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Abstract: The security of many public-key cryptosystems, such as RSA,is based on the difficulty of factoring a composite integer.
Until now, there is no known polynomial time algorithm to factor any composite integer with classical computers. In thispaper, we
study factoringn whenn= pq is a product of two primesp andq satisfying thatp≡ lk1 mod 2θ1 andq≡ lk2 mod 2θ2 for some positive

integersθ1,θ2,k1,k2≤ logn andl . We show thatn can be factored in time polynomial in logn if l < 2θ and either| p−lk1

2θ1
|| q−lk2

2θ2
|< lk or

2θ ′ ≥ n1/4, whereθ = min{θ1,θ2}, θ ′ = max{θ1,θ2} andk = min{k1,k2}. We also show that the result of Steinfeld and Zheng [21]
when the two primesp andq share least significant bits is a special case of our results.Our results point out the warring for cryptographic
designers to be careful when generating primes for the RSA modulus
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1 Introduction

The integer factorization problem is to find a nontrivial
factor p of a given composite integern. It has received a
lot of attention among mathematicians and computer
scientists for the following reasons [1][15]:

1.It is one of fundamental problems in mathematics, in
particular in Number Theory.

2.Its theoretical complexity is unknown. Its decision
version : “has N a factor less than M?”; is known to
belong to both NP and coNP [2]. From quantum
complexity theoretic point of view, Shor [17] showed
that integer factorization problem is in BQP (bounded
error quantum polynomial time).

3.The security of many public-key cryptosystems and
protocols is based on the difficulty of factoring an
integer. Among them, the RSA cryptosystem [16]. It
was invented by Rivest, Shamir and Adleman in 1978
and is currently the most widely known and widely
used public key cryptosystem.
In RSA, we choose randomly two large distinct
primesp andq of the same bit-size withp> q. Then
we computen = pq andφ(n) = (p− 1)(q− 1). The
numbern is called the modulus andφ(n) is called
Euler’s totient function. Then we choose an integere

such that 1< e < φ(n), and gcd(e,φ(n)) = 1. We
calculate the multiplicative inversed of e in Zφ(n),
i.e., ed ≡ 1 modφ(n). The integere is called the
public key exponent, while the integerd is called the
private key exponent. The integersp,q and φ(n)
should be secrete or destroyed.
To encrypt a messagem∈ Z⋆

n one computesc ≡ me

modn using the public key(n,e). To recover the
messagem, one computescd modn using the private
keyd.
The security of RSA is based mainly on factoring the
modulusn. If someone factorn, then he/she will know
p andqand can computeφ(n) and sod. In other words,
if a fast factoring algorithm were invented, then RSA
and many public-key cryptosystems would fall apart.

There are many factoring algorithms in literatures.
They can be classified into two main types. The first one
is calledspecial-purpose factoringalgorithms; they work
fast on a positive integern with factors that have some,
special, properties. The running time of this type of
factoring algorithms mainly depends on the size of the
factors which they find. Table1 shows examples of
special-purpose factoring algorithms and their complexity
times assuming thatp ≤

√

(n). The other type of
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factoring algorithms is called general-purpose factoring
algorithms; they work on any positive integern. The
running time of this type of factoring algorithms depends
mainly on the size ofn. Table 2 shows examples of
general-purpose factoring algorithms and their
complexity times.

In general, to factor a positive integern, we first apply
special-purpose factoring algorithms. If they fail to find a
factor of n, then we apply general-purpose factoring
algorithms.

Table 1: Special purpose factoring algorithms [24][25]
Factorization Algorithm Complexity Time

Trial division O(p(logn)2)
Pollard’sρ-method O(p1/2(logn)2)
Pollard’s(P−1)-method O(BlogB(logn)2)

wherep is B- smooth
Lenstra’s Elliptic Curve Method O(exp(c

√
logplog logp)(logn)2), c≈ 2

Table 2: General purpose factoring algorithms [15][13][25]
Factorization Algorithm Complexity Time

Lehman’s method O(n1/3+ε )
Shanks’ Square Form Factorization methodO(n1/4)
Shanks’ Class Group method O(n1/5+ε )
Continued Fraction method O(exp(c

√
lognlog logn)),

c=
√

2≈ 1.41421
Multiple Polynomial Quadratic Sieve O(exp(c

√
lognlog logn)),

c= 3
2
√

2
≈ 1.0606

General Number Field Sieve O(exp(c 3√logn 3
√

(loglogn)2)),
c= ( 64

9 )1/3

Special Number Field Sieve O(exp(c 3√logn 3
√

(loglogn)2)),
c= ( 32

9 )1/3

Let (btbt−1...b1)2 with bi ∈ {0,1}, be the binary
representation of a positive integerx. Throughout this
paper, we use the following notations:

–α-MSB(x) to refer tobtbt−1...bα . If α = ⌊t/2⌋+1,we
simply writeMSB(x).

