
Appl. Math. Inf. Sci.11, No. 1, 189-194 (2017) 189

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/110123

Global Stability of a Delayed HIV-1 Model with
Saturations Response

Nigar Ali1, Gul Zaman1,∗ and M. Ikhlaq Chohan2

1 Department of Mathematics, University of Malakand, Chakdara Dir (Lower), Khyber Pukhtunkhwa, Pakistan
2 Department of Business Administration and Accounting, Buraimi University College, Al-Buraimi, Oman

Received: 2 Jul. 2016, Revised: 15 Nov. 2016, Accepted: 22 Nov. 2016
Published online: 1 Jan. 2017

Abstract: In this article, an HIV-1 infection dynamical model with saturation response including two continuous delays is presented.
One delay represents the latent period between the time of contact of virus particles with targeted cells and the time of entering into
the cells. While the other delay is used for the period of production of new virions that release from the infected cells. The basic
reproduction numberR0 is investigated and proved that ifR0 ≤ 1, the infection-free equilibrium is globally asymptotically stable.
However, ifR0 > 1, then an infected equilibrium occurs which is globally asymptotically stable. The analytical and numerical results
show that time delays have great effect on the global stability of equilibria because the basic reproduction number depends on both the
delays.
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1 Introduction

Mathematical modeling is used in epidemiology, to
understand the mechanisms of the spread of any disease
and its control strategies. Human immunodeficiency virus
(HIV-1) is a lentivirus that causes acquired
immunodeficiency syndrome (AIDS). The HIV-1
infection passes through three stages that are: (1) acute
HIV infection, (2) clinical latency, and (3) AIDS
(acquired immunodeficiency syndrome). During the acute
period of infection, large amounts of virus are being
produced in your body. The virus uses CD4 count to
replicate and destroys them in the process which can fall
CD4 cells rapidly. During this infection the immune
response will begin to bring the level of virus in human
body back down to a level called a viral set point, which
is a relatively stable level of virus in human body. After
the acute stage of HIV infection, the disease moves into a
stage called the clinical latency stage. During the clinical
latency stage, the HIV virus continues to reproduce at
very low levels, although it is still active. AID is the stage
of HIV infection that occurs when your immune system is
badly damaged and you become vulnerable to
opportunistic infections.

People living with HIV may progress through these
stages at different rates, depending on a variety of factors,
including their genetic makeup, how healthy they were
before they were infected, how soon after infection they
are diagnosed and linked to care and treatment. Some
mathematical models for controlling the infectious of
HIV-1 recombinant virus can be found in [1,2,3]. A
following differential equations is used as a classical
model for the HIV-1

ẋ(t) = λ − dx(t)−β x(t)v(t),

ẏ(t) = β x(t)v(t)− ay(t), (1)

v̇(t) = ky(t)− pv(t),

wherex(t) represents the density of uninfected cells,y(t)
stands for infected cells density andv(t) denoted the
density of infected virus.λ is the rate of production
uninfected cells andd is their death rate.β is the rate of
contact of virus with the target cells. It is assumed in the
above model that the infected cells, may die at a ratea or
each cell creates the virus at a ratek. This model was
modified by Revilla and Garcia-Ramos in [3] by adding
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recombinant virus to the model (1) is given by

ẋ(t) = λ − dx(t)−β x(t)v(t),

ẏ(t) = β x(t)v(t)− ay(t)−αw(t)y(t),

ż(t) = αw(t)y(t)− bz(t), (2)

v̇(t) = ky(t)− pv(t),

ẇ(t) = cz(t)− qw(t),

with initial condition

x(0)≥ 0,y(0)≥ 0,z(0)≥ 0,v(0)≥ 0,w(0)≥ 0. (3)

Herew(t) represents the density of recombinant virus and
z(t) denotes the density of cells which are infected by
both viruses.α is the rate of infection of infected cells by
recombinant virus.q is the rate of removal of recombinant
virus. b is death rate of infected cellsz. These infected
cells release recombinant at ratecz. Revilla and
Garcia-Ramos [3] presented the structure of equilibrium
solutions and their simulations of the model (2). Jiang et.
al. [4] further modified the model (2) and presented a
control strategy by incorporating the constant injection
rate of the recombinant virus. It has been shown that
increasing the injection rate of recombinant is fruitful for
reducing the HIV virus [5,6,7].

