder continuous density, the integral
operator K0 is defined as: (K0ϕ)(p) =
1

2π
∫

∂D TpG0 (p,q) .ϕ (q) .dsq p ∈ ∂D , (2.2)
(∗) denotes theL2 adjoint operator and(−) the

complex conjugate.G0 is the fundamental solution andT
is the surface stress operator. The superscript(p) on T
indicates the action of the operator on the pointp.

In order to remove the lack of uniqueness appears
when the boundary value problem is formulated as a
boundary integral equation we follow the modified
Green’s function technique. Introducing a regular solution
H(P,Q) [6], the modified Green’s function is written as
the superposition of the fundamental solution and the
regular part as:

G1 (P,Q) = G0 (P,Q)+H (P,Q) . (2.3)

We modify the kernel of Eq. (2.2) with another defined
by usingG1, and so the operatorK0 is modified toK1.
The boundary integral equation obtains following a layer
theoretic approach is given by :

(
1
2

I+K∗
1

)
ϕ (p) = g(p) p ∈ ∂D. (2.4)

We note that the operatorsK0 and K1 arn’t compact.
Indeed, their kernels are singular, but the singular integral
Eq. (2.1) and the corresponding modified Eq. (2.4) admit
a regularization procedure as it is described in [13].

Next, we will take the eigenvector expansion of the
Green’s function introduced in [6]. So, for the free-space
fundamental solution we have the following expansion :

G0 (P,Q) =
i

4µK2 ∑∞
m=0 ∑2

σ=1∑2
ℓ=1

(
Fσ l

m (P>)⊗Fσ l
m (P<)

)
. (2.5)

Fσ l
m are the vector Hankel functions [1], whereP> =

{ P, RP > RQ
Q, RP < RQ

andP< = { P, RP < RQ
Q, RP > RQ

. (2.6)

The F̂σ l
m are obtained by changing the function of

Hankel H1
m of the vector Hankel functions into the

function of BesselJ1
m [1]. For the regular part of the

modification, apart of the usage of dyads similar to those
appeared in Eq. (2.5), we introduce simple terms as in [6]:

H(P,Q) =
i

4µK2

∞

∑
m=0

2

∑
σ=1

2

∑
ℓ=1

[aσ l
m Fσ l

m (P)⊗Fσ l
m (Q), (2.7)

where

Fσ1
m (P) = grad(H1

m(k RP).Eσ
m(θP)) ,

Fσ2
m (P) = rot

(
H1

m(K RP).Eσ
m (θP) .ê3

)
,

(2.8)

andaσ l
m is the simple multipole coefficients.(RP,θP) are

the polar coordinates of the pointP,

and Eσ
m(θP) =

√
εm.{ cos(mθp) σ = 1

sin(mθp) σ = 2 , with

εm = {1, m = 0
2, m > 0 .

In what follows, we use the usually assumption taken
under consideration that the series in (2.7) converges
uniformly. As it has been proved in [6], the set
{Fσ l

m }σ l=1:2
m=0:∞ is a complete set inL2 (∂D) and linearly

independent. Since the elements of that set are not
orthogonal, then in order to proceed, we define the

following set
{

Fσ l ⊥
m

}σ l=1:2
m=0:∞ , where its elements have the

following property:

< Fσ l
m ,Fνk ⊥

m >= δmn δσν . (2.9)

In fact, we can represent every element of the new set as a
linear combination of Hankel vectors:

Fνk ⊥
m (P) =

∞

∑
m=0

2

∑
σ=1

2

∑
ℓ=1

Cσν lk
mn Fσ l

m (P) . (2.10)

By taking the inner products of Eq. (2.10) withFσ l
m (P) in

the L2 sense, we obtain a linear system with the
unknownsCσν lk

mn having non-vanishing determinant. This
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is established by the linear independence of
{

Fσ l
m

}σ l=1:2
m=0:∞ .

Solving this system to calculate the coefficientsCσν lk
mn of

Eq. (2.10). SoFνk ⊥
m can be computed through Eq. (2.10)

explicitly. It is obvious from their definition that{
Fσ l ⊥

m

}σ l=1:2
m=0:∞ are linearly independent.

