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Abstract: In this study, a new algorithm based on Green’s function fixedpoint iterations is developed and implemented to solve
a class of nonlinear boundary value problems that arise in heat transfer. The method will be employed to determine the efficiency of
convective straight fins with temperature dependent thermal conductivity. The main idea of this method is to find an appropriate Green’s
function that will be incorporated into a linear integral operator. By applying the fixed point theorem, an iterative formula for successive
approximations will be obtained. Effectiveness and accuracy were noted when approximate results obtained by the proposed method
reveal significant agreement with existed exact solutions and/or approximate solutions obtained by other renowned methods.
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1 Introduction

Nonlinear differential equations are usually studied as
mathematical models of physical phenomena in science
and engineering. These equations can be seen in areas
such as quantum mechanics, fluid dynamics,
electromagnetism, population dynamics, image
processing, chemical kinetics, and control theory.
However, it is almost impossible to find exact solution to
nonlinear differential equations that model real world
applications. Fins are used in a large number of
applications to increase the rate of heat transfer that
extends from a surface to its convective. As such, the
design of fin surfaces is of great importance in the study
of heat transfer [1]. Determining fin efficiency of
convective straight fins with temperature dependent
thermal conductivity requires solving a nonlinear
boundary value problem, which under usual setting
posses no exact solutions. Researchers have applied
several well-known numerical methods to obtain
approximate or analytic solution in the form of infinite
power series to this kind of equations. For example, S.
Mosta [2] applied a linearization approach, Mustafa Inc
[3] employed the homotopy analysis method, C.
Arslanturk [4] applied the Adomian decomposition
method, A. Joneidi et al. [5] applied a differential
transformation method, A. Aziz and S. Enamul Huq [6]

developed a perturbation solution, while the variation
iteration method (VIM) was employed by S. Coşkun M.
Atay [7]. Recently, in a letter published by S. Khuri and
A. Sayfy [8], it was shown that, in many cases, using a
fixed point iterative method such as Picard’s method for
successive approximations of initial value problems of
first or higher order, the correction functional of the VIM
can be obtained. In this paper, a Green’s function fixed
point iteration method is developed to solve the
underlying nonlinear boundary value problem (BVP)
described above. The method begins by identifying the
linear and nonlinear terms of the nonlinear BVP and then
employ the properties of Green’s function to construct the
appropriate function that mimics the solution to the
homogenous linear term of the equations subject to
homogenous boundary conditions. An iterative formula
is obtained by applying Picard’s fixed point method to a
linear integral operator in which the integrand is the
product of the constructed Green’s function and the BVP.
Examples will be provided to (1) show the applicability
of the method (2) test the accuracy of the obtained
solution by the means of comparison, with exact
solutions, if exists, and approximate solutions obtained by
other well-established methods.
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2 Mathematical formulation of the problem

Consider a straight fin with a temperature-dependent
thermal conductivity, arbitrary cross-sectional areaAc,
perimeter P and length b is attached to a
tip-insulated-base surface of temperatureTb, that extends
into a fluid of temperatureTa (see Fig. 1).

x dx

b

h, Ta

Tb

Fig. 1: Geometry of a straight fin.

The one dimensional energy balance is given by

Ac
d
dx

(

K(T )
dT
dx

)

−Ph(Tb −Ta) = 0, (1)

where T is the temperature, K(T ) is the
temperature-dependent thermal conductivity of the fin
material, andh is the heat transfer coefficient.K(T ),
expressed as a linear function of the temperature, is given
by

K(T ) = Ka (1+λ (T −Ta)) , (2)

whereKa is the thermal conductivity at the ambient fluid
temperature of the fin andλ is the parameter describing
the variation in thermal conductivity.

Let

θ =
T −Ta

Tb −Ta
, ζ =

x
b
, β = λ (Tb−Ta), ψ =

(

hPb2

kaAc

)1/2

.