We extend the model (2) by considering the Holling
type-II functional response and two delays functions. The
delay termτ1 represents the latent period between the
time of contact of virus particles with target cells and the
time of entering into the cells and while the other delayτ2
is used for the period of production of new virion that
release from the infected cells. The Holling type-II
functional response is represented by 1

1+σv(t) . By
incorporating the above modification, our model becomes

ẋ(t) = λ − dx(t)−
β x(t)v(t)
1+σv(t)

,

ẏ(t) =
β e−a1τ1x(t − τ1)v(t − τ1)

1+σv(t − τ1)
− ay(t)−αw(t)y(t),

ż(t) = αw(t)y(t)− bz(t),

v̇(t) = ke−a2τ2y(t − τ2)− pv(t),

ẇ(t) = cz(t)− qw(t). (4)

First, the positivity and bounded of the proposed model
will be presented. Then, the reproduction numberR0 will
be investigated to prove the global behavior of the
proposed model. We will study global stability of the
equilibria at the disease free and endemic equilibria. The
analytical and numerical results show that time delays
have great effect on the global stability of equilibria
because the basic reproduction number depends on both
the delays.

In next the section, the positivity and well posdeness
of the solutions is proved. In the same section the basic
reproduction numberR0 is presented. The analysis of the

disease free equilibrium E0 and single-infection
equilibrium E1, under some conditions on the
reproductive numbers, are discussed in Section 3.
Numerical examples are presented in Section 4. In the last
Section, conclusion and discussion are drawn.

2 Positivity and well-posdeness of the solution

The following theorem gives boundedness and positivity
of the solution.

Theorem 2.1. The solutions of the model (4) are
non-negative and bounded with the initial condition (3).

Proof. Let X = C[(−max(τ1,τ2),0);R5] be the Banach
space of continuous mapping from[(−max(τ1,τ2),0);R5]
to R5 equipped with the sup-norm. We further suppose
that x(t) =

(

x(t),y(t),z(t),v(t),w(t)
)

and
xt(ν) = x(t + ν) for ν ∈ [(−max(τ1,τ2),0]. By using
fundamental theory of FDEs [8], for any initial condition
ϕ ∈ X with ϕ ≥ 0 we know that there exists a unique
solutionx(t,ϕ) satisfyingx(ν,ϕ) = ϕ(υ).
Now the system (4) can be written as ˙x(t) = f (xt ), where

f (xt) =





























λ − dx(0)− β x(0)v(0)
1+σv(0)

β e−a1τ1x(−τ1)v(−τ1)
1+σv(−τ1)

− ay(0)−αw(0)y(0)

αw(0)y(0)− bz(0)

ky(0)− pv(0)

cz(0)− qw(0)





























.

It can be shown that if anyϕ ∈ X satisfiesϕ ≥ 0,ϕi(0) = 0
for somei, then f (ϕi) ≥ 0. Therefore, by using Theorem
2.1 on page (81) in [9], we know thatx(t,ϕ) ≥ 0 for all
t ≥ 0 in its maximal interval of existence ifϕ ≥ 0.

Next we show the boundedness of the solution. To do
this let us consider

G(t) = cke−a1τ1x(t − τ1)+
ac
2

ea2τ2v(t + τ2)+
bk
2

w(t)

+cky(t)+ ckz(t).