–α-LSB(x) to refer to bα ...b2b1. If α = ⌈t/2⌉, we
simply writeLSB(x).

In literature, there is a set of algorithms in special
factoring algorithms class that concerns to factorn = pq
whenα-LSB(p) (similarly for α-MSB(p) ) satisfy some
properties. Mainly these properties come from (1) a
special way of selecting the primesp and q, i.e., they
satisfy special relations, or (2) obtaining a part of the bits
of one of the primes by performing a so-called
side-channel attack. For examples:

1.When we knowα-MSB(p). Coppersmith [5] showed
that n = pq can be factored in polynomial time in

logn if we have an approximationp0 of p such that
|p − p0| < n1/4. That’s means we have
α-MSB(p),α ≥ log p

2 = logn
4 . This result is improved

by Nassr andet al. [14] when the public exponente is
full sized.

2.When we knowα-LSB(p). Boneh andet al. [3] (also
in [11]) showed thatn = pq can be factored in
polynomial time in logn given that p0 = p modr,
and r ≥ n1/4. For example, ifr = 2α ,α ≥ logn

4 , then
p0 is α-LSB(p).

3.When MSB(p) = MSB(q). De Weger [23] noted that
Fermat’s factoring algorithm [19] takes timeO(1)
when the difference between the two primes
p− q < n1/4. Han and Xu [8] slightly improved this
result to |ip − jq| < n1/4 for two expected small
integersi, and j.

4.When LSB(p) = LSB(q). Steinfeld and Zheng [21]
showed thatn= pqcan be factored in polynomial time
in logn if p andq have exactlyα equal least significant
bits, whereα ≥ logn

4 . Sunet al. [22] slightly improved

the boundα to α ≥ logn
4 − 7

2.

In this paper, we are interesting to study the
factorization of n when α1-LSB(p) and α2-LSB(q)
satisfy thatα1-LSB(p) = lk1 and α2-LSB(q) = lk2 for
some some positive integersl ,k1,k2. In case ofk1 = k2,
then we get the result of Steinfeld and Zheng [21], i.e.,
the two primes share the least significant bits.

This paper is organized as follows. In Section2, we
review some facts used in our results The proposed
factoring method with some examples are presented in
Section3. Finally, Section4 includes the conclusion.

2 Preliminaries

In this section, we mention two results needed in this
paper. The first one is a variant of Coppersmith’s result
[5] on integer factorization when we know an
approximationp0 of p such that|p− p0| ≤ n1/4, where
n = pq is a product of two primesp > q. The second
result is related to solvingx2 ≡ a modm for some
integersa, andm.

2.1 Factoring with Partial information of prime
factors

The first result that we need states thatn can be factored in
polynomial time when the least-significant bits are given
as a remainder modulo a positive integerm.

Theorem 1.([3][ 11]) Let n= pq, where p and q are of the
same bit-size with p> q. Suppose that we know p0 and m
satisfying p0 = p modm and m≥ n1/4. Then we can find
the factorization of n in time polynomial inlogn.
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2.2 Square-Roots Modulo a power of 2

The second result that we need in the paper is finding
square roots modulo a power of 2.

Theorem 2.[20]

1.Let a≡ 1 mod 8and k≥ 3. Then there are exactly
four solutions in Z2k to the congruence x2≡ a mod 2k.

These solutions are of the form x= ±s+ b.2k−1 with
b ∈ {0,1} and s is any solution to x2 ≡ a mod 2k−1.
Furthermore, there exists an algorithm that, given a
and k, computes these four solutions in time O(k2) bit
operations.

2.The set of solutions in Z2k to the modular equation x2≡
c mod 2k is summarized as follows. Let c= 2uv where
v is odd.
(a)If k ≤ u, there are 2⌊k/2⌋ solutions x≡ 0

mod 2⌈k/2⌉.
(b)If k > u, there are no solutions if u is odd.

