Appl. Math. Inf. Sci.11, No. 1, 229-234 (2017) %N =¥\ 229

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/110128

Green’s Function Iterative Method for Solving a Class of
Boundary Value Problems Arising in Heat Transfer

Marwan Abukhaled*

Department of Mathematics and Statistics, American Usityenf Sharjah, Sharjah, United Arab Emirates

Received: 24 Jul. 2015, Revised: 30 Nov. 2015, Accepted:r32(016
Published online: 1 Jan. 2017

Abstract: In this study, a new algorithm based on Green’s function figetht iterations is developed and implemented to solve
a class of nonlinear boundary value problems that arise an thensfer. The method will be employed to determine theieffcy of
convective straight fins with temperature dependent thiecoraluctivity. The main idea of this method is to find an ajpiate Green’s
function that will be incorporated into a linear integrakogtor. By applying the fixed point theorem, an iterativerfola for successive
approximations will be obtained. Effectiveness and aaguveere noted when approximate results obtained by the pezhbmethod
reveal significant agreement with existed exact solution#a approximate solutions obtained by other renownedhaukst
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1 Introduction developed a perturbation solution, while the variation
iteration method (VIM) was employed by S. Coskun M.
Atay [7]. Recently, in a letter published by S. Khuri and

Nonlinear differential equations are usually studied as, Sayfy [8], it was shown that, in many cases, using a

;nnaz;theerr]g?rtwlgzlri%od%sesef 22{|§E§L§hcznnorgeensae'er;‘ Siﬁ'efﬂg?ixed po!nt iterative. met_hod suc_h_a_ls Picard’s method for
such  as quaﬁtum mechanics, fluid dynamics gﬁccess!ve approximations of _|n|t|aI va_Iue problems of
electromagnetism population ’dynamics image’ﬁrst or h|ghe'r order, thg correction functional of the V!M

. . - ' can be obtained. In this paper, a Green’s function fixed
processing, chemical kinetics, and control theory. point iteration method is developed to solve the
However, it is almost impossible to find exact solution to underlying nonlinear boundary value problem (BVP)
nonlinear differential equations that model real world described above. The method begins by identifying the
applications. Fins are used in a large number Ofinear and nonlinear terms of the nonlinear BVP and then

applications to increase th.e rate of .heat transfer tha mploy the properties of Green’s function to construct the
extends from a surface to its convective. As such, the

design of fin surfaces is of great importance in the stud appropriate function that mimics the solution to the
9 great Impo . yhomogenous linear term of the equations subject to
of heat transfer J|. Determining fin efficiency of

convective straight fins with temperature dependen _homog_enous boundgry cqnditiong. An iFerative formula
thermal conductivity requires solving a nonlinear t'.s obta!ned by applying E|card’§ fixed point metho_d toa
boundary value problem, which under usual SettingIlnear integral operator in which the mtegrand is the
posses no exact solutior;s Researchers have appli oduct of th_e construqted Green'’s function and Fhe BVP.
several well-known numérical methods to obtain amples will be provided to (1) show the appllcab|.l|ty

) . A ... of the method (2) test the accuracy of the obtained
approximate or analytic solution in the form of infinite solution by the means of comparison, with exact

'F\)/IOOV;?Q E(]ar:ies ﬁgéh{fHl:]'ggrggﬁgga;onrza;m,ﬁ L)J(satr:gel’nf'solutions, if exists, and approximate solutions obtaingd b
PP PP ’ other well-established methods.

[3] employed the homotopy analysis method, C.
Arslanturk [] applied the Adomian decomposition
method, A. Joneidi et al.5] applied a differential
transformation method, A. Aziz and S. Enamul HW [
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2 Mathematical formulation of the problem

Let Qigeal represent the heat transfer rate of the entire
surface, which depends on the base temperadiuréhen

Consider a straight fin with a temperature-dependentne fin efficiency, denoteq, is defined as the ratio & to

thermal conductivity, arbitrary cross-sectional arka
perimeter P and length b is attached to
tip-insulated-base surface of temperatiigethat extends
into a fluid of temperaturé, (see Fig. 1)

B

Fig. 1: Geometry of a straight fin.

The one dimensional energy balance is given by

d dT
Aege (KMG ) -PAB-T) =0, (@
where T is the temperature, K(T) is the

temperature-dependent thermal conductivity of the fin

material, andh is the heat transfer coefficientK(T),

expressed as a linear function of the temperature, is given

by
K(T) :Ka(1+/\(T_Ta))a (2)

whereKj is the thermal conductivity at the ambient fluid

Qigear Therefore,

Q

1
~ Pb(Ty— Ta) :/o 8(0)dc.

n (7)

3 Green’s function fixed point iteration
method

Consider the second order nonlinear boundary value
problem

F(t,uu,u”)=f(t), a<t<b,
Bi[u] = au(a) + Bu'(a) = v, (8)
Bo[u] = au(b) + Bu'(b) = ys.

