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Abstract: The security of many public-key cryptosystems, such as RSBased on the difficulty of factoring a composite integer.
Until now, there is no known polynomial time algorithm to facany composite integer with classical computers. In plaiper, we
study factoringt whenn = pqis a product of two primep andq satisfying thap=1 mod Z: andg=1% mod 2 for some positive

gl

integersdy, B2, ki, ko < logn andl. We show thah can be factored in time polynomial in logf | < 28 and eithet p_l [ =% | < IKor

201

29" > nl/4 where6 = min{61,6,}, 6/ = max{61, 6>} andk = min{ky, ko }. We also show that the result of Steinfeld and Zhe2dj |
when the two primep andq share least significant bits is a special case of our re€ltsresults point out the warring for cryptographic
designers to be careful when generating primes for the RSduine

Keywords: Factoring Problem, RSA, Coppersmith’s method, square heast significant bits

1 Introduction such that 1< e < @(n), and gcde, @(n)) = 1. We
calculate the multiplicative inverse of e in Zy),
The integer factorization problem is to find a nontrivial i.e., ed=1 modgp(n). The integere is called the
factor p of a given composite integer. It has received a public key exponent, while the integdris called the
lot of attention among mathematicians and computer private key exponent. The integersq and @(n)
scientists for the following reason$|[15]: should be secrete or destroyed.
1.1t is one of fundamental problems in mathematics, in 10 encrypt a message € Z;, one computes = n°
particular in Number Theory. modn using the public key(n,e). To recover the

2.Its theoretical complexity is unknown. Its decision ~ Messagen, one computes® modn using the private
version : “has N a factor less than M?”; is known to keyd.

belong to both NP and coNPZ]l From quantum The security of RSA is based mainly on factoring the
that integer factorization problem is in BQP (bounded ~ Pandgand can compute(n) and sad. In other words,
error quantum polynomial time). if a fast factoring algorithm were invented, then RSA

3.The security of many public-key cryptosystems and and many public-key cryptosystems would fall apart.
protocols is based on the difficulty of factoring an
integer. Among them, the RSA cryptosystehé][ It There are many factoring algorithms in literatures.
was invented by Rivest, Shamir and Adleman in 1978They can be .classified into two main types. The first one
and is currently the most widely known and widely is calledspecial-purpose factoringlgorithms; they work
used public key cryptosystem. fast on a positive integam with factors that have some,
In RSA, we choose randomly two large distinct special, properties. The running time of this type of
primesp andq of the same bit-size witlp > . Then  factoring algorithms mainly depends on the size of the
we computen = pqand@(n) = (p—1)(q—1). The  factors which they find. Tablel shows examples of
numbern is called the modulus ang(n) is called  special-purpose factoring algorithms and their compyexit
Euler’s totient function. Then we choose an integer times assuming thatp < \f(n). The other type of

* Corresponding author e-mafi:m.bahig@gmail.com

(@© 2017 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/110130

244

N SS ¥

H. M. Bahig et al.: Factoring RSA modulus with primes...

factoring algorithms is called general-purpose factoring
algorithms; they work on any positive integer The
running time of this type of factoring algorithms depends
mainly on the size ofn. Table 2 shows examples of
general-purpose  factoring algorithms and their
complexity times.

In general, to factor a positive integerwe first apply
special-purpose factoring algorithms. If they fail to find a
factor of n, then we apply general-purpose factoring
algorithms.

Table 1: Special purpose factoring algorithn4][ 25]
Factorization Algorithm Complexity Time

Trial division O(p(logn)?)
Pollard’sp-method O(p*?(logn)?)
Pollard’s(P — 1)-method O(BlogB(logn)?)

wherep is B- smooth

O(exp(cy/fog ploglogp) (logn)?), ¢ ~ 2

Lenstra’s Elliptic Curve Method

Table 2: General purpose factoring algorithnis][ 13][ 25]