Otherwise, if u is even, there are three subcases

–If k = u+ 1, there are 2u/2 solutions x≡ 2u/2

mod 2u/2+1.
–If k = u+ 2, there are2.2u/2 solutions x≡ ±2u/2

mod 2u/2+2 if v≡ 1 mod 4and none otherwise.
–If k ≥ u+3, there are4.2u/2 solutions of the form
x ≡ 2u/2(±s + b.2k−u−1) mod 2k−u/2 with
b ∈ {0,1} and s is any solution to s2 ≡ v
mod 2k−u if v≡ 1 mod 8and no solutions if v6= 1
mod 8.

Theorem2 can be summarized in Algorithm1.

Algorithm 1

Input:c (odd), k.
Output: a set S= {v : v2 ≡ c mod 2k}.

S← empty
if c mod 86= 1 then return S
if k = 1 then return S←{1}
if k = 2 then return S←{1,3}
v1← 1,v2← 3,v3← 5,v4← 7
m← 8
for i = 4 to k do

for j = 1 to 4 do

if
v2

j−c
m mod 2= 1 then vj ← v j +m/2

m← 2m
return S← {v1,v2,v3,v4}

3 Factoring n

In this section, we study the factorization ofn= pq when
the primes p and q satisfy the following: p ≡ lk1

mod 2θ1, q ≡ lk2 mod 2θ2, for some integers
θ1,θ2,k1,k2, l . This study extends Steinfeld and Zheng
method [21] to factorn whenLSB(p) = LSB(q).

Theorem 3.Let n= pq be a product of two primes p and
q. Suppose that there are four positive integersθ1,θ2,k1
and k2 less than or equal tologn and satisfying p≡ lk1

mod 2θ1 and q≡ lk2 mod 2θ2 for some unknown positive

integer l< 2θ whereθ = min{θ1,θ2}. If | p−lk1

2θ1
||q−lk2

2θ2
| ≤

lk, k= min{k1,k2}, then we can find l to factor n in time
polynomial inlogn.

Proof.The proof consists of two steps:

1.We show thatl can be found in polynomial time.
2.We show thatn can be factored in time polynomial in

logn.

Now, we prove the first step.
Since p ≡ lk1 mod 2θ1, q ≡ lk2 mod 2θ2, and
θ = min{θ1,θ2}, we havep ≡ lk1 mod 2θ and q ≡ lk2

mod 2θ . Thus,

n≡ lk1+k2 mod 2θ .

Therefore, l is one of the solutions to the modular
equation xk1+k2 ≡ n mod 2θ . The integer l can be
determined as follows.

Case 1:If k1 + k2 is odd, thenl is unique and can be
computed as follows:

l = nt mod 2θ , wheret = (k1+ k2)
−1 mod 2θ−1

Case 2:Ifk1 + k2 is even, thenk1 + k2 can be written as
k1 + k2 = 2ir, where i ≥ 1, and r is odd. Thus, the
solutions of the modular equationxk1+k2 ≡ n mod 2θ

can be obtained by computing the square rootsi-times
for b, where

b≡ na mod 2θ ,

a= r−1 mod 2θ−1.

Note thatx2i ≡ b mod 2θ . By Theorem2, there are
four roots can be computed in polynomial time in logn
for each square root computation. Thus, in total, there
are 4i roots of the modular equation. Hence, we can
find l in polynomial time in logn since 4i < (k1+ k2)

2

which is bounded by a polynomial time in logn.

Therefore, findingl takes polynomial time in logn.
Now, we prove the second step, i.e., givenl , n can be

factored in polynomial time in logn.
Sincep≡ lk1 mod 2θ1, then there is an integerλp satisfies

p= 2θ1λp+ lk1 (1)

Similarly, sinceq≡ lk2 mod 2θ2, then there is an integer
λq satisfies

q= 2θ2λq+ lk2 (2)

Using Eq.(1) and (2), we have

(p+q)− (lk1 + lk2) = 2θ1λp+2θ2λq (3)
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and
(p−q)− (lk1− lk2) = 2θ1λp−2θ2λq (4)

By subtracting the squaring of Eqs.(3) and (4), we get

4n+4lk1+k2−4(plk2 +qlk1) = 2θ1+θ2+2λpλq

and so

plk2 +qlk1 = n+ lk1+k2−2θ1+θ2λpλq (5)

Now seta= plk2 +qlk1. Thus

plk2−qlk1 =
√

a2−4nlk1+k2.