3 Optimal choice of the simple multipole
coefficients

In the sequel, we will consider a different criterion for
choosing the simple multipole coefficients in the
modification (2.3), from the criterion presented in [15]. A
similar criterion is considered for the acoustical case by
Kleinmann and Roach [11]. As in their work it is
mentioned this criterion does not only assure the unique
solvability of the boundary integral equation but also
leads to a constructive method of solving the equation.
We will prove that the same holds for the elastic
two-dimensional case. This argument is established by
the following theorem.

Theorem 3.1. The norm‖K1‖ of the modified integral
operator K1 is minimized if we choose the simple
multipole coefficients of the modification (2.3) through
the relation:

aσ l
m .

i
4µK2 =− f σ l

m

ασ l
m

, (3.1)

where

ασ l
m =

∥∥∥TFσ l
m

∥∥∥
2

(3.2)

and
f σ l
m =< K∗

0T Fσ l
m ,Fσ l ⊥

m > . (3.5)

Proof. The operator norm will be minimized if the simple
multipole coefficients in the modification minimize
‖K1w‖2 for each functionw ∈ L2 (∂D). So we will
calculate the norm of‖K1w‖2, using the expansion for the
kernel given by (2.5) and (2.7), we have :

‖K1w‖2 = ‖K0w‖2

+
i

4µK2

∞

∑
m=0

2

∑
σ=1

[aσ1
m < K0w,T Fσ1

m >< Fσ1
m ,w >

+aσ l
m < T Fσ1

m ,K0w >< Fσ1
m ,w >]

+
i

4µK2

∞

∑
m=0

2

∑
σ=1

[aσ2
m < K0w,T Fσ2

m >< Fσ2
m ,w >

+aσ2
m < TFσ2

m ,K0w >< Fσ2
m ,w >]

+

(
i

4µK2

)2 ∞

∑
m=0

2

∑
σ=1

∞

∑
n=0

2

∑
ν=1

[aσ1
m aν1

n < TFσ1
m ,T Fν1

n >

< Fσ1
m ,w >< Fν1

n ,w >]

+

(
i

4µK2

)2 ∞

∑
m=0

2

∑
σ=1

∞

∑
n=0

2

∑
ν=1

[aσ1
m aν2

n < T Fσ1
m ,T Fν2

n >

< Fσ1
m ,w >< Fν2

n ,w >]

+

(
i

4µK2

)2 ∞

∑
m=0

2

∑
σ=1

∞

∑
n=0

2

∑
ν=1

[aσ2
m aν1

n < T Fσ2
m ,T Fν1

n >

< Fσ2
m ,w >< Fν1

n ,w >]

+

(
i

4µK2

)2 ∞

∑
m=0

2

∑
σ=1

∞

∑
n=0

2

∑
ν=1

[aσ2
m aν2

n < T Fσ2
m ,T Fν2

n >

< Fσ2
m ,w >< Fν2

n ,w >]. (3.4)

In (3.4) the inner products and norms are inL2 sense.
Necessary conditions for the minimum of (3.4) are the
vanishing of the gradient, with respect to the coefficients.
So, first, differentiating with respect toaν1

n and aν2
n we

obtain the relations:

(

∂‖K1w‖2

∂aν1
n

∂‖K1w‖2

∂aν2
n

) = (
0
0)∀w ∈ L2 (∂D) . (3.5)

From Eq. (3.5) we conclude that:
K∗

0TFν1
n − i

4µK2 ∑∞
m=0 ∑2

σ=1 ∑2
ℓ=1aσ l

m < T Fσ1
m ,T Fν1

n >

Fν1
n = 0, (3.6)

and
K∗

0TFν1
n − i

4µK2 ∑∞
m=0 ∑2

σ=1 ∑2
ℓ=1aσ l

m < T Fσ2
m ,T Fν2

n >

Fν2
n = 0. (3.7)

