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Abstract: This work is devoted to an optimized domain decomposition method applied to a non linear anisotropic reaction equation.
The proposed method is based on the idea of the optimized of two order (OO2) method developed this last two decades. We firstuse a
modified fixed point technique to linearize the problem in a way to converge fately, then we generalize the OO2 method and modify it
to obtain a new more optimized rate of convergence of the Schwarz algorithm. To compute the new rate of convergence we haveused
Fourier analysis. For the numerical computation we minimize this rate of convergence using a global optimization algorithm. Several
test-cases of analytical problems illustrate this approach and show the efficiency of the proposed new method.
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1 Introduction

The aim goal of this paper is to propose an optimized do-
main decomposition method (DDM) to solve a non linear
diffusion equation on a bounded domain such that:







∂u
∂ t + cu−div(g(u)∇u) = f (x,y) onΩ

u = h on∂Ω
u = ho on t= 0

(1)

By an implicit Scheme of discretization, its stationary
equation is:

{

cu−divg(u)∇u = f (x,y) onΩ
u = h on∂Ω (2)

g is a nonlinear function which I name the viscosity de-
pending on the speed or the concentration u to find. The
function g is depending on the physical model (Thermo-
elasticity, Plasma physics, Porous media model, Beltrami
model, heat transfer, turbulence modeling...).There is so
money kind of approach (eventually analytical and vari-
ational methods)to solve this kind of equation ([1]...[7]).
Here in this paper, we study generally the existence of a

solution to the problem and new robust, accurate, fast nu-
merical methods to solve this equation.
We first describe the fixed point to linearize the Equation
2, We prove the existence of a solution of the variational
problem resulting from it, then we propose a new modified
fixed point to converge faster to the solution.
Secondly, We use and generalize an optimized domain de-
composition to reduce the cost of time of our algorithm.
The domain decomposition method (OO2) is a tool we use
for large domain sizes and thin meshes, it consists of solv-
ing in parallel our equations on sub domains with new in-
terface condition in order to reduce the size and the com-
plexity of the problem, the parallelism in new devices of
computer science and architecture make this method easy
to handle. There is so many kind of methods in the do-
main decomposition method (see [17] and [18] for some
classical ones), but in this paper we consider an optimized
domain decomposition method of two order (OO2). Sever-
ally used this last decades ([8],...[13]), this method is pow-
erful and optimized. It’s optimized because ([8,9]) we can
compute explicitly the rate of convergence between two
iteration using the Fourier transform and make this rate
optimal so the method will converge quickly. But, the rate
of convergence of this method can be computed only for
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linear partial differential equation, and it’s difficult tohave
and explicit rate for nonlinear partial differential equation,
Thus come the idea of the modified fixed method com-
bined to this optimized fixed point to solve this problem
of nonlinearity. In addition, we can prove that the rate of
convergence of the OO2 method increases if the viscosity
increases, so we have generalized the method to treat this
challenge.
At the end of this work you can find some numerical ex-
periment compared to analytical solution that effectively
illustrate the efficiency of our proposed methods.

2 Method of Modified Fixed point

In this section we present the Fixed point algorithm and
the modified one to solve the stationary problem 2
The Fixed point method involves given one initial func-
tion u0, we construct iteratively a function sequenceun as
follows:

{

cun+1−divg(un)∇un+1 = f (x,y) onΩ
un+1 = h on∂Ω (3)

So we give below a convergence result of this algorithm:

Theorem 1.Suppose that:
- ∃ν > 0 andµ ; c≥ 0 and ;g(x)> ν
- g is K-lipshitzian.
- K

ν < 1
Then the sequence un+1 = φ(un) converge to the unique
solution of the nonlinear problem (3)

Proof:
By an adequate change, it is sufficient to consider a proof
with the Dirichlet conditionu= 0 (The same thing could
be done with a Neumann condition).
LetV = {u∈H1

0(Ω)/ g(u)∈L1(Ω)and‖∇u‖<M}. Con-
sider the following application:

φ : V 7→ V
v 7→ u

such that u is the unique solution of the variational formu-
lation:
∫

Ω
cuw+

∫

Ω
g(v)∇u∇w=

∫

Ω
f (x,y)w ∀w∈H1

0(Ω) (4)