Factorization Algorithm Complexity Time
Lehman's method o(n/3+¢)
Shanks’ Square Form Factorization methpdO(n'/4)
Shanks’ Class Group method O(nt/5+¢)
Continued Fraction method O(exp(cy/Tognloglogn)),
c=+v2~141421
Multiple Polynomial Quadratic Sieve O(exp(c\/ ognloglogn)
c= 5> ~ 1.0606
General Number Field Sieve O exp(c\/og 3/(loglogn)?)
Special Number Field Sieve O exp(c\/ og n3/(loglogn)?)
c=(¥%

Let (bibi_1...b1)2 with b € {0,1}, be the binary
representation of a positive integgr Throughout this
paper, we use the following notations:

—a-MSB(x) to refer tobby_1...bg. If o = [t/2] +1, we
simply write MSB(x).
—a-LSB(x) to refer tobg...boby. If a = [t/2], we
simply write LSB(x).

In literature, there is a set of algorithms in special
factoring algorithms class that concerns to fagtet pq
whena-LSB(p) (similarly for a-MSB(p) ) satisfy some
properties. Mainly these properties come from (1) a
special way of selecting the primgsand q, i.e., they
satisfy special relations, or (2) obtaining a part of the bit
of one of the primes by performing a so-called
side-channel attack. For examples:

1.When we knowa-MSB(p). Coppersmith$] showed
that n = pq can be factored in polynomial time in

logn if we have an approximatiopg of p such that
lp — po| < nY4  Thats means we have
a-MSB(p),a > "’%’ = 19" Thjs result is improved
by Nassr anckt al.[14] when the public exponemtis
full sized.

2.When we knowa-LSB(p). Boneh ancet al. [3] (also
in [11]) showed thatn = pg can be factored in
polynomial time in log given thatpp = p modr,
andr > n'/4. For example, ifr =29, a > 2" then
Po is a-LSB(p).

3.When MSEp) = MSB(q). De Weger 23] noted that
Fermat's factoring algorithm 19 takes timeO(1)
when the difference between the two primes
p—q < nY4 Han and Xu §] slightly improved this
result to |ip — jg| < n%* for two expected small
integerd, andj.

4 When LSEp) = LSB(q). Steinfeld and Zheng 2[1]
showed thah = pgcan be factored in polynomial time
inlognif pandghave exacthya equal least significant
bits, wherea > '09” . Sunet al.[22] slightly improved

the boundx to a > logn _ 7

5-

In this paper, we are interesting to study the
factorization of n when o;-LSB(p) and a2-LSB(q)
satisfy thata;-LSB(p) = I and a»-LSB(q) = 12 for
some some positive integelky, ky. In case ofk; = ko,
then we get the result of Steinfeld and Zheng1][ i.e.,
the two primes share the least significant bits.

This paper is organized as follows. In Secti@nwe
review some facts used in our results The proposed
factoring method with some examples are presented in
Section3. Finally, Sectio includes the conclusion.

2 Preliminaries

In this section, we mention two results needed in this
paper. The first one is a variant of Coppersmith’s result
[5] on integer factorization when we know an
approximationpg of p such that|p — po| < n%/4, where

n = pqis a product of two prime$ > g. The second
result is related to solving@ = a modm for some
integersa, andm.

2.1 Factoring with Partial information of prime
factors

The first result that we need states thaan be factored in
polynomial time when the least-significant bits are given
as a remainder modulo a positive integer

Theorem 1([3][ 11]) Let n= pq, where p and q are of the
same bit-size with p- . Suppose that we knowgy pnd m
satisfying p = p modm and m> n'/4. Then we can find
the factorization of n in time polynomial lngn.
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2.2 Square-Roots Modulo a power of 2 Theorem 3Let n= pq be a product of two primes p and
g. Suppose that there are four positive integéys6,, ky

The second result that we need in the paper is findingand k less than or equal téogn and satisfying p= 1%

square roots modulo a power of 2. mod 1 and g= 12 mod 22 for some unknown positive
. . _1k _ 1k
Theorem 2.[20] integer | < 29 where® = min{6y, 65} If |25 |52 | <

IX, k = min{ky,ko}, then we can find | to factor n in time
lLleta=1 mod8and k> 3. Then there are exactly polynomial inlogn.

