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Abstract: This work is devoted to an optimized domain decompositiothae applied to a non linear anisotropic reaction equation.
The proposed method is based on the idea of the optimizedoodtder (OO2) method developed this last two decades. Weufiesa
modified fixed point technique to linearize the problem in g weaconverge fately, then we generalize the 002 method ardifynio

to obtain a new more optimized rate of convergence of the &chelgorithm. To compute the new rate of convergence we hsee
Fourier analysis. For the numerical computation we min@las rate of convergence using a global optimization dlgor. Several
test-cases of analytical problems illustrate this apgr@a show the efficiency of the proposed new method.

Keywords: Non linear diffusion equation, Schauder fixed point theqrBaomain decomposition method, Optimized interface condi-
tions.

1 Introduction solution to the problem and new robust, accurate, fast nu-
merical methods to solve this equation.

main decomposition method (DDM) to solve a non linear 2, We prove the existence of a solution of the variational

diffusion equation on a bounded domain such that: problem resulting fromiit, then we propose a new modified
fixed point to converge faster to the solution.

f(x,y) onQ Secondly, We use and generalize an optimized domain de-
—h o’ndQ (1) composition to reduce the cost of time of our algorithm.
h

The domain decomposition method (O02) is a tool we use
for large domain sizes and thin meshes, it consists of solv-
ing in parallel our equations on sub domains with new in-
terface condition in order to reduce the size and the com-
plexity of the problem, the parallelism in new devices of
computer science and architecture make this method easy
to handle. There is so many kind of methods in the do-
main decomposition method (se&7[ and [18] for some
g is a nonlinear function which | name the viscosity de- classi_cal ones), bup in this paper we consider an optimized
: domain decomposition method of two order (O02). Sever-

Ing on \ . %lly used this last decades][...[13]), this method is pow-
function g is depending on the physical model (Thermo'erful and optimized. It's optimized becaus8,{]) we can

elasticity, Plasma physics, Porous media model, Beltram ompute explicitly the rate of convergence between two

model, h_eat transfer, turbulence modellng._..).There 'S SQieration using the Fourier transform and make this rate
money kind of approach (eventually analytical and Varl'optimal so the method will converge quickly. But, the rate

a“onﬁ!' mgthods)to solve this kind of equatloﬁ}]([.[7]). of convergence of this method can be computed only for
Here in this paper, we study generally the existence of a

U+ cu—div(g(u)Ou)
u
u

o ont=0

By an implicit Scheme of discretization, its stationary
equation is:

cu—divg(u)du = f(x,y) onQ B
u=hondQ
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linear partial differential equation, and it's difficulttmve  a i s coerci ve:
and explicit rate for nonlinear partial differential eqioat

Thus come the idea of the modified fixed method com- a(u,u) =/ cu u+/ g(u)Oulu
bined to this optimized fixed point to solve this problem Q Q )
of nonlinearity. In addition, we can prove that the rate of > V||ull

convergence of the OO2 method increases if the viscosity ] ] ]
increases, so we have generalized the method to treat this 1 e Lax Milgram theorem involves that there exist one
challenge. solution of (3) name@(v)

At the end of this work you can find some numerical ex- % We have by substraction:
periment compared to analytical solution that effectively B 1
illustrate the efficiency of our proposed methods. a(@(u) - @(v),w) =0 Yw € Hy(Q)

in another way
2 Method of Modified Fixed point 1. etot) = owyw+ [ gt - o) ow= [ Dpv (e -gu)

In this section we present the Fixed point algorithm andWe takew = @(u) — @(v), so (Thinks to holder and Poincarre
the modified one to solve the stationary problem 2 Inequalities)

The Fixed point method involves given one initial func- 2

tion up, e construct iteratively a function sequengeas VI P(U) = @(V)[|* < KxM x Cpoincarrel| (U) — @(v) | [|u— V]|

follows: M could be chosen a¥ x Cpgincarre < 1, Thus

CUny1 — divg(un)Ouper = f(Xy) onQ 3)
Upr1 =h ondQ

lou) ~ o) < = u—v]

So we give below a convergence result of this algorithm: The theorem of fixed point applied to the applicatipn
show thats the equatiop(u) = u) have one solution and

Theorem 1Suppose that: the suiteun,1 = @(un) converge to this solution which is
- dv>0andy; c>0and;g(x) > v the solution of problem (4)

- gis K-lipshitzian.