Taking the inner products of (3.6) and (3.7) withFν1 ⊥
n

andFν2 ⊥
n . The unique solution of this system gives usaσ l

m
andaσ2

m as they are expressed via (3.1). It remains to prove
that this choice of simple multipole coefficients provides a
minimum, that is if we denote byK0

1 the modified operator
with the optimal simple multipole coefficients as specified
by (3.1) and byK1 the modified operator with any other
choice of simple multipole coefficients, we have to verify
that :

∥∥K0
1w
∥∥≤ ‖K1w‖ ∀w ∈ L2 (∂D) . (3.8)

Let the simple multipole coefficients in the arbitrary
modification be denoted by :

aσ l
m = aσ l

m (0)+ εσ l
m , (3.9)

whereaσ l
m (0) is defined by (3.1). Then we can calculate

‖K1w‖ taking into account (3.9) :

‖K1w‖2 =
∥∥K0

1w
∥∥2

(3.10)

+< K0
1w,

∞

∑
m=0

2

∑
σ=1

2

∑
ℓ=1

hσ l
m aσ l

m < w,Fσ l
m >>

+<
∞

∑
m=0

2

∑
σ=1

2

∑
ℓ=1

hσ l
m aσ l

m < w,Fσ l
m >,K0

1w >
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+
∞

∑
m=0

2

∑
σ=1

2

∑
ℓ=1

∞

∑
n=0

2

∑
ν=1

2

∑
k=1

< hσ l
m ,hνk

n ><w,Fσ l
m ><w,Fνk

n >,

where
hσ l

m (p) = εσ l
m T Fσ l

m (P) . (3.11)

From (3.6) and (3.7) we have the vanishing of all terms
in the first two inner products of the sum in (3.10). Then
(3.10) becomes :

‖K1w‖2 =
∥∥K0

1w
∥∥2

+
∞

∑
m=0

2

∑
σ=1

2

∑
ℓ=1

∞

∑
n=0

2

∑
ν=1

2

∑
k=1

Zσ l
m Zνk

n < hσ l
m ,hνk

n >, (3.12)

where
Zσ l

m =< w,Fσ l
m > . (3.13)

So to establish our argument we need to prove that the
quantity :

∞

∑
m=0

2

∑
σ=1

2

∑
ℓ=1

∞

∑
n=0

2

∑
ν=1

2

∑
k=1

Zσ l
m Zνk

n < hσ l
m ,hνk

n >, (3.14)

is positive semi-defined.

But, by constructing an orthonormal set
{

Uσ l
m

}σ l=1:2
m=0:∞

from
{

hσ l
m

}σ l=1:2
m=0:∞ , e.g. by using a Gram-Schmidt

procedure [14] and the linear independence of{
hσ l

m

}σ l=1:2
m=0:∞ , there exists a set of coefficients

{
dσ µls

mp

}

such that :

hσ l
m =

∞

∑
p=0

2

∑
µ=1

2

∑
s=1

dσ µls
mp U µs

p . (3.15)

Then

< hσ l
m ,hνk

n >=
∞

∑
p=0

2

∑
µ,s=1

∞

∑
q=0

2

∑
λ ,r=1

dσ µls
mp dνλ kr

nq <U µs
p ,Uλ r

q >

=
∞

∑
p=0

2

∑
µ,s=1

dσ µls
mp dνµks

np = D D∗, (3.16)

whereD is the matrix with elementsdσ µls
mp andD∗ is the

Hermitian conjugate. However,DD∗ is positive
semidefined [14], which completes the proof.�

4 Optimal choice of the simple multipole
coefficients for the case of the circle

Lemma 4.1. If ∂D is a circle of radiusa, then the
expansion for

{
Fσ l ⊥

m

}σ l=1:2
m=0:∞ are given by the following

equations:

F11 ⊥
m =

(a2
mF11

m −cmF22
m )

△m
, F22 ⊥

m =
(a1

mF22
m −cmF11

m )
△m

(4.1)
and

F12 ⊥
m =

(a1
mF12

m +cmF21
m )