four solutions in Z to the congruence’=a mod .
These solutions are of the form=x+s+ b.2<" with ~ ProofThe proof consists of two steps:
b e {0,1} and s is any solution to’= a mod 1.
Furthermore, there exists an algorithm that, given a
and k computes these four solutions in timék€) bit

1.We show thak can be found in polynomial time.
2.We show thah can be factored in time polynomial in

operations. logn.
2.The set of solutions inZto the modular equatiorix= ' Now, we prove the first step.
¢ mod Xis summarized as follows. Letc2'vwhere ~ Since p = [ mod2:, q = I mod?2, and
vis odd. 6 = min{6;,6,}, we havep =1 mod? andq = I
@)If k < u, there are 212 solutions x= 0  mod 2. Thus,
mod 2%/21.

_ katk
(b)If k > u, there are no solutions if u is odd. n=1%e mod 2.

Otherwise, if u is even, there are three subcases . .
Therefore,| is one of the solutions to the modular

. k+k _ .
f k = u+ 1, there are2%/2 solutions x= 22 equation x¥atke = n mod 2. The integerl can be

mod 2/2+1 determined as follows.
—If k = u+ 2, there are2.2%/2 solutions x= +2%/2
mod 2/2*2if y=1 mod 4and none otherwise.  Case 1:Ifk; + k, is odd, thenl is unique and can be
—If k > u+ 3, there are4.2"/2 solutions of the form computed as follows:
X = 2%2(+s + b.2kU"1) mod 22 with
b € {0,1} and s is any solution to?s= v | =n' modZ?, wheret = (k;+k)™* mod 2!
mod 2 Uifv=1 mod 8and no solutions if v 1
mod 8 Case 2:Ifk; + ky is even, therk; + ko can be written as
. . ) ki + ko, = 2'r, wherei > 1, andr is odd. Thus, the
Theoren? can be summarized in Algorithth solutions of the modular equatiott 2 = n mod 2
Algorithm 1 can be obtained by computing the square rodises
for b, where
Input:c (odd), k b=n* mod?,
Output: a set S= {v:v2 =c mod &}. a=r-! modZ-!
S« empty . '
if c mod 8+ 1then return S Note thatx? =b mod 2. By Theorem2, there are
if k = 1 then return S— {1} four roots can be computed in polynomial time in iog
if k =2 then return S— {1,3} for each square root computation. Thus, in total, there
Vi¢=LVo <= 3,V34- 547 are 4 roots of the modular equation. Hence, we can
m«—8 find | in polynomial time in log since 4 < (kg + k»)?
fori=4tokdo which is bounded by a polynomial time in lag
forj=1to4 do

Ve B _ Therefore, findind takes polynomial time in log.
m: ZmT mod 2=1then y < vj +m/2 Now, we prove the second step, i.e., gilen can be
factored in polynomial time in log.
return S« {vi,V»,V3, V. . - . L
{v1,v2, Vs, Va} Sincep=1% mod 21, then there is an integ@y, satisfies

p=2%A,+1k (1)
3 Factoringn Similarly, sinceq = 12 mod 22, then there is an integer
) ) o Aq satisfies
In this section, we study the factorizationmmf pgwhen _ o8 |k )
the primesp and q satiszfg/ the following: p = I q9= q
mod2:, q = I mod22, for some integers Using Eq.Q)and @), we have
61,62,ky, ko, 1. This study extends Steinfeld and Zheng
method P1] to factorn whenLSB(p) = LSHq). (p+q) — (1% 1K) = 2012, 4 2%, (3)
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and compute su where t= 2Ys, s is odd
(p—aq) — (e —1%) = 2012, — 2%2) (4) r+s? modX?
By subtracting the squaring of Eq3)@nd @), we get Co ' mod %
: set S« ,/cg mod Z (Algorithm1)
Kitko ko Ki\ _ 01+6,+2 forj=1tou—1do
4n+4 A(pl™ +ql™) =2 ApAq for every ve S define a set,S— /v _mod X.
and so S S
return S.
p|k2_|_q|k1 _ n_|_|k1+k2_291+92)\p/\q (5)

‘ . 3.We haven is odd, due to Theorer®, if n£1 mod 8§
Now seta = pl*? + gl*t. Thus thenk; + k, cannot be even.