- o<1 Remarkin the proof of the theorem we have:

Then the sequence.u = ¢(u,) converge to the unique

solution of the nonlinear problem (3) Vi[o(u) — o(v)[| < Kllu—v]|

Proof: If K is smaller, the Fixed point suite converge quickly. So

By an adequate change, it is sufficient to consider a proofve introduce a new modified fixed point by adding a new
with the Dirichlet conditioru = 0 (The same thing could functionr such that:

be done with a Neumann condition). {cunﬂ7dw<<g(un>+rwn,;un)mum) = f(xy)— div(r(un,Oun)0un) onQ ©
LetV = {ue H3(Q)/g(u) € L}(Q) and||0u|| < M}. Con- i = 0 enag
sider the following application: ris a function we choose to have the Coefficigpsmall.
_ It's necessary to have: R x R — R that assume
gV =V () +r' (% Y)| <& << Land| Oy(r(x || V) Y) 1<
V—u <<l

. . : . Using r, the conditiorgy(x) > v also we don’t have to look
such that u is the unique solution of the variational formu-¢,. 2 sojution with small gradient shown in theorem 1.1

lation: proof.

/ cu w+/ g(v)Dqu:/ f(x,y)w Ywe Hi(Q) (4)  Theorem 2Suppose that, there exist a functionr such that:
Q Q Q a) v=<gX)+r(x,y)>=ub) [gX)+r'(xVY) <& <<
1

& ¢ bellow is well defined, Indeed: Consider the bilin- 2°
ear form: ¢) IGy(rx Y)Y < &2 << 3 - _
then the sequence. = @(un) of the modified fixed point

a(u,w) = / cuw+/ g(u)Ouw converge to a solution of the nonlinear problem (3)
Q @ Proof: LetV = {ue H(Q)/g(u) and r(u) € L}(Q) and | Oul| <
by the Holder and the Poincarré Inequaditis continuous: M} . o
Consider the following application:
a(u,w) < supic ||ul|[w] +M||Cull[| Ow|
e oV —V
< (SUPICICRoincare) + M) | D [ O] Visu
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such that u is the unique solution of the variational formu- called second order optimized method OO2. This method
lation: S ) was developed by different author® 9]. Our stationary
Jo e g ot +rtut= [t ot () ©  equation (2) could be treated in what follow as a reaction
& ¢ is well defined, Indeed: Consider the bilinear form :  advection diffusion equation (the same equation indeed).
The main idea of the OO2 technique is described briefly
a(u,w / CUW+/ ))Oubw as follows: _ _ _
We split the domaim2 for example in two sub-domains
by the Holder and the Poincarré Inequaétis continuous: 0 and@Q; with an interfacd™ (see figure 1) then we built

a(u,w) < Sgp|0| ([ull|wl] + ]| Cul [ Ew|
< (sgp\C\Céomcarre) + @) O[] Ow]
ais coercive: R
a(u,u):/ cuu+/ g(u)Tubu
Q Q \
2
= Vul \ |
The Lax Milgram theorem involves that there exist one so-

lution of (6) namedp(V) [
& It's easy to make:

| clov)— o)+ [ (g +r(w)] Do) - pw) [~

= / (9(V) 4 r(v) — g(u) —r(u))De(v)O(e(u) — @(v))+ two sequenceeip andu'gp respectively solutions of two
Q sub-problems as described bellow:
+/ u)0u — r(v)Ov)O(e(u) — @(v))  We choose two initials functions; defined onQ; anduj
defined onQ, then we consider the two problems:

Fig. 1: splitting of the domain in two sub-domain

S0 LuPth = f(xy) onQ;
v [ 10000~ 9v) 12< &M [[u=v ]| O(0(W) = 9(v) || +£:M || u=v || S(o(v) — @(v) | up"t =0 onoQ (7
< CronearsM {61+ | u—v]| Do)~ o)) | L Br(U™) = Ba(up) onr

. and
We choose M such tha?%“"'”) < 1 The theorem

of fixed point applied to the applicatiop show thats the
equationp(u) = u) have one solution and the suitg 1 =
@(un) converge to this solution which is the solution of the

uw™ =0o0ndQ (8)