△m
, F21 ⊥

m =
(a2

mF21
m +cmF12

m )
△m

, (4.2)

where

a1
m = 2πak2

[∣∣∣H ′
m (ka)

∣∣∣
2
+

m2

(ka)2 |Hm (ka)|2
]
, (4.3)

a2
m = 2πaK2

[∣∣∣H ′
m (Ka)

∣∣∣
2
+

m2

(Ka)2
|Hm (Ka)|2

]
, (4.4)

cm = 2πakK
[ m

Ka
H

′
m (ka)Hm (Ka)+

m
ka

Hm (ka)H
′
m (Ka)

]
, (4.5)

and
△m = a1

ma2
m −|cm|2 . (4.6)

Proof. Taking the inner product of Eq. (2.10) withFσ l
m and

using eq. (2.9), we obtain that

∞

∑
p=0

2

∑
µ=1

2

∑
s=1

Cσνlk
mn Iσνlk

mn = δmnδσνδlk, (4.7)

such that

Iσνlk
mn =< Fσ l

m ,Fνk
n > (4.8)

and the inner product is defined on the circle.

The values of Eq. (4.8) for eachσ ,ν, l,k = 1 : 2 are
given in [18] as follows:

Iσν11
mn = a1

m δmnδσν , (4.9)

Iσν22
mn = a2

m δmnδσν , (4.10)

Iσν12
mn =−(−1)σ cm δmn (1− δσν) , (4.11)

and

Iσν21
mn =−(−1)ν cm δmn (1− δσν) . (4.12)

By using Eqs. (4.9)-(4.12), we obtain the following linear
systems :

{ a1
mCσ1l1

mn + cmCσ2l2
mn = δmnδσ1δl1

cmCσ1l1
mn + a2

mCσ2l2
mn = δmnδσ2δl2

(4.13)

{ a1
mCσ2l1

mn + cmCσ1l2
mn = δmnδσ2δl1

−cmCσ2l1
mn + a2

mCσ1l2
mn = δmnδσ1δl2

, (4.14)

with the same non-vanishing determinant given by Eq.
(4.6). This is established by the linear independence of{

Fσ l
m

}σ l=1:2
m=0:∞ in L2 (∂D) and the Schwartz inequality. The

unique solution of the system (4.13) gives usF11 ⊥
m and

F22 ⊥
m as they are expressed by (4.1), and the unique

solution of the system (4.14) gives usF12 ⊥
m andF21 ⊥

m as
they are expressed by (4.2).�

Theorem 4.2. If ∂D is a circle of radiusa, then the
optimal multipole coefficients of the modification (2.3),
which minimize the norm of the modified integral
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operator, given by Eq. (3.1), take the following forms :

a11
m =− 1

2

[
α̂1

m
α1

m
+

(â1
ma2

m−cmĉm)
△m

+ βm
α1

m
.
(d̂ma2

m−cmâ2
m)

△m

]
, (4.15)

a12
m =− 1

2

[
α̂2

m
α2

m
+

(a1
mâ2

m−cmd̂m)
△m

+ βm
α2

m
.
(a1

mĉm−cmâ1
m)

△m

]
, (4.16)

a21
m =− 1

2

[
α̂1

m
α1

m
+

(â1
ma2

m−cmĉm)
△m

+ βm
α1

m
.
(d̂ma2

m−cmâ2
m)

△m

]
, (4.17)

and

a22
m =− 1

2

[
α̂2

m
α2

m
+

(a1
mâ2

m−cmd̂m)
△m

+ βm
α2

m
.
(a1

mĉm−cmâ1
m)

△m

]
. (4.18)

Proof. To calculate the simple multipole coefficientsaσ l
m ,

we must calculate the values off σ l
m given by (3.3). We

know by [18] that:

K∗
0T Fσ l

m (p) =
∫

∂D
T Fσ l

m (q)TqG0 (q, p)dsq. (4.19)

Using the following expansion for the Green’s function

G0 (q, p)=
i

4µK2

1
2

∞

∑
n=0

2

∑
ν,k=1

[
Fνk

n (q)⊗ F̂νk
n (P)