§ § 4.1t is not necessary that the prime factprandq have

ple —qgl"t = /a2 — 4anlkitke, the same bit-size .
It follows that Proposition 1.Suppose that we have the same assumptions
) as in TheorenB but k = ko = 0. Then n can be factored
2pl*? = a+ /a2 — 4nlkitke, in polynomial time iflogn.
: k
Therefore, the computation of PproofSincek; = k» = 0 and|Ap|[Aq| = |p;;fl ||q;6|22| <

geda + Va2 —4nlktk n) = ged2pl2,n) returns a

non-trivial divisor, p, of n. The factorization oh takes a
polynomial time in log since

1.1 is found in polynomial time in log.
2. ApAq can be computed in polynomial time in logince
by Egs.() and @) and the assumption, we have

p—Ik
|

q-l
[Apl[Ag| = | 56, | <
also, we have

1,
2-(@1+6)n  modlk,

if | =1;

if Ap andAq have
the same sign;
(2-(@+8%)n  modl¥) — I, otherwise.

)\p)\q:

(6)
Note that, from Eqgsi) and @), we have

n=2%4%),0, modI*

3. computingl®t™k2 is in polynomial time in log since
| < 29 and#,ky, ko < logn.

Remark. 1.The integet should be odd; otherwisp and
g are not primes sincé,, 6, > 1
2.To determine a set of solutionsxo=c mod X, one
can use the following algorithm.

Algorithm 2

Input: c(odd),t, k.
Output: a set S= {v:\ =c¢ mod &}.
S« empty
if t is odd then
r«t1 mod&1
v+ ¢ mod X
return S« {v}
ifc mod 8+# 1thenreturn S

IX =1, thenAp = Aq = 1. Thus p, andq have the form
p=2% 41 q=2%+1. Thereforep, andqcan be easily
computed in polynomial time sind® and6, are known.

Proposition 2. Suppose that we have the same assumptions
as in TheorenB but kg = 0 and k # 0 (or ko, = 0 and
ki £ 0). Then n can be factored in polynomial timdagn.

ProofSuppose thdt; =0, andk; # O (similarly fork; # 0,
ko = 0). Then we have eitheAp|[Ag| =0 or|Ap||Aq| = 1.

CaseljAp||Aq| = 0. Sincep, andq are two primes, then
we haveAp # 0 (otherwise we gep = 1 which is a
contradiction), and soA\q = 0. This implies that
p=2Ap2% +1 andq=1I. Sincel < 2% < 2% and
n=pq= I)\p291 +1, thenq can be directly computed
fromn mod 2L =1.

Case 2Ap||Aq| = 1. Sincepis prime, anck; = 0 we have
Ap=1,and sop= 2% 1 1. Therefore p can be easily
computed sincé; is known.

In both cases) can be factored in polynomial time in log

Example: Using NTL [18], we give an example for
Theorem3. We use the same symbols as in the theorem.
Letn= pqbe 1024-bits,
n= 15677276905294754645933151284582381211894469328961396273

84730056568326993422677223708141619780501565639286279518

21902974847022200609890041514054521948014625422583899908

21574490794337518517330369822653550624853008518750806530

81378064947284047839910334231576101051569547588568620152

1281
The parameterk; = 87,k, = 83,0, = 80,6, = 70. Since
ki + ko = 2 x 85, the modular equatioff: ™2 =n mod 2
has the following four solutions in%

1. 65

2. 590295810358705651647
3. 1180591620717411303359
4. 590295810358705651777

Takel = 65. By Eq.(6), | # 1, there are two candidates for
ApAq
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1. 898527611039292061965791483095663564517177094

2. -29635250416371535076990231924921297328160632080080198
505543937845680342886558375307305890837153455563948580
2609150280947822460156900570713531