{ L(ub™) = f(xy) on@,
Bz(u§+l) = By(u) onr

variational problem of (2) Where PR

Notice that in practice, we can found a function r for more

general conditions even if g and g’ are not bounded. And L(u) = cu+aa + bay HAU ©)
the choice of r is optimal when the physical model of g 5 5 2

is known. Also the convergence is optimal for small and Bi(u) = 55 —Ciu+Cogy —CsmlzJ (10)
bounded function g. Ba(u) = _% —(C1— %)u+Cz c:%r2

n andrt are the normal and the tangent @a
Because of the Fourier analysis we show that the rate of
convergence in the fourier way is (sé&# for proof)

A~ (K) —Cy +ikCy +C3k? ,
The use of finite volumes , finite differences or finite ele- P(C1,C2,Ca.k) = (/\+(k) “Ci+ ikC2+C3k2)
ments solvers on high order meshes requires a high cost of
computation. where
Domain decomposition methods can reduce this cost by - T /22 T 2,2
splitting initial problem into two or more sub-problems AT(k) = atye +4CIJ2 Aiptbler Ay
with smaller dimensions. Many authors have studied do- H
main decomposition methods these last decatiéd §]. The next theorem gives a condition of convergence of the
Among these methods we consider in this work the method>O2 method

3 Domain decomposition with optimized
interface of second order(DDM O02)

(11)
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Theorem 3Suppose that ¢ 0 and sigr{b) = sign(C;) 4 Numerical simulation
and G > Othen,
Numerically, we have implemented the finite volumes method

max||p(Cy,Cz,Cs,K)|| < 1 to apprqach the' sub-problems obtained after applying the
k< g fixed point algorithm. We obtain a good accuracy, the error
is in the order of 10° forward the third iteration on some
Proof. see p] usual test-functions .We take for g respectively the expres
sions

g(u) = upﬂ(p: _17 p= 17p: %)
Remarkin order to optimize the method we need to opti- 9(U) = €"

mize the rate of convergence so we look for: 9(u) = 535
g(u) = 1—|-1u2

min_ max||p(Cy1,Cy,C3,k __1
Cl-,Cz-,CB\kKﬁHp( 1,2,3; )H g(u)—ﬁz

First the figure (2) shows the theoretical error of the 002
method while changing the constant viscogityAnd we
aknowlege that the error rate rises when the viscosity rises
to become big and then without interest for higher viscos-

ity.

For optimizing this rate we have implemented the global
optimization method 14]. Notice that this last problem
have at least two optimums.

In our work, the viscosity is high and for the 002
method proposed the convergence take more time because
the rate of convergence is not small enough and that can

be seen experimentally on so much example of high vis- 10 ‘ ‘ : ‘
cosity, also we can prove that theoretically. Thus, to have a —rate of 002
convergence near to two iterations, we take the generalized 102

artificial coefficients:

By(u) = 34 —Cu+Ciu(0,y—a) -|—(:223_LT1 +C/2%¥—a> 10l
92 92u(0,y—a) 92
o PO o

U0y
Ba(u) = — 9 —C1u+C’lu(0,y2— a) —I—C;z% +§3’27“<0’T 2a) 10"
2 u(0y-a 9
~Cag +Cy ™55 +Cagrgr

error

-3
The fourier transform of the the rate of convergence is cal- 10 0 0.2 0.4 0.6 0.8 1

culated using: viscosity

3(f(x—a)) = e kag(f(x)) Fig. 2: error in function of viscosity
2 .
3(5ay)) = k3 (5
The following results show the error between the ap-

We also optimize the step of our algorithm by Cou- proximate solution using the modified fixed point method

pling 002 and Fixed point next subproblems: and the exact solutiomexact= xy(1 — x)(1—y) of the
problem (1)Error = ||U — Ueyacy),