(3)
Substituting these dimensionless parameters into

equation (1) gives the boundary value problem

d2θ
dζ 2 +β θ

d2θ
dζ 2 +β

(

dθ
dζ

)2

−ψ2θ = 0, (4)

subject to
θ (1) = 1,
θ ′(0) = 0. (5)

Using Newton’s law of cooling, the heat transfer rate
from the fin is determined by integrating the convection
heat loss from the surface, that is

Q =

∫ b

0
P(T −Ta)dx. (6)

Let Qideal represent the heat transfer rate of the entire
surface, which depends on the base temperatureTb. Then
the fin efficiency, denotedη , is defined as the ratio ofQ to
Qideal. Therefore,

η =
Q

Pb(Tb −Ta)
=

∫ 1

0
θ (ζ )dζ . (7)

3 Green’s function fixed point iteration
method

Consider the second order nonlinear boundary value
problem

F(t,u,u′,u′′) = f (t), a ≤ t ≤ b,
B1[u]≡ αu(a)+β u′(a) = γ1,
B2[u]≡ αu(b)+β u′(b) = γ2.

(8)

The proposed method begins by expressing equation (8) in
the form

Lu+Nu = f (t), (9)

whereL is a linear operator andN is a nonlinear operator.
Assuming that u0(t) is the solution toLu = 0, we
construct the iterative solution to (9) using Picard’s fixed
point iteration in the form

un+1(t) = un(t)+
∫ t

0
G(t,s)(Lu+Nu− f (s))ds, (10)

whereG(t,s) is the Green’s function satisfying

L[G(t,s)] = δ (t − s),

B1[G(t,s)] = 0, (11)

B2[G(t,s)] = 0,

in whichδ (t − s) is the Dirac delta function, which can be
constructed using basic properties of Green’s function. It
is to be mentioned that there is flexibility in choosingLu
so thatu0 can be found andG(t,s) can be constructed. We
shall apply this procedure to solve (4)

Letting

F(ζ ,θ ,θ ′,θ ′′) = β θ
d2θ
dζ 2 +β

(

dθ
dζ

)2

, (12)

then, equation (4) is expressed in the form

Λ [θ ]≡
d2θ
dζ 2 −ψ2θ =−F(ζ ,θ ,θ ′,θ ′′). (13)

The general solution of equation (13) is expressed in
the form

θ = θh +θp = θh −

∫ 1

0
G(ζ ,s)F(s,θ ,θ ′,θ ′′)ds, (14)
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where G(ζ ,s) is Green’s function that satisfies the
equation

Λ [G(ζ ,s)] = δ (ζ − s),

G(1,s) = 0, (15)

dG
dζ

(0,s) = 0,

In equation (14), θh is solution toΛ [θ ] = 0, subject to
boundary conditions (5), that is

θh =C1e−ψζ +C2eψζ .

Using θh, the boundary conditions in (15), and the
properties of Green’s function,G(ζ ,s) can be found. As
Green’s function exhibits a singular behavior atζ = s,
then it is natural to express it in the form

G(ζ ,s) =
{

C1e−ψζ +C2eψζ if 0 < ζ < s
C3e−ψζ +C4eψζ if 1 > ζ > s

, (16)

whereC1,C2,C3,andC4 are constants. From the boundary
condition given in (15), we obtain

−C1+C2 = 0, (17)

C3e−ψ +C4eψ = 0. (18)

The continuity of Green’s function for all 0< ζ < 1,
that isG(ζ ,s)|ζ→s+ −G(ζ ,s)|ζ→s− = 0 implies that

C1e−ψs +C2eψs −C3e−ψs +C4eψs = 0. (19)

Integrating (15) over the domain(s−,s+) yields

∫ s+

s−

[

d2

dζ 2 G(ζ ,s)−ψ2G(ζ ,s)
]

dζ =
∫ s+

s−
δ (ζ − s)dζ ,

(20)
and using the jump condition ats = ζ , we have

d
dζ

G(s+,s)−
d

dζ
G(s−,s) = 1, (21)

or equivalently,

−ψC3e−ψs +ψC4eψs +ψC1e−ψs −ψC2eψs = 1. (22)