Let

ApAq = 898527611039292061965791483095663564517177094

Then

a= 3135455381058950929186630256916476242378893865892299254Y
69460113136653986845354447416283239561003131271237229638
96327646380805451812698753627536749699264897902808820700
69084256315079536988984669893596448304165154128914083434
81800686604335862557287398222349850129830883819884892578
1250

and sca+ va2 — 4nlkitke js

58829616549249676048939043533147159901771135849328307416
67094945602588966821161972571074610679880243976287359729
00390625000000000000000000000000000000000000000000000009
00000000000000000

Computing gcgia+ va2 — 4nlkitke n) returns the prime

factorq
gq= 2963525041637153507699023192492129732816063906908979850%

54393784568034288655837530730589083715345557398833085189
06923924673804900657572398273

Therefore, the other prime factqg, of nis

p= 5290077419637421333336987587547982331184975076296635309%
802525550654767073937109821997721762496240290469712251748
168964828291628661872502861804725697

Note thatp = 1" mod 2» andq= 12 mod 22 o

We summarize the results of Theore® and
Propositions1 and 2 in Algorithm 3. Given n with
unknown prime factors, and four parametéys6,, kq, ko,
the algorithm returns the prime factqr of n if these
parameters satisfy the conditions of Theore8
Propositionl or Propositior2. Otherwise it returns zero.

Algorithm 3

Input: n, 6y, 62,kq, ko
Output: a prime factor p of n (success) or 0 (failure).
if k1 = ko = Othen
if 261 + 1 divides n then return p= 281 + 1 (success)
else return O (failure)
elseiflg =0and k # 0then

ifn mod 2 divides n then return p=n mod #: (success

else if2°1 + 1 divides n then return p- 22 + 1 (success)
else return O (failure)
elseifk # 0and k = 0then

if n mod 22 divides n then return p=n mod 22 (success

else if2% + 1 divides n then return p-= 2%2 + 1 (success)
else return O (failure)
6 <+ min{ 61,6}
k < min{ky, ko }
aset S— “t%/n mod Z (Using Algorithm2.)
for every le S do
m« IK

ifI=1thenA <1
elseA « 27 (B118)n modm
fori=1to 2 do
a«—n4lkitke _20i+6)
if a2 > 4nlkitke then
b VaZ_anlkike
p + gcd(n,a+b)
if p # 1and p# n then return p (success)
A<A-m
return O (failure)

In order to speed up the attack (Algorith8), one can
skip somel’s that cannot lead to a prime factorization.
The following result determines a bound for

Proposition 3.Suppose that we have the same assumption
as in Theoren8. A necessary condition to find | that lead
to a prime factorization is

max{ky, ko } logl <max{6,+ 6+ (k+1)logl,logp+logl}.

ProofLetk’ = max{ki, ko }. Since we have eithé¥ 1 > p
orl¥-1<p.
If 1K-1 > p, then

|k’7l |k/7l(| _1) B |k/_|k/71 1
2040, < 2016 20 26
p—l g-l
|W|| >0, | <I%

Thus,K logl < 61+ 6+ (k+1)logl.
If IX-1 < p, then

K'logl < logp+logl.
Therefore,
K'logl < max{6; + 6, + (k+1)logl,logp+logl}.

Remark. 1.In general, the value of Iqgis unknown. Its
bound is log/?2 < logp < logn (or
1 < logq < logn®2). But in RSA cryptosystemm is a
product of two primes of the same bit-size. Thus,
logp= 'c’%.

2.In practice, it is easy to check that whetitter® = p

(in RSA, | = p) by dividing n by | before going to
determine the corrett

In the following theorem, we study a case similar to
1I'heorem3 but n is a product of two primes of the same
bit-size (as in RSA) and we replace the condition

k k .
pz’e'll ||q;$22| < Ik with 2¢' > nY/4 0’ = max{ 6, 6,}.