The proposed method begins by expressing equaidn (
the form

Lu-+Nu= f(t), )

whereL is a linear operator and is a nonlinear operator.
Assuming thatup(t) is the solution toLu = 0, we
construct the iterative solution t®)(using Picard’s fixed
point iteration in the form

Unta(t) :un(t)+/0tG(t,s)(Lu+ Nu—f(s))ds, (10)

whereG(t, s) is the Green'’s function satisfying

L[G(t,s)] =0o(t—5),
B1 G(t,S)] =0,
B2[G(t,5)] =0,

(11)

temperature of the fin andl is the parameter describing

the variation in thermal conductivity.

Let
CT-T. , x _ (hPp2\?
G_Tb_-l—a7 Z_E7 B—)\(Tb—Ta), w_<@> .

®3)

in which &(t — s) is the Dirac delta function, which can be
constructed using basic properties of Green'’s function. It
is to be mentioned that there is flexibility in choosing

so thatup can be found an@(t,s) can be constructed. We
shall apply this procedure to solvé)(

Substituting these dimensionless parameters into

equation {) gives the boundary value problem

d26 d2e do\?
e tPegnth(q) —ve-0 @
subject to
(1) =1,
6'(0) = 0. ®)

Using Newton’s law of cooling, the heat transfer rate
from the fin is determined by integrating the convection
heat loss from the surface, that is

b
Q= /o P(T — Ta)dx. 6)

d?6

F(¢,6,0',68") :3ed—52+

Letting
de\?
p(ge) - @
then, equationd) is expressed in the form

d%

A8l = g7

—y?0=-F(,6,0,08"). (13)

The general solution of equatiof3) is expressed in
the form

=6yt 6=6— /OlG(Z,s)F(s, 6.0'.6")ds, (14)
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where G(¢,s) is Green's function that satisfies the

equation

A[G(L,9)]=06({ —59),
G(L,9) =0, (15)
dG o o

W (Ov S)

3

In equation L4), 6, is solution to/A [6] = 0, subject to

boundary conditionss, that is

6h= Cle“”z + Cze‘”z.

Using 6,, the boundary conditions in1f), and the
properties of Green’s functioii({,s) can be found. As

Green’s function exhibits a singular behavior @t= s,
then it is natural to express it in the form

Cile ¥ +Ce¥if0< <s

G(sz) = {Cse—ll—’f _|_C4(:ﬂ’Z ifl>{>s ’ (16)

whereCy,C,,Cs,andCy are constants. From the boundary

condition given in 15), we obtain

—C1+C2 =0, (17)
Cze ¥ +Ce? =0. (18)

The continuity of Green’s function for all & { < 1,
thatisG({,s)|; s+ — G({,8)|;,s- = 0 implies that

Cie ws CzewS — Cge_ws + C4ews =0. (19)

Integrating (5) over the domairis™,s") yields

r {dd—;ze@,s)—w%s(z,s)] a2~ [ 625z

(20)
and using the jump condition at= ¢, we have
d n d _
&G(s ,S) — &G(s ,S) =1, (21)

or equivalently,
—PCze VS + YCse¥S + YCre Y5 — YCre¥S = 1. (22)

Solving the linear system1{)-(19 and @2) for
C1,Cy,C3 andC4 implies that

Cl = a(eiw(si:L) — el,U(Sfl)),

C=0Cy,
Co = a(e ¥-s+D) _ gh(-s+1)), (23)
C4=C3,
where
g (24)
C2¢(e VY +ed)’

Now consider the following linear integral operator

L8] = 6,+ /O lG(z,s) (0"(s)— y?6(s))ds.  (25)

Adding and subtracting=({,0,6’,68”) within the
integrand gives

L[] = 6h+ /Ole(z,s) { 0" (s) — Y?0(s)+ BO(s)8"(s)
+B (e’(s))z] ds

—/OlG(Z,s)F(Z,G,6/,6”)ds.

From equation14), we obtain
Liol =6+ [ 62,9 [ 0"(s) — Y?0(s) + BO(5)0"(9)
+B (9’(5))2} ds

Applying Picard’s fixed point iteration method on the
operatol, gives the iterative formula

Bhi1=6h+ /OlG(Z,s) [ 62(S) — W26n(S) + B6n ()6 (s)

+B (er;(s»?] ds.  (26)

4 Numerical experiments and discussion

In this section, we present examples that cover both the
constant and variable thermal conductivity cases. The
approximate solution obtained by the proposed method
(GFIM) will be compared with exact solution, if exists,
and approximate solutions obtained by the differential
transformation method (DTM) and the fourth order
Runge Kutta method (RK4) presented §j.[

Example 1.In equation 4), let B = 0 (constant thermal
conductivity). A comparison between the GFIM, the
DTM, and the exact results for the dimensionless
temperature 6 at various values of{ for the
thermo-geometric parameteafs= 0.5 is given in Table 1
and fory = 1 os given in Table 2.