It follows that

2plk2 = a+
√

a2−4nlk1+k2.

Therefore, the computation of
gcd(a +

√
a2−4nlk1+k2,n) = gcd(2plk2,n) returns a

non-trivial divisor,p, of n. The factorization ofn takes a
polynomial time in logn since

1. l is found in polynomial time in logn.
2. λpλq can be computed in polynomial time in logn since

by Eqs.(1) and (2) and the assumption, we have

|λp||λq|= |
p− lk1

2θ1
||q− lk2

2θ2
| ≤ lk

also, we have

λpλq=















1, if l = 1;
2−(θ1+θ2)n modlk, if λp andλq have

the same sign;
(2−(θ1+θ2)n modlk)− lk, otherwise.

(6)
Note that, from Eqs.(1) and (2), we have

n≡ 2θ1+θ2λpλq modlk

3. computinglk1+k2 is in polynomial time in logn since
l < 2θ andθ ,k1,k2≤ logn.

Remark. 1.The integerl should be odd; otherwisep and
q are not primes sinceθ1,θ2 ≥ 1

2.To determine a set of solutions toxt ≡ c mod 2k, one
can use the following algorithm.

Algorithm 2

Input: c(odd), t,k.
Output: a set S= {v : vt ≡ c mod 2k}.

S← empty
if t is odd then

r← t−1 mod 2k−1

v← cr mod 2k

return S←{v}
if c mod 86= 1 then return S

compute s,u where t= 2us, s is odd
r ← s−1 mod 2k−1

c0← cr mod 2k

set S←√c0 mod 2k (Algorithm1)
for j = 1 to u−1 do

for every v∈ S define a set Sv←
√

v mod 2k.
S←⋃

vSv
return S.

3.We haven is odd, due to Theorem2, if n 6= 1 mod 8,
thenk1+ k2 cannot be even.

4.It is not necessary that the prime factorsp andq have
the same bit-size .

Proposition 1.Suppose that we have the same assumptions
as in Theorem3 but k1 = k2 = 0. Then n can be factored
in polynomial time inlogn.

Proof.Sincek1 = k2 = 0 and |λp||λq| = | p−lk1

2θ1
||q−lk2

2θ2
| ≤

lk = 1, thenλp = λq = 1. Thus p, and q have the form
p= 2θ1 +1, q= 2θ2 +1. Therefore,p, andq can be easily
computed in polynomial time sinceθ1 andθ2 are known.

Proposition 2.Suppose that we have the same assumptions
as in Theorem3 but k1 = 0 and k2 6= 0 (or k2 = 0 and
k1 6= 0). Then n can be factored in polynomial time inlogn.

Proof.Suppose thatk1 =0, andk2 6= 0 (similarly fork1 6= 0,
k2 = 0). Then we have either|λp||λq|= 0 or |λp||λq|= 1.

Case1:|λp||λq| = 0. Since p, andq are two primes, then
we haveλp 6= 0 (otherwise we getp = 1 which is a
contradiction), and soλq = 0. This implies that
p = λp2θ1 + 1, and q = l . Since l < 2θ ≤ 2θ1, and
n= pq= lλp2θ1 + l , thenq can be directly computed
from n mod 2θ1 = l .

Case 2:|λp||λq|= 1. Sincep is prime, andk1 = 0 we have
λp = 1, and sop= 2θ1 +1. Therefore,p can be easily
computed sinceθ1 is known.

In both cases,ncan be factored in polynomial time in logn.

Example: Using NTL [18], we give an example for
Theorem3. We use the same symbols as in the theorem.
Let n= pqbe 1024-bits,
n= 1567727690529475464593315128458238121189446932957138961996273\

8473005656832699342267722370814161978050156563599629284579518\
2190297484702220060989004151405452194801462542294392500699908\
2157449079433751851733036982265355062485300851975033210006530\
8137806494728404783991033423157610105156954758450466558120152\
1281.

The parametersk1 = 87,k2 = 83,θ1 = 80,θ2 = 70. Since
k1+k2 = 2×85, the modular equationlk1+k2 ≡ n mod 2θ

has the following four solutions in 2θ :
1. 65
2. 590295810358705651647
3. 1180591620717411303359
4. 590295810358705651777

Takel = 65. By Eq.(6), l 6= 1, there are two candidates for
λpλq
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1. 898527611039292061965791483095663564517177094.

