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Abstract: The aim of this paper is to develop the question of the redicoastrained observability for distributed hyperbolicgm
evolving in spatial domai. It consists in the reconstruction of the initial condigin a subregiom of Q, knowing that the initial
position is between two prescribed functionsurand also the initial speed is between two others functioss pitescribed . We
give some definitions and proprieties concerning this cpnaed then we describe two approaches for solving this probThe first is
based on subdifferential technics and the second uses ¢narigian multiplier method. This last approach leads tdgorghm for the
reconstruction of the initial conditions. The obtainedutesare illustrated by numerical simulations which leaddme conjectures.
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1 Introduction mathematical model of a real system is obtained either
from the measurements, or from approximation
In the distributed systems analysis, one of the interestingechniques and is very often affected by perturbations.
problems is the knowledge of the initial conditions of a Consequently the solution of such a system is only
such system, this is called observation problem. Manyapproximately known. Secondly, the observation error is
works have been devoted to this problem in the globalsmaller than in general case and the initial conditions to
case where the aim is to reconstruct the initial conditionsde reconstructed are to be between some bounds.
in the whole system evolution domai([5], [6], [7]). The remainder of the paper is organized as follows:
The concept of regional observability was introduced bySection 2 is devoted for introduce the notion of regional
El Jai and al. in the nineties, and studied, for many classonstrained observability for hyperbolic systems, in this
of distributed systems, in various works1)[ [11]). It section we give definitions and proprieties related to this
concerns the reconstruction of the initial conditions only notion. In section 3, we give a characterization of the
in a given subregiorw C Q. The regional constrained notion using a subdifferential technics. In the last sectio
observability problems were considered and studied fowe describe a reconstruction method based on the
parabolic systems, its consist in reconstructing theahiti Lagrangian multiplier approach which leads to a practice
state of such a system and the reconstructed state @lgorithm, then we give numerical simulations which
between two prescribed functions given only in a show the efficiency of the obtained algorithm.
subregiorw C Q([3]).
Here we present an extension of the results on regional
constrained observability to hyperbolic ones. Our interes 2 Problem statement.
is to reconstruct the initial conditions for an hyperbolic
system knowing that these conditions are between certaibet Q be an open bounded @&"(n = 1,2,3), with a
prescribed functions given only on a subregwnThere  regular boundary Q. For T > 0 we denote
are many reasons for introducing this concept : Firstly, theQ = Q x]0,T[, ¥ = dQ x [0, T], and consider the system
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described by the hyperbolic equation:
9%y(x,)

ay(x,0 1
yx0) =P XXy o ®
y(&,t)=0 Z,

whereA is a second order differential linear and elliptic
operator such thatA = 2'0 admits a compact

resolvent and generates a strongly continuous semi- grou@’vyz

which is linear bounded with the adjoint given by:
K':0— %
T_ _
Zrs / S (t)C zdt
0

Let w be a subregion ofQ with positive Lesbegue
measure,#, = L?(w) x L2(w) and x,, be the restriction

operator defined by:
Xy F — Z,
(ylayz)\wv

(St))t=0 on a subspace of a state Hilbert spacewith the adjoint* given by:

L2(Q) x L?Q). We assume that
(0, y}) € H(Q) x L2(Q), then the system1} admits a

unique solutlony € C(0,T;H3(Q)) N CY(0,T;L3(Q))
([9D.

The measurements are given by the output function:

Z(t) =Cy(.,t), te[0T], )

with C: L2(Q) — RY denotes the observation operator
depending on the structure and the numbeaf sensors
considered.

y
If we denote by = [d_y] andy? = Rﬂ,thenthe system

(2) can be written as follows:

ay(xt) =
{_ ot = Ay(x,t) Q 3)
y(%,0) =¥°(x) Q.