F̂νk
n (q)⊗Fσ l

m (p)

]
, (4.20)

we obtain that

f σ l
m =

i
8µK2

[
< TF̂σ l

m ,T Fσ l
m > ∑∞

n=0∑2
ν=1 ∑2

k=1
< T Fνk

n ,T Fσ l
m >< F̂νk

n ,Fσ l ⊥
m >

]
. (4.21)

Using Eqs. (4.3)-(4.6), (4.19),(4.20) and the facts that
[18]

â1
m = 2πak2

[
J
′
m (ka)H

′
m (ka)+ m2

(ka)2
Jm (ka)Hm (ka)

]
,

â2
m = 2πaK2

[
J
′
m (Ka)H

′
m (Ka)+ m2

(Ka)2
Jm (Ka)Hm (Ka)

]
,

ĉm = 2πakK

[
m

Ka J
′
m (ka)Hm (Ka)+ m

ka Jm (ka)H
′
m (Ka)

]
,

d̂m = 2πakK
[

m
ka J

′
m (Ka)Hm (ka)+ m

Ka J′m (Ka)H ′
m (Ka)

α̂1
m = 2πa(k4 (2µJ′′m (ka)−λJ′′m (ka))

(
2µH ′′

m (ka)−λH ′′
m (ka)

)
+

(
2µm

a

)2

(
kH ′

m (ka)− H ′′
m (ka)

a

)(
kJ′m (ka)− J′′m (ka)

a

)
),

α̂2
m = 2πa(

(
µK2)2

(
2J

′′
m (Ka)+ Jm (Ka)

)

(
2H ′′

m (Ka)+H ′′
m (Ka)

)
+

(
2µm

a

)2

(
KJ′m (Ka)− J′′m (Ka)

a

)(
KH ′

m (Ka)− H ′′
m (Ka)

a

)
),

β̂m = 4πµm(k2 (2µJ′′m (ka)−λJ′′m (ka))

(
KH ′

m (Ka)− H ′′
m (Ka)

a

)
+

µK2

(
kJ′m (ka)− J′′m (ka)

a

)(
2H ′′

m (Ka)
)
+H ′′

m (Ka)),

and

△m = (2πµ)2 (µk2K2(2µH ′′
m (ka)−λ H ′′

m (ka)
)

(
2H ′′

m (Ka)+H ′′
m (Ka)

)

−
(

2µm
a

)2(
kH ′

m (ka)− H ′′
m (ka)

a

)(
KH ′

m (Ka)− Hm(Ka)
a

)
),

we obtain the following relations :

f 11
m = f 21

m =
i

8µK2 (α̂
1
m + α̂1

m

(
â1

ma2
m − cmĉm

)

△m

+βm

(
d̂ma2

m − cmâ2
m

)

△m
) (4.22)

and

f 12
m = f 22

m =
i

8µK2 (α̂
2
m + α̂2

m

(
a1

mâ2
m − cmd̂m

)

△m

+βm

(
ĉma1

m − cmâ1
m

)

△m
). (4.23)

Using (4.22) and (4.23) we obtain the expressions of
the multipole coefficientsaσ l

m as they are expressed via
(4.15)-(4.18).�

Theorem 4.3.
If ∂D is a circle of radiusa and the optimal multipole

coefficients of the modification in Eq. (2.3) are given by
Eqs. (4.15)-(4.18), then it holds that

‖K1‖= 0

Proof. In view of Lemma 4.1 and Theorem 4.2, the
modified Green’s function admits the following
development:

G1 (p,q) =
i

4µK2

∞

∑
m=0

2

∑
σ=1

2

∑
ℓ=1

Fσ l
m (P<)

⊗
[

F̂σ l
m (P>)+ aσ l

m Fσ l
m (P>)

]

=
1
2

[
GD (p,q)+GN (p,q)

]
(4.33)

whereGD is the Green’s function for the exterior Dirichlet
problem whileGN is the Green’s function for the exterior
Neumann problem for the circle. So :