♣ φ bellow is well defined, Indeed: Consider the bilin-
ear form :

a(u,w) =
∫

Ω
cuw+

∫

Ω
g(u)∇u∇w

by the Holder and the Poincarré Inequalitya is continuous:

a(u,w)≤ sup
Ω

|c| ‖u‖‖w‖+M‖∇u‖‖∇w‖

≤ (sup
Ω

|c|C2
Poincarre)+M)‖∇u‖‖∇w‖

a is coercive:

a(u,u) =
∫

Ω
cuu+

∫

Ω
g(u)∇u∇u

≥ ν‖u‖2

The Lax Milgram theorem involves that there exist one
solution of (3) namedφ(v)
♣ we have by substraction:

a(φ(u)−φ(v),w) = 0 ∀w∈ H1
0(Ω)

in another way
∫

Ω
c(φ(u)−φ(v))w+

∫

Ω
g(u)∇(φ(u)−φ(v))∇w=

∫

Ω
∇φ(v)(g(v)−g(u))

We takew= φ(u)−φ(v), so (Thinks to holder and Poincarre
Inequalities)

ν‖φ(u)−φ(v)‖2≤K×M×CPoincarre‖φ(u)−φ(v)‖‖u−v‖

M could be chosen asM×CPoincarre< 1, Thus

‖φ(u)−φ(v)‖ ≤
K
ν
‖u− v‖

The theorem of fixed point applied to the applicationφ
show thats the equationφ(u) = u) have one solution and
the suiteun+1 = φ(un) converge to this solution which is
the solution of problem (4)

Remark.In the proof of the theorem we have:

ν‖φ(u)−φ(v)‖ ≤ K‖u− v‖

If K is smaller, the Fixed point suite converge quickly. So
we introduce a new modified fixed point by adding a new
function r such that:

{

cun+1−div((g(un)+ r(un ,∇un))∇un+1) = f (x,y)−div(r(un ,∇un)∇un) onΩ
un+1 = o on∂ Ω (5)

r is a function we choose to have the CoefficientKr small.
It’s necessary to haver : R×R→ R that assume
|g′(x)+ r ′(x,−→y )|< ε1 << 1 and‖ ∇y(r(x,‖

−→y ‖))−→y ) ‖<
ε2 << 1
Using r, the conditiong(x)> ν also we don’t have to look
for a solution with small gradient shown in theorem 1.1
proof.

Theorem 2.Suppose that, there exist a function r such that:
a) ν ≺ g(x)+ r(x,−→y )≻ µ b) |g′(x)+ r ′(x,−→y )|< ε1 <<
1
2.
c) ‖∇y(r(x,

−→y ))−→y )‖< ε2 << 1
2

then the sequence un+1 = φ(un) of the modified fixed point
converge to a solution of the nonlinear problem (3)

Proof: LetV = {u∈H1
0(Ω)/g(u) and r(u)∈ L1(Ω)and‖∇u‖<

M}.
Consider the following application:

φ : V 7→ V
v 7→ u
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such that u is the unique solution of the variational formu-
lation:

∫

Ω
cuw+

∫

Ω
(g(v)+ r(v))∇u∇w=

∫

Ω
f w+

∫

Ω
r(v)∇v∇w ∀w∈ H1

0 (Ω ) (6)

♣ φ is well defined, Indeed: Consider the bilinear form :

a(u,w) =
∫

Ω
cuw+

∫

Ω
(g(v)+ r(v))∇u∇w

by the Holder and the Poincarré Inequalitya is continuous:

a(u,w)≤ sup
Ω

|c| ‖u‖‖w‖+µ‖∇u‖‖∇w‖

≤ (sup
Ω

|c|C2
Poincarre)+µ)‖∇u‖‖∇w‖

a is coercive:

a(u,u) =
∫

Ω
cuu+

∫

Ω
g(u)∇u∇u

≥ ν‖u‖2

The Lax Milgram theorem involves that there exist one so-
lution of (6) namedφ(v)
♣ It’s easy to make:
∫