The system J) is autonomous, then it admits a unique
solution given by:

yit) = Sy’

With the assumption that the operatradmits a basis
orthogonal eigenfunctiong¢hj) associated with the
eigenvalueg, of multiplicity rp, the sem|grouQS(t))t>o
can be written,

for all (y1,y2) € H}(Q) x L3(Q), as:

o Iy

22 (Y1, ¢hj) cOs\/ —Ant
n=1j=1

H(=An) "2 (y2, ¢hj) SINV—Ant] @hj ()
(4)

o Iy

2 2"

n=1j=1

+(Y2; ¢hj) COSY —Ant]¢hj(.)
The system3) is augmented by the output function:
Z(t) =Cy(.,1), (5)
whereC = (C,0).
In the sequel we denot& = L?(Q) x L?(Q)
and¢ = L?(0,T;R9).
We consider the observability operator defined by:
K:% — 0
(Y1,Y2) — CS()(Y1:Yz):

V=An{y1, ¢hj) siny/=Ant

Xew
XeQ\ w.

(¥1:Y2) (%),

Xo1:¥2)(X) = {0

As itis well known, a sensor is conventionally defined
by a couplgD, f), whereD C Q is the geometric support
of the sensor and is the spatial distribution of the
information on the suppoB.

In the case of a pointwise sensor (internal or boundary)
D = {b} and f = &(.), where & is the Dirac mass
concentrated inb, and the sensor is then denoted by
(b, &). For definitions and properties of strategic sensors
we refer to ([]).

We recall that the systeni)-(2) is said to be exactly
(respectively weakly) observable in
if Imx,,K* = .7, (respectively keKx* = {0}). For more
details, we refer to ([1]).

Here, Letaj(.) and Bi(.) (i = 1,2) be functions in
L?(w) such thati(.) < Bi(.) aeinw,i=1,2.
Throughout the paper we set:

G: =[au(.), Br()] x [aa(.), Ba(.)]
={().y,() € Z, laa() <y, () <Ba()
andaz()<y2() B2(.) aeinw}.

Then the problem of regional constrained observability of
the system 1)-(2) concerns the possibility of
reconstructlng (y°,y) provided that the initial position
yo € [a1(.), B1(.)] and the initial speed

y e oo ) Bz( )] in the subregiomw.

Definition 1.

The systeml))-(2) is said to be G-observable i if
(Imx K YNG #£0.

Definition 2.

A sensor is said to be G-strategic m if the observed

system is G-observable .

Remark.
1.If the system 1)-(2) is exactly(resp. weakly)

observable irw then it isG-observable inw. Indeed,
if the system 1)-(2) is exactly(resp. weakly)
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observable irw thenimy K* = .7
(resp.Imy, K* =.7#,) which results
(Imx K )YNG#0

this means that the systerh){(2) is G-observable in
w.

2.There exist system which are not weakly observable in

Q but areG-observable inw. This is illustrated by the
following example:

Exapmle. Let's consider the one dimensional wave

equation evolving im2 =]0, 1]
2 2
0 )[;(t);t) _9 ;S;t) 10,2[x]0, T
yx.0) =00; PXO _yie oy ©
y(0.t) =y(1,t) =0 10,7,
augmented with the pointwise measurements
Z(t) =y(b,t), (7)
Whereb:} €]0,1].
Let y9(x) = sin(2mx) and y*(x) = sin(rx) the initial
conditions to be observed. Then fm:]g g[ we have

the following result:

Lemma 1The system@)-(7) is not weakly observable in
10,1[ but it is G-observable imo.

Proof. To show that the systemB)-(7) is not weakly
observable it is sufficient to verify that

(y%.yh) € Ker(K).
Since the operatod =

2
—— has a complete set of
ox? P

eigenfunctions (@) in L%(Q) the
eigenvalued, given by:

(X)) =V2sinnmx) and A, = —n’m?,
then, from &) we have
P _cso (7
‘ (y )m( )
)’0 ) 2 9 cogv/—Ant) X
2y |+ A Y ) o g SIN(Y At w(b)

o [0 m),, o cos(m)
nesN+1 +\/,—n<y %>L2 sin(v/=Ant)

We have(y°, P) 2 =
andvn € 2N*+1

<yo7%>L2(g) = \/72

associated to

M

=2 ] sin(.).