L™ = f(xy)+div(r(uf)Ouf) on @y

1
1 u' = 0 onoQ h is the mesh grid.
By(ud™) = B1(ub) on r
(12)
and
L(uB™) = f(x,y) +div(r(u?)0uf) on 2
upt = 0 ondQ  (13)
Bo(u™) = Bo(uf) onl
where:
L(u) = cu-+div((r(u,|| Ou[)+g(u)tu)  (14)
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1c° Now, we show the results of combining modified fixed
point and OO2 algorithm.
[+ 1
]
]
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g 2 4 ] 8 10 5
iterations 10
5
Fig. 3: The error: c=10, h=0.025; g(u)=u*u © o
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Fig. 4: The error: c=1, h=0.001 and F(u)=exp(u)
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Fig. 6: c=1, h=0.001 and g(u)=10 si@@) Fig. 10: case4
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The figures 7,8,9,10 showing thé error between the [71J.H. HE, X.H. Wu Exp-function method for nonlinear

combining modified fixed point solution and the 002 wave equations chao§olutions and Fractals, 30(3), 700-
algorithm and the exact solution. 708, 2006.
[8] M.J.GANDER, Optimized Schwartz MethodSIAM Jour-
Test casel: c=1, , h=0.0004(u) = log(u)and Ugxact = nal on Numerical Analysis, 44(2), 699-731, 2006.
X+y)(1—=x)(1-y). [9] F.NATAF, F. ROGIER AND E. DE STURLER, Optimal inter-
Test case2: ¢c=10, h=0.001, g(% anduexact= exp(xy(1— face condition for domain decomposition methddsJAP
X)(1—y))—1. (Ecole Polytechnique), 1994.

[10] D.K. KAusHIK, D.E. KeYEs, B.F.SvITH, Newton-

1 .
Test case3: c=1, h=0,004(u) = u? anduexact= SIn(T(x+ Krylov-Schwarz Methods for Aerodynamics Problem: Com-

y))exﬁxy(l.— )_()(1_3/)) — 1. pressible and uncompressible flows on unstructured grids
Test case4: ¢=10, h=0,00d(u) = exp(u) — 1 anduexact= In Proceedings of the 11th International Conference on
Xy(1—x)(1—Yy). his the mesh grid Domain Decomposition Methods. Domain Decomposition

Press, Bergen, (1999, February).
[11] FiLIPA CAETANO, LAURENCE HALPERN, Algorithme de
décomposition de domaine pour une équation de réaction-
5 Conclusion diffusion non linéairgAbstract ,Universit Paris 13, 2009
[12] FiLIPA CAETANO, LAURENCHALPERN, MARTIN J. GAN-

In this work, we have developed an optimized domain de- DER, JEREMIE SZEFTEL, Schwartz waveform relaxation al-

composition algorithm applied to a non linear PDE. We gggtgrgs fzoorls(,)emmnear reaction-diffusion equatior3),
Erstly, have proppsed a proof of the convergence Of.the[13] CAR-OLII\’IE JAP}-—|ET, Méthode de décomposition de domaine
ixed point technique applied to the non "”eaf equation. et conditions aux limites artificielles en mécanique des flu
We have propose.d anew approach for qomputlng the CON- " ides : méthode optimisée d’'ordre ADoctoral dissertation,
vergence rate using the Fourier analysis and global opti- jiersit Paris-Nord-Paris XIIT), 1998.

mization. Secondly we have presented several 1est-Cas@py) MonamMED  ZERIAB ES-SAI'DEK, Contribution &
to show the efficiency of this approach. The fundamental' " optimisation globale : Approche déterministe et stosha
result is that we obtained high accuracy and a fast method tique et applications; Doctoral dissertation, INSA de
with a well optimized rate of convergence of the proposed  Rouen, 2009.

algorithm in comparison with global calculation using €las [15] F.HecHT, Fluid Mechanics Cours NSF03 , Master II,
sical solvers. As perspective of the present work, we can  Mecanique, Parcours Fluid-Mechanics, Universite Pietre e

study the following ideas: Marie curie, Paris, France
- Obtaining a rate of convergence of two iterations to this[16] SoFIANE HADJI AND GOURI DHATT, Assymptotic Newton
PDE method for solving incompressible floyournal for numer-

- Generalize the approach to multi dimensional nonlinear _ical methods in fluids, 25(8), 861-878, 1997.
PDE such Navier stokes and Compressible Euler equatiori17] ALFIO QUARTERONI, ALBERTO VALLI, Domain decom-
- Apply the method to real problems in fluid dynamics, en- position methods for partial differential equatign@xford
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