Solving the linear system (17)-(19) and (22) for
C1,C2,C3 andC4 implies that

C1 = α(e−ψ(s−1)− eψ(s−1)),
C2 =C1,
C3 = α(e−ψ(−s+1)− eψ(−s+1)),
C4 =C3,

(23)

where

α =
−1

2ψ(e−ψ + eψ)
. (24)

Now consider the following linear integral operator

L[θ ] = θh +
∫ 1

0
G(ζ ,s)

(

θ ′′(s)−ψ2θ (s)
)

ds. (25)

Adding and subtractingF(ζ ,θ ,θ ′,θ ′′) within the
integrand gives

L[θ ] = θh +

∫ 1

0
G(ζ ,s)

[

θ ′′(s)−ψ2θ (s)+β θ (s)θ ′′(s)

+β
(

θ ′(s)
)2
]

ds

−

∫ 1

0
G(ζ ,s)F(ζ ,θ ,θ ′,θ ′′)ds.

From equation (14), we obtain

L[θ ] = θ +

∫ 1

0
G(ζ ,s)

[

θ ′′(s)−ψ2θ (s)+β θ (s)θ ′′(s)

+β
(

θ ′(s)
)2
]

ds

Applying Picard’s fixed point iteration method on the
operatorL, gives the iterative formula

θn+1 = θn +
∫ 1

0
G(ζ ,s)

[

θ ′′
n (s)−ψ2θn(s)+β θn(s)θ ′′

n (s)

+β (θ ′
n(s))

2
]

ds. (26)

4 Numerical experiments and discussion

In this section, we present examples that cover both the
constant and variable thermal conductivity cases. The
approximate solution obtained by the proposed method
(GFIM) will be compared with exact solution, if exists,
and approximate solutions obtained by the differential
transformation method (DTM) and the fourth order
Runge Kutta method (RK4) presented in [5].

Example 1.In equation (4), let β = 0 (constant thermal
conductivity). A comparison between the GFIM, the
DTM, and the exact results for the dimensionless
temperature θ at various values of ζ for the
thermo-geometric parametersψ = 0.5 is given in Table 1
and forψ = 1 os given in Table 2.

Example 2.In equation (4), let β 6= 0 (variable thermal
conductivity). A comparison between the GFIM, the
DTM, and the RK4 method for the dimensionless
temperatureθ at various values ofζ for β = 0.4 and
ψ = 1 is given in Table 3 and forβ = 0.2 andψ = 0.5 is
given in Table 4.
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Table 1: Comparison between the GFIM, the DTM, and the exact results for the caseβ = 0 andψ = 0.5

.

ζ Exact GFIM DTM [5] GFIM Error DTM Error
0.0 0.8868188840 0.8868188840 0.8868188841 0 1×10−10

0.1 0.8879276385 0.8879276385 0.8879276383 0 2×10−10

0.2 0.8912566747 0.8912566747 0.8912566748 0 1×10−10

0.3 0.8968143168 0.8968143168 0.8968143173 0 3×10−10

0.4 0.9046144618 0.9046144618 0.9046144623 0 5×10−10

0.5 0.9146766141 0.9146766141 0.9146766135 0 6×10−10

0.6 0.9270259345 0.9270259345 0.9270259345 0 0
0.7 0.9416933025 0.9416933025 0.9416933025 0 0
0.8 0.9587153943 0.9587153943 0.9587153946 0 3×10−10

0.9 0.9781347739 0.9781347739 0.9781347735 0 4×10−10

1.0 1.0000000000 1.0000000000 0.9999999999 0 1×10−10

Table 2: Comparison between the GFIM, the DTM, and the exact results for the caseβ = 0 andψ = 1

.