0, <y17 (pl>|_2(9) =0,
(n_%rsin((n— 2)m)
—msin((nJrZ)n)
(cog(n+1)m) —

1

y‘; = 0, and then the systen®)¢(7) is not

weakly observable if2.
On the other hand, we show thgf, y*)
in w, indeed, suppose that

KX X, (Y°,¥) =0, then

HenceK

is G-observable

<y07 %> 2 Coi \% _)\nt)
1 o - th(b) = 0.
& | Ty 7%>L2 sin(v/—Ant)
Since for SO large, the set
{sin(~/—Ant), cos(\/—)\ t)ln>1 forms a complete
orthonormal set of?(0, T), then
) 2 (D) = (Y, ) 5, (D) =0, Vn>1.
But forn € 2N + 1 we have
@n(b) = V2sin(n2) #0
which gives necessary
0. @)z, = V@), =0 VNEN+L (8)
But forn=>5, we have
W ®) o0, \/i/ cog(71x) sin(57x)dx = \6/3

which contradicts §), thusKx: x,,(y°,y*) # 0 and then

(y°,y}) is weakly observable i.
Moreover, for o (x |y0| —1, Bi(x) = [y°| + 1 and
a2(x) = y! 1, Bz( ) — [y + 1, we havey,, (Y, y3) € G
and then the systen®)-(7) is G-observable irw.
The following result is a characterization of the
G-observability inc.

Proposition 1.The system1)-(2) is G-observable inw if
and only if
(Kerx,, +ImK*)NG # 0.

Proof. Suppose that the systerh){(2) is G-observable in
w, that is to say

Imy,K* NG 0,

then there existsy € G and 68 € ¢ such that
XoY =Y = X,K*8, which implies that,,(y — K*8) = 0.
If we setyl y—K*@ andyz K*0, theny =y; +V»
with y; € Kerx,, and y, € ImK*, which means that
y € Keryx,, +ImK* and consequently

(Kerx,, +ImK*)NG # 0.

Inversely, if (Kery,, + ImK*) NG # 0 then there exists

y € G such thay € Kery,, + ImK*,

soy = y1 + Y2 wherex,y1 = 0 andy, € ImK*, therefore

XY = XYz, theny= x_y € Imx K*, thus
(Imx,K")NG#0,

which means that the systerf){(2) is G-obsrvable inw.

In the following, we present two approaches to solve
the problem of regional constrained observability of the
system {)-(2).
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3 Subdifferential approach

Solve the problem ofG-observability is equivalent to
minimizing the reconstruction error given by

min|Ky— 72
{y_e v ©)
whereY = {y€ 7 | X,y € [a1(.),B1(.)] x [a2(.), B2()]}.

we will solve the problem q) by the sub-differential
approach(2]).
Let us denote by:

e Io(.7) the set of functiond : .F — R =] — o, 400

proper, lower semi-continuous (l.s.c) and convexe in

F.
e Forf e (%)

domf) = {y e #|f(y) < +«} and f* the polar
function of f given by:

)= _sup {{yy) - f(¥)},

yedon(f)

We F

e Fory? € dom(f) the set:

tP)={y e Z [T 2 {(P°)+ ¥ .y V), WeF

denotes the subdifferential df at y°, then we have the
following property

y € at(y) F°) + (V) = 0°.¥).

With these notations the problerf)(is equivalent to the
problem without constraints:

{inf(||K)7— 7|2 + % (y)) (10)

if and only if

ye.F#

where$, denotes the indicator function ¥f given by:

w-lo,

The solution of the probleml() is characterized by the
following result:

ifyeyY
otherwise

Proposition 2If the system)-(2) is G-observable irw,
then the following assertions are equivalent:

1y* is a solution of L0).
2y €Y and
Y (~2K*(KY ~2) =

Proof. Let f(y) = |[Ky—Z]|2. ¥* is a solution of {0) if
and only if 0 d(f + %) (Y").