2. -2963525041637153507699023192492129732816063906001979180198\
50554393784568034288655837530730589083715345557304860993580\
2609150280947822460156900570713531.

Let

λpλq = 898527611039292061965791483095663564517177094.

Then
a= 3135455381058950929186630256916476242378893865914277923992547\

6946011313665398684535444741628323956100313127192727781429638\
9632764638080545181269875362753674969926489790260994218420700\
6908425631507953698898466989359644830416515412891472114083434\
8180068660433586255728739822234985012983088381588459014892578\
1250.

and soa+
√

a2−4nlk1+k2 is
5882961654924967604893904353314715990177113584954889394207416\
6709494560258896682116197257107461067988024397625736877359729\
0039062500000000000000000000000000000000000000000000000000000\
00000000000000000.

Computing gcd(a+
√

a2−4nlk1+k2,n) returns the prime
factorq

q= 2963525041637153507699023192492129732816063906001979180198505\
5439378456803428865583753073058908371534555739483108519185189\
06923924673804900657572398273.

Therefore, the other prime factor,p, of n is

p= 5290077419637421333336987587547982331184975076207657960353094\
8025255506547670739371098219977217624962402904691215171251748\
168964828291628661872502861804725697.

Note thatp≡ lk1 mod 2θ1 andq≡ lk2 mod 2θ2 ♦

We summarize the results of Theorem3 and
Propositions1 and 2 in Algorithm 3. Given n with
unknown prime factors, and four parametersθ1,θ2,k1,k2,
the algorithm returns the prime factorp of n if these
parameters satisfy the conditions of Theorem3,
Proposition1 or Proposition2. Otherwise it returns zero.

Algorithm 3

Input: n,θ1,θ2,k1,k2
Output: a prime factor p of n (success) or 0 (failure).

if k1 = k2 = 0 then
if 2θ1 +1 divides n then return p= 2θ1 +1 (success)
else return 0 (failure)

else if k1 = 0 and k2 6= 0 then
if n mod 2θ1 divides n then return p= n mod 2θ1 (success)
else if2θ1 +1 divides n then return p= 2θ1 +1 (success)
else return 0 (failure)

else if k1 6= 0 and k2 = 0 then
if n mod 2θ2 divides n then return p= n mod 2θ2 (success)
else if2θ2 +1 divides n then return p= 2θ2 +1 (success)
else return 0 (failure)

θ ←min{θ1,θ2}
k←min{k1,k2}
a set S← k1+k2

√
n mod 2θ (Using Algorithm2.)

for every l∈ S do
m← lk

if l=1 then λ ← 1
elseλ ← 2−(θ1+θ2)n modm
for i=1 to 2 do

a← n+ lk1+k2−2θ1+θ2λ
if a2 > 4nlk1+k2 then

b←
√

a2−4nlk1+k2

p← gcd(n,a+b)
if p 6= 1 and p6= n then return p (success)

λ ← λ −m
return 0 (failure)

In order to speed up the attack (Algorithm3), one can
skip somel ’s that cannot lead to a prime factorization.
The following result determines a bound forl .

Proposition 3.Suppose that we have the same assumption
as in Theorem3. A necessary condition to find l that lead
to a prime factorization is

max{k1,k2} logl ≤max{θ1+θ2+(k+1) logl , logp+ logl}.

Proof.Let k′ =max{k1,k2}. Since we have eitherlk
′−1 > p

or lk
′−1≤ p.

If lk
′−1 > p, then

lk
′−1

2θ1+θ2
<

lk
′−1(l −1)
2θ1+θ2

=
lk
′ − lk

′−1

2θ1

1
2θ2

< | p− lk1

2θ1
||q− lk2

2θ2
|< lk.

Thus,k′ logl < θ1+θ2+(k+1) logl .
If lk

′−1≤ p, then

k′ logl ≤ logp+ logl .

Therefore,

k′ logl ≤max{θ1+θ2+(k+1) logl , logp+ logl}.
Remark. 1.In general, the value of logp is unknown. Its

bound is logn1/2 < logp < logn (or
1< logq< logn1/2). But in RSA cryptosystem,n is a
product of two primes of the same bit-size. Thus,
logp= logn

2 .

2.In practice, it is easy to check that whetherlk
′−1 = p

(in RSA, l = p) by dividing n by l before going to
determine the correctl .