Ω
c|φ(u)−φ(v)|2+

∫

Ω
(g(u)+ r(u)) | ∇(φ(u)−φ(v)) |2=

=
∫

Ω
(g(v)+ r(v)−g(u)− r(u))∇φ(v)∇(φ(u)−φ(v))+

+

∫

Ω
(r(u)∇u− r(v)∇v)∇(φ(u)−φ(v))

so

ν
∫

Ω
‖ ∇(φ(u)−φ(v)) ‖2≤ ε1M ‖ u−v ‖‖ ∇(φ(u)−φ(v)) ‖+ε2M ‖ u−v ‖‖ ∇(φ(u)−φ(v)) ‖

≤CPoincarre(M+1)(ε1+ ε2) ‖ u−v ‖‖ ∇(φ(u)−φ(v)) ‖

We choose M such thatCPoincarre(M+1)
ν < 1 The theorem

of fixed point applied to the applicationφ show thats the
equationφ(u) = u) have one solution and the suiteun+1 =
φ(un) converge to this solution which is the solution of the
variational problem of (2)
Notice that in practice, we can found a function r for more
general conditions even if g and g’ are not bounded. And
the choice of r is optimal when the physical model of g
is known. Also the convergence is optimal for small and
bounded function g.

3 Domain decomposition with optimized
interface of second order(DDM OO2)

The use of finite volumes , finite differences or finite ele-
ments solvers on high order meshes requires a high cost of
computation.
Domain decomposition methods can reduce this cost by
splitting initial problem into two or more sub-problems
with smaller dimensions. Many authors have studied do-
main decomposition methods these last decades [17,18].
Among these methods we consider in this work the method

called second order optimized method OO2. This method
was developed by different authors [8,9]. Our stationary
equation (2) could be treated in what follow as a reaction
advection diffusion equation (the same equation indeed).
The main idea of the OO2 technique is described briefly
as follows:
We split the domainΩ for example in two sub-domains
Ω1 andΩ2 with an interfaceΓ (see figure 1) then we built

Fig. 1: splitting of the domain in two sub-domain

two sequencesun
1,p andun

2,p respectively solutions of two
sub-problems as described bellow:
we choose two initials functionsu0

1 defined onΩ1 andu0
2

defined onΩ2 then we consider the two problems:






L(up+1
1 ) = f (x,y) onΩ1

up+1
1 = 0 on∂Ω

B1(u
p+1
1 ) = B1(u

p
2) onΓ

(7)

and






L(up+1
2 ) = f (x,y) onΩ2

up+1
2 = 0 on∂Ω

B2(u
p+1
2 ) = B2(u

p
1) onΓ

(8)

Where

L(u) = cu+a
∂u
∂x

+b
∂u
∂y

− µ∆u (9)

B1(u) =
∂u
∂n −C1u+C2

∂u
∂τ −C3

∂ 2u
∂τ2

B2(u) = − ∂u
∂n − (C1−

a
µ )u+C2

∂u
∂τ −C3

∂ 2u
∂τ2

(10)

n andτ are the normal and the tangent onΩ1
Because of the Fourier analysis we show that the rate of
convergence in the fourier way is (see [6] for proof)

ρ(C1,C2,C3,k) = (
λ−(k)−C1+ ikC2+C3k2

λ+(k)−C1+ ikC2+C3k2 )
2 (11)

where

λ +̄(k) =
a+̄

√

a2+4cµ −4iµbk+4k2µ2

2µ

The next theorem gives a condition of convergence of the
OO2 method
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Theorem 3.Suppose that c> 0 and sign(b) = sign(C2)
and C3 ≥ 0 then,

max
|k|< π

h

‖ρ(C1,C2,C3,k)‖ < 1

Proof. see [9]

Remark.In order to optimize the method we need to opti-
mize the rate of convergence so we look for:

min
C1,C2,C3

max
|k|< π

h

‖ρ(C1,C2,C3,k)‖

For optimizing this rate we have implemented the global
optimization method [14]. Notice that this last problem
have at least two optimums.