It is clear thatf € (%) and sinceY is closed, convex
and non empty, thet € H(.%). Moreover under the
hypothesis of the G-observability in w, we have
Dom(f)NnDom(% ) # 0, butf is continuous then

O(f+ %) (y") =9 (y") + aR(Y),

—2||Ky* |5+ 2(K*Z 7).

it follows thaty* is a solution of L0) if and only if

0c (0F(Y) + %W (Y')).
Moreoverf is Frechet-differentiable, then

ot(y") ={0f(y")} = {2K*(Ky" - )},
thusy* is a solution of {0) if and only if
—2K*(KY' —2) € 0% (¥)
which equivalent to
VeV W)+ W (2K (KY 7)) =
which implies that
e W (—2K Ky —

Remark.
This approach can not be exploited numerically.

(F, —2K*KY* +2K*2),

7)) = 2Ky |IZ +2(K*Z¥").

We will give a second approach giving an algorithm
that is usable numerically.

4 Lagrangian multiplier approach

If we suppose that the systed){(2) is exactly observable
in Q, then any statg € .% can be written in the forrK*6
with 8 € &. As a result, the problen®) can be rewritten
as follow:

min||[KK*6 — 7|2,
eV={0ec0|x,K0eG},

Then we have the following result:

(11)

Proposition 3If the systemX)-(2) is exactly observable in
Q, then the solution ofi(1) is given by

0" = (KK*KK*)1KK*Z— %(KK*KK*)—lKX;(/\f,A;),
and the solution of the probler8)(is given by:
7 = RKZ- SR AL AS),

where(A[, A7) is the solution of

:—ZLR X, (A1,A3) ==Y +R,KZ
Y =Rs(P(A{,A3) +Y),

while B, : #, — G denotes the projection operator,
p>0andR, = x, K*(KK*KK*)~1K.

(12)

Proof. If the system {)-(2) is exactly observable i then
it is G-observable inw, thusV # 0 and the probleml(l)
has a solution. The constraint problefrl) is equivalent
to saddle point problem

{min||KK*6—Z[2ﬁ

(8,y) €W, (13)
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where
W={(0,y)c 0xG]|x,K6O—-y=0}.

To the problem 13) we associate the Lagrangian
functionalL defined by:

V(0,Y,A1,A2) € O x Gx Z,,

L(6,Y,A1,A2) = ||[KK*0 = Z|% + (A1, A2), X, K* 8 — Y.
Let us recall that6*,y*, A, A5) is a saddle point of if:
maXx, \y)e, L(O7,Y (A1,A2)) = L(67,¥", (A1, A3))
= mlne c0 L(eaya ()\Iv/\ék))
yeG

The proofis divided into three steps:
e Step 1

The set0’ x G is non empty, closed and convex, moreover

the function (A1,A2) — L(6,Y,(A1,A2)) is concave,

e Step 3
Let (6%,y%,(A;,A5)) is a saddle point of, then the following
assumptions are hold

2(KK*8* —Z KK*(8 — 6%)) + ((A{,A5), X, K*(8 — %)) = (215)
VOe o
—((A1,42),(y—=¥")) 20,

Yye G (16)

<()‘17A2) - (AI>A5)>XWK*9* _T> = 07 V(AL)‘Z) € ﬂ\m (17)

For details on the saddle point theory and its applications
we refer to (f], [8], [10]).