Calculating the derivative, and using the system (4), we
have

dG(t)
dt

= cke−a1τ1

(

λ − dx(t − τ1)−β x(t − τ1)v(t − τ1)

)

+ck

(

β e−a1τ1x(t − τ1)v(t − τ1)− (a+αw(t))y(t)

)

+ck

(

αw(t)y(t)− bz(t)

)

+
ac
2

ea2τ2

(

ke−a2τ2y(t)

−pv(t + τ2)

)

+
bk
2

(

cz(t)− qw(t)

)

.
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After some rearrangement, we get

dG(t)
dt

= ckλ e−a1τ1 −

(

cdke−aτ1x(t − τ1)+
1
2

acky(t)

+
1
2

bckz(t)+
bkq
2

w(t)+
ac
2

pea2τ2v(t + τ2)

)

≤ ckλ e−a1τ1 −ρG(t),

whereρ = min{d, a
2,

b
2,q, p}. Which shows thatG(t) is

bounded.�

3 Analysis of single and double infections

The system (4) has three equilibria, virus-free
equilibrium E0, recombinant absent equilibriumE1 and
recombinant present equilibriumE2 as follows:

E0 =
( λ

d
,0,0,0,0

)

,

E1 =

(

apea1τ1+a2τ2 +σλ k
k(σd +β )

,
pe−a1τ1

ak

( λ β k−apdea1τ1+a2τ2

σd +β
)

,0,

λ β k−apdea1τ1+a2τ2

apea1τ1+a2τ2 (σd +β )
0

)

,

E2 =

(

A
B
,

qb
αc

,
1

Bαc

( αcβ ke−(a1τ1+a2τ2)A−a(αcp+ kqbσe−a2τ2 ))B

(αcp+ kqbσe−a2τ2 )

)

,

kqbe−a2τ2

αcp
,

1
Bα

( αcβ ke−(a1τ1+a2τ2)A−a(αcp+ kqbσe−a2τ2 )B

(αcp+ kqbσe−a2τ2 )

)

)

,

where,
A = αcpλ + σkqbde−a2τ2λ and

B = αcpd+σkqbde−a2τ2 +β kqbe−a2τ2.
In epidemiological models the threshold quantityR0 is
called the basic reproduction number of the disease which
is a key concept [10]. It represents the expected average
number of new infections produced directly and indirectly
by a single infective, when introduced into a completely
susceptible population. The basic reproductive number
for our proposed model is

R0 =
λ β k
apd

e−(a1τ1+a2τ2).

For the third equilibrium to exist, the density of the
recombinant virus must be exist and should be greater
than zero, which determine the other reproductive number

R2 =
αcd p

β bkqe−a2τ2
(R0−1).

Hence,R2 > 1 if and only if R0 > R1, whereR1 = 1+
β bkqe−a2τ2

αcd p .

Theorem 3.1. If R0 < 1, thenE0 is globally asymptotically
stable.

Proof. Let us consider

V0(t) =
e−a1τ1

2
(x(t)−

λ
d
)2+

λ
d
(y(t)+ z(t))+ ea2τ2

aλ
kd

v(t)

+
bλ
cd

w(t)+
β λ
d

e−a1τ1

∫ t

t−τ1

x(φ)v(φ)
1+σv(φ)

d(φ)

+
aλ
d

∫ t

t−τ2

y(φ)dφ .

By taking derivative, we have

d
dt
(V0(t)) = −e−a1τ1(x(t)−

λ
d
)ẋ+

λ
d

ẏ+
λ
d

ż+ ea2τ2
aλ
kd

v̇

+
β λ
d

e−a1τ1

(

Ψ(t − τ1)−
x(t)v(t)

1+σv(t)

)

+
bλ
cd

ẇ+
aλ
d

(

y(t − τ2)− y(t)

)

,

whereΨ(t − τ1) =
x(t−τ1)v(t−τ1)

1+σv(t−τ1)
. By using the system (4)

and after some rearrangement, we have

d
dt

(V0(t)) = −e−a1τ1(x(t)−
λ
d
)