In our work, the viscosity is high and for the OO2
method proposed the convergence take more time because
the rate of convergence is not small enough and that can
be seen experimentally on so much example of high vis-
cosity, also we can prove that theoretically. Thus, to have a
convergence near to two iterations, we take the generalized
artificial coefficients:

B1(u) =
∂u
∂n −C1u+C′

1u(0,y−a)+C2
∂u
∂τ +C′

2
∂u(0,y−a)

∂τ
−C3

∂ 2u
∂τ2 +C′

3
∂ 2u(0,y−a)

∂τ2 +C4
∂ 2u

∂n∂τ
B2(u) =− ∂u

∂n −C1u+C′
1u(0,y−a)+C2

∂u
∂τ +C′

2
∂u(0,y−a)

∂τ
−C3

∂ 2u
∂τ2 +C′

3
∂u(0,y−a)

∂τ2 +C4
∂ 2u

∂n∂τ

The fourier transform of the the rate of convergence is cal-
culated using:

F( f (x−a)) = e−ikaF( f (x))

F( ∂ 2 f
∂x∂y)) = ikF( ∂ f

∂x

We also optimize the step of our algorithm by Cou-
pling OO2 and Fixed point next subproblems:







L(up+1
1 ) = f (x,y)+div(r(up

1)∇up
1) on Ω1

up+1
1 = 0 on ∂Ω

B1(u
p+1
1 ) = B1(u

p
2) on Γ

(12)
and







L(up+1
2 ) = f (x,y)+div(r(up

1)∇up
2) on Ω2

up+1
2 = 0 on ∂Ω

B2(u
p+1
2 ) = B2(u

p
1) on Γ

(13)

where:

L(u) = cu+div((r(u,‖ ∇u ‖)+g(u))∇u) (14)

4 Numerical simulation

Numerically, we have implemented the finite volumes method
to approach the sub-problems obtained after applying the
fixed point algorithm. We obtain a good accuracy, the error
is in the order of 10−6 forward the third iteration on some
usual test-functions .We take for g respectively the expres-
sions
g(u) = up,(p=−1, p= 1, p= 1

2)
g(u) = eu

g(u) = a
b+u

g(u) = 1
1+u2

g(u) = 1
1−u2

First the figure (2) shows the theoretical error of the OO2
method while changing the constant viscosityµ . And we
aknowlege that the error rate rises when the viscosity rises
to become big and then without interest for higher viscos-
ity.

Fig. 2: error in function of viscosity

The following results show the error between the ap-
proximate solution using the modified fixed point method
and the exact solutionuexact= xy(1− x)(1− y) of the
problem (1).Error = ‖u−uexact‖2

h is the mesh grid.
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Fig. 3: The error: c=10, h=0.025; g(u)=u*u

Fig. 4: The error: c=1, h=0.001 and F(u)=exp(u)

Fig. 5: The error: c=20, a=-2, b=1, h=0.001 and
F(u)=a/(b+u)

Fig. 6: c=1, h=0.001 and g(u)=10 sin(π
3 u)

Now, we show the results of combining modified fixed
point and OO2 algorithm.

Fig. 7: case1

Fig. 8: case2

Fig. 9: case3

Fig. 10: case4
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The figures 7,8,9,10 showing theL2 error between the
combining modified fixed point solution and the OO2

algorithm and the exact solution.

Test case1: c=1, , h=0.0001,g(u) = log(u)and uexact =
(x+ y)(1− x)(1− y).
Test case2: c=10, h=0.001, g(u)=u

1+u2 anduexact= exp(xy(1−
x)(1− y))−1.

Test case3: c=1, h=0,001,g(u)= u
1
2 anduexact= sin(π(x+

y))exp(xy(1− x)(1− y))−1.
Test case4: c=10, h=0,001,g(u) = exp(u)−1 anduexact=
xy(1− x)(1− y). h is the mesh grid

5 Conclusion

In this work, we have developed an optimized domain de-
composition algorithm applied to a non linear PDE. We
firstly, have proposed a proof of the convergence of the
fixed point technique applied to the non linear equation.
We have proposed a new approach for computing the con-
vergence rate using the Fourier analysis and global opti-
mization. Secondly we have presented several test-cases
to show the efficiency of this approach. The fundamental
result is that we obtained high accuracy and a fast method
with a well optimized rate of convergence of the proposed
algorithm in comparison with global calculation using clas-
sical solvers. As perspective of the present work, we can
study the following ideas:
- Obtaining a rate of convergence of two iterations to this
PDE
- Generalize the approach to multi dimensional nonlinear
PDE such Navier stokes and Compressible Euler equation.
- Apply the method to real problems in fluid dynamics, en-
vironmental sciences or the image processing.
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