GD (p,q) = 0 and TqGN (p,q) = 0, (4.34)

for Rp > a andRq = a. After calculus we obtain that

TqGD (p,q) =−TqGN (p,q) , (4.35)
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for Rp = Rq = a. Then in the circle it holds that

TqG1 (p,q) = 0. (4.36)

This last result implies that

K1w = 0, ∀w ∈ L2 (∂D) . (4.37)

Hence‖K1w‖ = 0 and the integral equation is uniquely
solvable.�

5 Optimal choice of the simple multipole
coefficients for a perturbation of a circle

As in [11] we will consider a family of non-circular
boundaries given parametrically by the relation:

Rε = a+ εϕ(θp), 0≤ θp ≤ 2π , (5.1)

whereϕ and ∂ϕ
∂θ are all bounded. Using the estimates for

the multipole vectors which are established in [18]:

Fσ l
m (Pε) = Fσ l

m (Pa)+O(ε) , (5.2)

TFσ l
m (Pε) = T Fσ l

m (Pa)+O(ε) , (5.3)

< Fσ l
m ,Fνk

n >ε=< Fσ l
m ,Fνk

n >a +O(ε) , (5.4)

< T Fσ l
m ,T Fνk

n >ε=< TFσ l
m ,T Fνk

n >a +O(ε) , (5.5)

and

Fσ l ⊥
m (Pε) = Fσ l ⊥

m (Pa)+O(ε) , (5.6)

where Pε is a point in the perturbed circle whilePa
describes points on the circle of radiusa, and< , >ε is
the inner product on the perturbed circle, and< , >a is
the inner product on the circle.

Theorem 5.1.If ∂D is defined by (5.1), then the optimal
multipole coefficients of the modification in Eq. (2.3)
minimize the norm of the modified integral operator given
by Eq. (3.1) take the forms:

a11
m = a11

m (a)+O(ε) , (5.7)

a12
m = a12

m (a)+O(ε) , (5.8)

a21
m = a21

m (a)+O(ε) , (5.9)

and
a22

m = a22
m (a)+O(ε) , (5.10)

whereaσ l
m (a) are the optimal multipole coefficients for the

circle of radiusa.

Proof.
Suppose that∂D is defined by (5.1). Then from Eq.

(5.5), it follows that

ασ l
m (Pε) = ασ l

m (Pa)+O(ε) , (5.11)

and

△σ l ′
m (Pε) =△σ l ′

m (Pa)+O(ε) . (5.12)

Using Eqs. (5.2), (5.6), (5.11) and (5.12), we obtain that

f σ l
m (Pε) = f σ l

m (Pa)+O(ε) , (5.13)

This leads to Eqs. (5.7)-(5.10).�.

Theorem 5.2.If ∂D is defined by Eq. (5.1) and the optimal
multipole coefficients of the modification in Eq. (2.3) are
given by Eqs. (5.7)-(5.11), then it holds that

‖K1‖= O(ε). (5.14)

Proof. Suppose that∂D is defined by Eq. (5.1) and the

optimal multipole coefficients of the modification in Eq.
(2.3) are given by Eqs. (5.7)-(5.11). In view of Theorem
5.1, it holds that

Tpε G0 (pε ,qε) = TpaG0 (pa,qa)+O(ε) , (5.15)

Tqε G0 (pε ,qε) = TqaG0 (pa,qa)+O(ε) , (5.16)

Tpε G1 (pε ,qε) = TpaG1 (pa,qa)+O(ε) , (5.17)

Tpε G1 (pε ,qε) = TpaG1 (pa,qa)+O(ε) (5.18)

and

(Kε
1 w)(pε) = (Ka

1w) (pa)+O(ε) . (5.19)

By using (4.37) and (5.19) we obtain that

(Kε
1w)(pε ) = O(ε) , (5.20)

which leads to‖K1‖= O(ε). �.

6 Conclusion

In this paper, we have proposed a new criterion of
optimization of the simple multipole coefficients used in
the modified Green’s function for the elastic
two-dimensional case. To that end, we have based on the
minimization of the norm of the modified integral
operator. Some interesting results for the special circular
case have been shown.
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