In the following theorem, we study a case similar to
Theorem3 but n is a product of two primes of the same
bit-size (as in RSA) and we replace the condition

| p−lk1

2θ1
||q−lk2

2θ2
|< lk with 2θ ′ ≥ n1/4, θ ′ = max{θ1,θ2}.

Theorem 4.Let n= pq be a product of two primes p and
q of the same bit-size with p> q. Suppose that there are
four positive integersθ1,θ2,k1 and k2 less than or equal
to logn and satisfying p≡ lk1 mod 2θ1 and q≡ lk2

mod 2θ2 for some unknown positive integer l< 2θ where
θ = min{θ1,θ2}. If 2θ ′ ≥ n1/4, θ ′ = max{θ1,θ2}, then
we can find l to factor n in time polynomial inlogn.
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Proof.The proof of the first part of the theorem, i.e., finding
l , is the same as in Theorem3.

Now we show thatl can be used to factorn in time
polynomial in logn.
We have eitherθ ′ = θ1 or θ ′ = θ2.

Case 1:θ ′ = θ1. We havep≡ lk1 mod 2θ ′ and 2θ
′ ≥ n1/4.

Therefore, we can apply Theorem1 by taking

p0 = lk1 mod 2θ ′

andm= 2θ ′ ≥ n1/4 to factorn in time polynomial in
logn.

Case 2:θ ′ = θ2. We have q ≡ lk2 mod 2θ ′ , and so,
p≡ nl−k2 mod 2θ ′ and 2θ

′ ≥ n1/4. Therefore, we can
apply Theorem1 by taking

p0 = nl−k2 mod 2θ ′

andm= 2θ ′ ≥ n1/4 to factorn in time polynomial in
logn.

Example: Using NTL [18], we give an example for
Theorem4. We use the same symbols as in the theorem.
Let n= pqbe 1024-bits,
n= 1314593070978057234392159450005339380862008554202222803551122\

9601450930582535189684113824182982945655478574879276932141846\
3894820913167012516035218668368716534516522624183155148958768\
8856215617365045505631932444897766092772422045071340919415561\
9390469640589491346548588064097885053401836186308668732959070\
7371.

The parametersk1 = 7,k2 = 4, θ1 = 270,θ2 = 65. Since
k1 + k2 = 11, the modular equationlk1+k2 ≡ n mod 2θ

has exactly one solutionl = 4494515958772142739. By
taking

p0 = lk1 mod 2θ1 = 44945159587721427397 mod 2270

m= 2θ1 = 2270> n1/4

By using Theorem1, we get
p= 1158361683689280660182536292485488975550382241951107177632174\

3018809828986043788856498670259547708549666353475147515382884\
261430972515524760220723296410619

q= 1134872716776329538646715142653894638967505025453806813043049\
4857726792580703282951027388963453337189960553239804579712433\
190230683153925428649144837352209

♦

In the following corollary, we show that the result of
Steinfeld and Zheng [21] is a special case of Theorem4

Corollary 1.Let n= pq be a product of two large primes
where p and q are of the same bit-size. If
LSB(p) = LSB(q), then n can be factored in time
polynomial inlogn.

Proof.Let l = LSB(p) = LSB(q). Then we can writep =
2θ ph+ l andq= 2θ qh+ l whereθ is the bit-size ofl . Thus,
0< l < 2θ and 2θ ≥ n1/4. Therefore, we apply Theorem4
by takingθ1 = θ2 = θ andk1 = k2 = 1 to factorn in time
polynomial in logn.

Corollary 2.Let n= pq be the RSA modulus, where p and
q are two large primes of the same bit-size. Suppose that
p≡ lk1 mod 2θ1 and q≡ lk2 mod 2θ2 for some positive
integers k1,k2,θ1,θ2≤ logn and l< 2θ , θ = min{θ1,θ2}.
Then n can be factorized in time polynomial inlogn in the
following cases:

1.| p−lk1

2θ1
||q−lk2

2θ2
| ≤ lk, k= min{k1,k2},

2.2θ ′ ≥ n1/4, θ ′ = max{θ1,θ2},

Proof.The proof comes directly from Theorems3 and4

4 Conclusion

In this work, we extended the attack of Steinfeld and
Zheng [21] on RSA when the two primesp andq have
equal least significant bits. We have studied factoringn in
polynomial time in logn when the least significant bits of
p and q can be written as a power (not necessarily the
same) of a positive integerl modulo a power (not
necessarily the same) of 2.
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