(

λ −dx(t)−
βx(t)v(t)
1+σv(t)

)

+
λ
d

(

βe−a1τ1Ψ (t − τ1)− (a+αw(t))y(t)

)

+
λ
d

(

αw(t)y(t)−bz(t)

)

+ea2τ2
aλ
kd

(

ky(t)− pv(t)

)

+
βλ
d

e−a1τ1

(

Ψ (t − τ1)−
x(t)v(t)

1+σv(t)

)

+
bλ
cd

(

cz(t)−qw(t)

)

+
aλ
d

(

y(t − τ2)−y(t)

)

.

Now using the infection free equilibrium point
and some simplification, we get

d
dt
(V0(t)) = −e−a1τ1(x(t)−

λ
d
)2−

apea2τ2λ
dk

(1−R0)v(t)

−
qbλ
cd

w(t).

Noting that whenR0 ≤ 1, we haved
dt (V0(t)) ≤ 0. But the

equality holds only ifx0 =
λ
d , y(t) = 0, z(t) = 0, v(t) = 0,

w(t) = 0. Then by LaSalle’s invariance principle (see [11,
12]), we conclude thatE0 is globally asymptotically stable
whenR0 < 1.�

Theorem 3.2. When 1< R0 < R1, then E1 is globally
asymptotically stable.

Proof. Let us construct the following Lyapunov functional

V1(t) =V11(t)+β x1v1e−a1τ1V12(t)+ aV13(t), (5)

where

V11(t) = e−a1τ1(x(t)− x1 lnx(t))+ (y(t)− y1 lny(t))+ z(t)

+
aea2τ2

k
(v(t)− v1 lnv(t))+

b
c

w(t),

V12(t) =
∫ t

t−τ1

(

x(ξ )v(ξ )
x1v1(1+σv(t))

−
1

(1+σv1)
ln(

x(ξ )v(ξ )
x1v1(1+σv(t))

)

)

dξ ,

V13(t) =
∫ t

t−τ2
y(ξ )dξ .
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Now by taking derivative of (5), we have

d
dt

V1(t) = e−a1τ1(1−
x1

x(t)
)x

′
(t)+ (1−

y1

y(t)
)y

′
(t)+

b
c

w
′
(t)

+z
′
(t)+

aea2τ2

k
(1−

v1

v
)v

′
(t)+β x1v1e−a1τ1

(

Ψ(t)
x1v1

−
1

1+σv1
ln
( x(t)v(t)

x1v1(1+σv(t))

)

−
x(t − τ1)v(t − τ1)

x1v1(1+σv(t − τ1))

+
1

1+σv1
ln(

x(t − τ1)v(t − τ1)(1+σv1)

x1v1(1+σv(t − τ1))

)

+a
(

y(t)− y(t − τ2)
)

.

(6)

By using the recombinant absent equilibriumE1 and the
model (4), we get the following identities

λ = dx1− e−a1τ1
β x1v1

1+σv1
,

β e−a1τ1x1v1

1+σv1
= ay1,

e−a2τ2ky1 = pv1.

Using the above identities in equation (6) and the system
(4), we obtain

d
dt

V1(t) = e−a1τ1(2−
x1

x
−

x
x1
)+

β x1v1e−aτ1

1+σv1
(

3−
x1

x
−

v1y(t − τ2)

vy1
−

(1+σv(t))y1x(t − τ1)v(t − τ1)

(1+σv(t− τ1))x1v1y

+ ln(
x(t − τ1)v(t − τ1)(1+σv(t))

x(t)v(t)(1+σv(t − τ1))
)

)

+
αd p

aβ ke−a2τ2
(R0−R1)w(t). (7)

By using the results in [13], the following inequities hold,

e−a1τ1(2−
x1

x
−

x
x1
)≤ 0,

(

3−
x1

x
−

v1y(t − τ2)

vy1
−

(1+σv(t))y1x(t − τ1)v(t − τ1)

(1+σv(t− τ1))x1v1y

+ ln
(x(t − τ1)v(t − τ1)(1+σv(t))

x(t)v(t)(1+σv(t − τ1))

)

−
v1y(t − τ2)

vy1

)

≤ 0.