From (15) we deduce

2((KK*)*(KK*8" = 2), (6 — 67)) + ((XK")"(A1,A3),(6 - 67)) =0,
Vo e O,

then

—2(KK*)*KK* 0" + 2(KK*)*Z= (X, K*)* (A, A3),

upper semi-continuous and differentiable. The samegjnce the system is observable @, then KK*KK* is

(8,y) — L(6,y,(A1,A2)) is convex, lower

semi-continuous and differentiable. Moreover,

there  exists (A2,A9) € #, such that
lim  L(8,y,(A2,A9)) = +oo,

(8.5} oo (6,Y,(A1,A3))

and there exists (8%y°) € ¢ x G such that

l L(69,y2, (A1,A2)) = —co.
[(A1.A2)[|—+o0 ( )_,0( 1,A2))

This shows thak admits a saddle point.

e Step 2

Let (6%,y",(A{,A;)) be a saddle point of.. We will
prove thaty™ = x, K*6* is the restriction inw of the
solution of @). We have

L(6%,y", (A1,A2)) < L(6%,¥*.(A{,A3)) < L(6.Y,(A],A3)) 14)
v(67y7 (Al7/\2)) €0 xGx ng.

From the first inequality of{4) we have
IKK*8* —Z]% + (A1, A2), X, K* 6" = V)
< |IKK*0* =212 +((A],A3), X, K* 0" =) ,
V(AL M) € Z,.
So
((A1,A2), X, K*6" —y) < ((A{,A3). X, K*6"=y7),
V(A1,A2) € Z,,
which implies thaty,K*6* = y*, hencex ,K*6* € G.
From the second inequality 0f4) it follows that

L(O°.¥". (Af.A5)) SL(B.Y.(AL. 43))
this means that

IKK*6* —Z]1% + (A7, 23), X,K* 6" =)
< [KK*0 2% +((A{.A3). X,K'6—Y) . ¥(8,9) € 6'xG.
Sincey” = x,K*6*, we have

IKK*6* ~ 2|2 < [KK*8 —Z|% +((A*,A3), X,K*0 —¥) .
V(8,y) € O xG.

Takingy = x,,K*0, we obtain:

v(8,y) € O %G,

IKK*6" 2|2 < |[KK*6-Z%, vOeo,

which implies that6* is a solution of 11), and soyy = K*68*
whose the restrictiog = x_K*6* is solution of 9).

invertible, and consequently

1 * *\ — * * *
E(KK KK*) 1KX“,()\17/\2),

0" = (KK*KK*)1KK*z—
SOy~ is given by

¥ = XoK"(KK'KK") 'KK"Z— %xmK*<KK*KK*)’1KXZ,<A1*-,/\2*>.,

then 1
)7 = RwK*Z__ ERQ;X:,(/\I’)\Z*)v

with R, = x, K*(KK*KK*)~1K.
Using (16), we have

_<()‘JT7/\5)3(y__T)> > 0,
SO(P((Af,A3)+Y") =¥, y—y) <0 vye Gandvp >0

then
Y =PRs(P(AL,A2) +Y).

YeG

Corollary 1.If the system)-(2) is exactly observable in
Q and the function

L, = (KX KX HKXE) KK KK (X, K™ X, K] (X, K,

is coercive, then fop suitably chosen, the systed?| has
a unique solutior{(A},A5),y*).

Proof. We have
V' = XK (KK*KK*) KK Z- %xmK%KK*KK*rle:(Af,A;L
then

(M1,Az) = —2L,¥ +2[(KX)) KXl (KX, KK'Z

(@© 2017 NSP
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So if (6*,¥*,(A{,A3)) is a saddle point oL then the
system 12) is equivalent to

(A.A3) = —2L,V +2[(Kx*)* KX~ HKx!)*KK*Z
¥ =P.(—2pL,V* +2p[(Kx:)*KX] L (KX?) " KK*Z+ y7).

It follows thaty* is a fixed point of the function defined
by:

Fp G— G
Y — Po(—2pLy+2p[(Kx*) KX KX KK*Z+y).