ζ Exact GFIM DTM [5] GFIM Error DTM Error
0.0 0.6480542737 0.6480542737 0.6480542737 0 0
0.1 0.6512972462 0.6512972462 0.6512972462 0 0
0.2 0.6610586204 0.6610586204 0.6610586207 0 3×10−10

0.3 0.6774360915 0.6774360915 0.6774360915 0 0
0.4 0.7005935707 0.7005935707 0.7005935709 0 2×10−10

0.5 0.7307628258 0.7307628258 0.7307628258 0 0
0.6 0.7682458010 0.7682458010 0.7682458015 0 5×10−10

0.7 0.8134176383 0.8134176383 0.8134176386 0 3×10−10

0.8 0.8667304327 0.8667304327 0.8667304332 0 5×10−10

0.9 0.9287177566 0.9287177566 0.9287177570 0 4×10−10

1.0 1.0000000000 1.0000000000 1.0000000001 0 1×10−10

Table 3: Green’s function iterative method solution for problem (4)-(5) with β = 0.4 andψ = 1

.

ζ GFIM DTM [5] RK4
0.0 0.7160464622 0.7160464622 0.7160464718
0.1 0.7188301611 0.7188301611 0.7188301796
0.2 0.7271884199 0.7271884199 0.7271884325
0.3 0.7411425954 0.7411425952 0.7411426043
0.4 0.7607278542 0.7607278540 0.7607278639
0.5 0.7859925455 0.7859925453 0.7859925543
0.6 0.8169973499 0.8169973500 0.8169973564
0.7 0.8538142334 0.8538142337 0.8538142400
0.8 0.8965252354 0.8965252359 0.8965252366
0.9 0.9452211296 0.9452211304 0.9452211232
1.0 1.0000000000 0.9999999996 1.0000000000

Table 4: Green’s function iterative method solution for problem (4)-(5) with β = 0.2 andψ = 0.5

.

ζ GFIM DTM [5] RK4 [5]
0.0 0.9034471796 0.9034471796 0.9034471816
0.1 0.9044037536 0.9044037536 0.9044037555
0.2 0.9072745703 0.9072745703 0.9072745722
0.3 0.9120629117 0.9120629117 0.9120629135
0.4 0.9187742375 0.9187742374 0.9187742391
0.5 0.9274161701 0.9274161700 0.9274161715
0.6 0.9379984742 0.9379984741 0.9379984755
0.7 0.9505330295 0.9505330293 0.9505330304
0.8 0.9650337980 0.9650337981 0.9650337986
0.9 0.9815167861 0.9815167860 0.9815167865
1.0 1.0000000000 0.9999999996 1.0000000000
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It is noted from Tables 1 and 2 that the current method
gives the exact solution whereas the DTM leaves a
maximum error up to 6×10−10. But in Example 2, where
no exact solution exists, we notice from Tables 3 and 4,
that the approximations obtained by the proposed method
highly agree with those obtained by other methods.

The proposed method was further employed for the
following studies:

1. The variation in temperature along the fin surface in
the case of constant thermal conductivity (β = 0). It
is noted from Fig. 2 that the dimensionless
temperature increases as the thermo-geometric fin
parameter increases.
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Fig. 2: Variation in dimensionless temperature in the case of
constant thermal conductivity.

2. The variation in temperature along the fin surface in
the case of variable thermal conductivity (β 6= 0).
Fig. 3 shows a plot of the dimensionless temperature
along the fin surface under the assumption that the the
thermo-geometric parameter is fixed (ψ = 0.5). It is
noted that temperature distribution increases as
thermal conductivity increases.

3. Determining the fin efficiency. In Fig. 4, the fin
efficiency, given in equation (7), is plotted against the
thermo-geometric fin parameter for various thermal
conductivity parameters.

5 Conclusion

In this study, a Green’s function fixed point iterative
method was formulated and applied for finding the
temperature distribution along the fin surface and for
determining the fin efficiency of convective straight fins
with temperature-dependent thermal conductivity. The
method is used to show the variation in temperature
distribution in the cases of constant and variable thermal
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Fig. 3: Variation in dimensionless temperature in the case of
variable thermal conductivity.
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Fig. 4: Fin efficiency is plotted against the thermo-geometric fin
parameter for various values of thermal conductivity.

conductivity and to determine the fin efficiency over a
given domain of the thermo-geometric fin parameter as
the thermal conductivity parameter varies. Results
obtained by this method were very convincing when
compared to exact solutions and other numerical methods.
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