Therefore, from equation (7), we havedV1
dt ≤ 0, whenR0 ≤

R1 but the equality holds, whenx = x1 andy = y1 v = v1
andw = 0. We conclude thatE1 is globally asymptotically
stable (see [11]). �

4 Numerical simulation

In this section, we give some numerical examples to
illustrate the above theoretical results. For numerical
simulation, we choose the parameters values which are
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Fig. 1: The plot shows the density of uninfected cells.

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
The plot represents the density of infected cells

time t (days)

In
fe

c
te

d
 c

e
ll
s
 y

(t
)

 

 

σ=0.000001

σ=0.1

σ=0.3

Fig. 2: The plot represents the density of infected cells.

biological feasible from [14,15] with the initial conditions
x(0) = 5.0,y(0) = 1.0,z(0) = 2.0,v(0) = 0.5,w(0) = 4.0.
Example 1. In the system (4) we choose the parameters
values asλ = 4,d = 0.21,a = 0.33,c = 40,b = 5.6, p =
q = 5.6,τ1 = 10,τ2 = 10,k = 50,α = β = 0.004,σ =
0.000001,a1 = a2 = 0.1. The results of numerical
simulation are represented in Figure 1 - 5. It gives that
R0 = 0.0272889842985< 1 and the system (4) has
disease free equilibriumE0(19,0,0,0,0). By the
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Fig. 3: The plot represents the density of double infected cells.

theorem(2.1), we obtain infection-free equilibriumE0 of
the system (4) is globally asymptotically stable. In figure
1 the uninfected cells increasing sharply for all given
values ofσ at the first few days and then gradually goes
to stable state. In figures 2 and 3 sharply decreases and
the density of double infected and infected cells are
almost similar for all given values ofσ . In figures 4 and 5
sharply increases and the density of virus and
recombinant cells are different for all given values ofσ .
Example 2. In the system (5), we set
λ = 2,d = 0.10,a = 0.5,c = 40,b = p = q = 5.6,σ =
0.0005,α = β = 0.002,a1 = a2 = 0.2,τ1 = τ2 = 5 with
the above initial conditions. It shows that
1< R0 = 1.34< R1 = 13.84 and the system (5) has single
infection equilibriumE0(2.94,140,3.696,170,0,0). Thus
by theorem(2.1) we prove that the system4) is globally
asymptotically stable.
Example 3. In the system (5, we takeλ = 2,α = β =
0.002,d = 0.10,a = 0.5,c = 40,b = 2, p = q = 5.6,k =
70,a1 = a2 = 0.2,τ1 = τ2 = 5,σ = 0.0009 with the above
initial conditions. It shows thatR1 = 1.34> 1 and thus the
system (4), is globally asymptotically stable.

5 Conclusion and discussion

We developed HIV-1 therapy delay differential model
with saturation rate by including two delays. One delay
represented in the latent period for cell infection while the
second delay the other delay is used for the period of
production of new virion that release from the infected
cells. The basic reproduction numberR0 is obtained and
two others reproduction numbersR1 and R2 are also
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Fig. 5: The plot represents the density recombinant (genetically
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investigated which are different from the basic
reproduction number R0. We proved that the
infection-free equilibrium is globally asymptotically
stable ifR0 < 1. While if R0 > 1, then the infection-free
equilibrium becomes unstable and there occurs a
single-infection equilibrium which is globally
asymptotically stable ifR0 < R1. Furthermore, ifR1 < R2,
then E1 is unstable and there existsE2. Our Numerical
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results shown that delay can control the viral load to
minimum value due to which the rate of infection is
reduced and the number of infected cells becomes
minimum.
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