Since the operatdr,, is coercive, the@m > 0 such that

L,y =>my[?, We.Z,

It follows thatVyi,y, € G

IF, (%)~ Fy Il < 1| —20L, (%, — ¥) + (% ~ %)l
< 4p2HLwH2_Hy2 __y1||i+ HXz _Y1||2
—4p(L, (Y, = Y1), (Y, = Y1)
< 4p2|[L, 121¥; — YalP + 1Y, = ValI?
—4pmlly, —, ||?
< (4P7(IL, 1P+ 21— 4m)|ly, — v, |1%-

if we choose

0<p<

Lo 12

thenF, is contractant, which implies the uniquenesyof
and(Af,A5).

4.1 Numerical approach

From proposition 3) it follows that the solution of the
problem Q) arises to compute the saddle points Lof
which is equivalent to solving the problem

inf

(8.y)e0xG sup L(eay_a()\l,/\z))>

<()‘13)\2)€‘¢w

To accomplish this we use the following algorithm of
Uzawa type (@)):

Step 1:Choose

© the precision threshole small enough.
© the subregiomw, the senso(D, f).
© the functiongjg € Gand(A{,A}) € Z,.

Step 2:Repeat

© SolveKK*KK*(6,) = KK*z— %Kx;(Af,AQ) ,n>1.
© Calculateyn, = P;(p(A{,A) +Yn-1) ,

n>1.

© Calculate( A, A2 = (AP AD) + (X, K*6h —Yn) |
n>1.

until o1 — Vil 7, <.

Step 3:Let (6*,y*,A],A;) be a saddle point df,
then the sequend® converges t®*
solution of the problem1(3) andy,, lead to
the initial conditiony™ to be reconstructed i ([8]).

4.2 Simulation results

Here we give a numerical example that leads to some
results related to the choice of the subregion, the initial
conditions and the sensor location. & =]0,1], let's
consider the one-dimensional system:

2%y(x.t)  9%y(x.t)

. " 10,1[x]0, T
yx0 =y; 220 iy 01 (8
y(O,t):y(l,t):O ]OaT[a

augmented with the pointwise measurements given by:
Z(t) =y(b,t), be Q. (19)
The initial conditions to be reconstructed are

Yx) = (R(x—1)2—2x(x—1))/2

V(9 = (3Rx—1) — 2x(x~1))/3

We takeT = 2 andG = [a1(.), B1(.)] X
ai(x) = ¥(x=1)% . Bu(x)
Ba(x) = —gx(x— 1)

Applying the previous algorithm, we obtain the
following results:
e Global casew = Q
— If the sensor is located in= 0.4, we have

[ao2(.), B2(.)] with
—2X(x—1)

a(x) = HP(x—17,

(@© 2017 NSP
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Fig. 2: The estimated initial speeg. Fig. 4: The estimated initial speeg.

From figure 1 (resp. figure 2), we note that the initial
estimated positioy2 (resp. initial estimated speeg) is
betweenai(.) and B1(.) (resp.az(.) and fB(.)), which
shows that the sensdb, d,) is G-strategic inw. The
estimated position and speed are obtained wit
reconstruction error

Figure 5 (resp. figure 6) shows that the initial
nestimated positiony2 (resp. initial estimated speed) is
betweenas(.) and B1(.) (resp.oz(.) andB,(.)) and then
the sensor(b,d,) is G-strategic inw. The estimated
[ (yojyl) — (%7yé)||2 —876x%x 1073 position and speed are obtained with reconstruction error

— If the sensor is located in= 0.3, we have
Figure 3 (resp. figure 4) shows that the initial INT 3
estimated position? (resp. initial estimated speeg) is 1) — (Ve ye)lI? = 1.43x 10°%,
not betweenos(.) and B1(.) (resp.az(.) and B,(.)) and
then the sensdi, &) is notG-strategic inw.
We note that there exists a best location of the sensor

e Regional casew =]0.4,0.6] allowing a good reconstruction of the initial conditions.
— If the sensor is located in= 0.5, we have This is illustrated by the following figure:
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Fig. 7: The reconstruction error with respect to the sensor
location b.
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