)Theorem 4l et n= pq be a product of two primes p and
g of the same hit-size with p q. Suppose that there are
four positive integer®;, 6,,k; and k less than or equal
to logn and satisfying p= I* mod# and gq= I*
mod 22 for some unknown positive intege! 28 where
0 = min{6, ). If 26" > n'/4 6’ = max{6y, 6>}, then
we can find | to factor n in time polynomial iagn.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

248 NS 2 H. M. Bahig et al.: Factoring RSA modulus with primes...

ProofThe proof of the first part of the theorem, i.e., finding Corollary 2.Let n= pg be the RSA modulus, where p and

[, is the same as in Theore3n g are two large primes of the same bit-size. Suppose that

Now we show that can be used to factarin time  p=1% mod 2! and q= 12 mod 22 for some positive
polynomial in logn. integers k, ko, 61,6, <lognand < 29 6 = min{6y,6,}.
We have eithef’ = 6, or 6/ = 6,. Then n can be factorized in time polynomialdgn in the
Case 168/ — 6;. We havep= 1% mod# and @' >nt/4  following cases:

i ke ke .
Therefore, we can apply Theorehby taking 1] p26|11 I q2$22 < 1%, k= min{ka, ko},
po=1" modZ 229 > n'/4 6" = max{ 61, 6.},

andm = 29 > n'/4 to factorn in time polynomial in ~ Proof.The proof comes directly from Theorer@gnd4
logn.
Case 20’ = 6,. We haveq = I* mod?’, and so, _

p=nl—* mod? and Z > n'/4 Therefore, we can 4 Conclusion

apply Theoreni by taking
In this work, we extended the attack of Steinfeld and

po=nl"% mod? Zheng R1] on RSA when the two primep andq have

equal least significant bits. We have studied factoritig

andm = 29 > nl/4 to factorn in time polynomial in polynomial time in logy when the least significant bits of

logn. p andg can be written as a power (not necessarily the

. . same) of a positive integek modulo a power (not
Example: Using NTL [18], we give an example for neces?sarily thg sa{rlr\{e) éfzg ! power (

Theorem4. We use the same symbols as in the theorem.
Letn= pqbe 1024-bits,
n= 1314593070978057234392159450005339380862008554282325112%

96014509305825351896841138241829829456554785748992741848 R efe rences
38948209131670125160352186683687165345165226243 883558768

88562156173650455056319324448977660927724220450918415561 i i :
93904696405894913465485880640978850534018361868088859070 [1] E. Bach, Annual Reviews Comput. Sci., 119-127 (1990).
7371 [2] K. Bimpikis, and R. Jaiswal, A Technical Report Preselrte

the University of California, San Diego, 1-15 (2005).

Ihe Earamete;‘lﬁ =1, k2| =4,6.= ,lekzg’kzez_: 65 Slngge [3] D. Boneh, G. Durfee, Y. Frankel, Lecture Notes in Compute
1 + ko = 11 the modular equatio =n mod Sciencel514 2534 (1998).

has exactly one solutioh= 4494515958772142738Y 41 R. P. Brent, Lecture Notes in Computer Scien&85 1-22

taking (1999).

Po = Ikl mod fl _ 44945159587721427@9 mod 2270 [5] D. Coppersmith, Journal of Cryptology0(4) 223-260
(1997).

m= 2% = 2270 pl/4 [6] J. Faugere, R. Marinier, and G. Renault, Lecture Notes i

Computer Sciencé056 70-87 (2010).
[71Y. Filmus, Factorization Methods: Very Quick Overview
(2010), http://www.cs.toronto.edu/ yuvalf/Factoripatipdf.

By using Theoreni, we get

p= 11583616836892806601825362924854889755503822419511632174
3018809828986043788856498670259547708549666353A553332884

261430972515524760220723296410619 [8] L. Han, G. Xu, Asia-Pacific Conference on Information
Processing (APCIP 2009), 445-449 (2009).
q= 11348727167763295386467151426538946389675050258888043049 [9] H. W. Jr. Lenstra, Ann. Mathl26, 649-673 (1987).
485772679258070328295102738896345333718996055323P8012433 [10] A. K. Lenstra, H. W. Jr. Lenstra, The Development of the

190230683153925428649144837352209 Number Field Sieve, Springer—VerIag (1993)

o [11] A. May, New RSA vulnerabilities using lattics reduatio
methods, Ph.D. Dissertation. University of Paderborn.

In the following corollary, we show that the result of __Germany (2003).

Steinfeld and Zheng[l] is a special case of Theoren [12] A. May, M. Ritzenhofen, Lecture Notes in Computer
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