Example 2.In equation 4), let B # 0 (variable thermal
conductivity). A comparison between the GFIM, the
DTM, and the RK4 method for the dimensionless
temperaturef at various values of for g = 0.4 and

Y = 1is givenin Table 3 and fo8 = 0.2 andyy = 0.5 is
given in Table 4.
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Table 1: Comparison between the GFIM, the DTM, and the exact resoiitthe casg8 = 0 andy = 0.5
{ Exact GFIM DTM [ GFIM Error DTM Error
0.0 08868188840 (3868188840 (3868188841 O x10 10
0.1 08879276385 B879276385 B879276383 O 21010
0.2 08912566747 B912566747 [B912566748 O k10710
0.3 08968143168 (3968143168 968143173 O % 10710
0.4 09046144618 (046144618 (046144623 O 51010
05 09146766141 146766141 ©146766135 O 610710
0.6 09270259345 270259345 270259345 O 0
0.7 09416933025 416933025 416933025 O 0
0.8 09587153943 ®587153943 M587153946 O %1010
0.9 09781347739 @781347739 M@781347735 O 410710
1.0 10000000000 DOO00O00000 999999999 O ¥ 10710
Table 2: Comparison between the GFIM, the DTM, and the exact resoiftthe casgs = 0 andy =1
{ Exact GFIM DTM [] GFIM Error DTM Error
0.0 06480542737 480542737 ®480542737 O 0
0.1 06512972462 ®512972462 ®512972462 O 0
0.2 06610586204 610586204 610586207 O 10710
0.3 06774360915 ®774360915 774360915 O 0
0.4 07005935707 (005935707 (005935709 O 210710
0.5 07307628258 (307628258 (¥307628258 O 0
0.6 07682458010 (682458010 (682458015 O 510710
0.7 08134176383 (B134176383 (8134176386 O %1010
0.8 08667304327 (B667304327 B667304332 O 510710
0.9 09287177566 287177566 287177570 O 410710
1.0 10000000000 DOOOOO000O DOOOOOOOOL O ¥ 10710
Table 3: Green'’s function iterative method solution for problem-(8) with 3 = 0.4 andy =1

{ GFIM DTM [5] RK4

0.0 07160464622 (160464622 (160464718

0.1 07188301611 (188301611 (188301796

0.2 07271884199 (271884199 (¥271884325

0.3 07411425954 (411425952 (411426043

0.4 07607278542 (607278540 (¥607278639

0.5 07859925455 (859925453 (7859925543

0.6 0.8169973499 (169973500 ®B169973564

0.7 0.8538142334 (8538142337 (8538142400

0.8 0.8965252354 (B965252359 (B965252366

0.9 09452211296 452211304 (®452211232

1.0 10000000000 (®999999996 DOOOOOOO0O

Table 4: Green'’s function iterative method solution for problem-(8) with 8 = 0.2 andy = 0.5

{ GFIM DTM [5] RK4 [5]

0.0 09034471796 (034471796 (034471816

0.1 09044037536 (9044037536 ®044037555

0.2 09072745703 (072745703 072745722

0.3 09120629117 120629117 ®120629135

0.4 09187742375 187742374 (®187742391

0.5 09274161701 274161700 274161715

0.6 09379984742 (379984741 (®379984755

0.7 09505330295 (M505330293 ®505330304

0.8 09650337980 650337981 ®650337986

0.9 09815167861 (815167860 ®815167865

1.0 10000000000 (®999999996 DOOOOOOO0OO
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It is noted from Tables 1 and 2 that the current method b g
gives the exact solution whereas the DTM leaves a 098 =015 A
maximum error up to & 1019, But in Example 2, where ossr ~ T PTTOH A
no exact solution exists, we notice from Tables 3 and 4, 004k A
that the approximations obtained by the proposed method L
highly agree with those obtained by other methods. > —

The proposed method was further employed for the 09 e
following studies: oz T

1. The variation in temperature along the fin surface in 086L - -7

the case of constant thermal conductivif/= 0). It T o s 0a ot 05 o7 o5 os

is noted from Fig. 2 that the dimensionless g

temperature increases as the thermo-geometric fin

parameter increases. Fig. 3: Variation in dimensionless temperature in the case of

variable thermal conductivity.
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Fig. 2: Variation in dimensionless temperature in the case ofFig. 4: Fin efficiency is plotted against the thermo-geometric fin
constant thermal conductivity. parameter for various values of thermal conductivity.

2. The variation in temperature along the fin surface in
the case of variable thermal conductivitg ¢ 0).  conductivity and to determine the fin efficiency over a
Fig. 3 shows a plot of the dimensionless temperaturegiven domain of the thermo-geometric fin parameter as
along the fin surface under the assumption that the théhe thermal conductivity parameter varies. Results
thermo-geometric parameter is fixegt & 0.5). Itis  obtained by this method were very convincing when
noted that temperature distribution increases ascompared to exact solutions and other numerical methods.
thermal conductivity increases.
3. Determining the fin efficiency. In Fig. 4, the fin
efficiency, given in equatiori7j, is plotted against the References
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