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Abstract: In this paper, some implicit type methods for solving general variational inequalities are suggested and investigatedusing
the auxiliary principle technique. It is shown that the convergence of the implicit method requires only theg-pseudomonotonicity, which
is a weaker condition thang-monotonicity. Our results can be viewed as important refinement and improvement of the known results.
The technique and ideas of this paper may be extended for other classes of variational inequalities and related optimization problems.
Some special cases are also discussed.
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1 Introduction

Variational inequalities, which were introduced by
Stampacchia [14] can be considered as a natural and
important extension of the variational principles. Several
unrelated problems, which arise in various fields of pure
and applied sciences can be studied in the general and
unified framework of variational inequalities, see [1–14]
and the references therein. It is well known that the
optimality conditions of the differentiable and
nondifferentiable convex functions can be characterized
by Variational inequalities. In the recent years, the
concept of convexity has been generalized in several
directions, see, for example, [2] and the references
therein. A significant generalization of the convex set is
the introduction of theg-convex set [2] and g-convex
function [11]. We would like to emphasize thatg-convex
sets andg-convex functions may not be convex sets and
convex functions. It has been shown [11] that the
minimum of a differentiableg-convex function on the
g-convex set can be characterized by a class of variational
inequalities. This fact has been used to introduce and
consider a new class of variational inequalities, which is
called the general nonlinear variational. Some iterative
methods have been suggested for general variational
inequalities uisng the fixed point approach. It is well
known that the convergence of the projection methods
requires that the operator must be strongly monotone and
Lipschitz continuous. These are very strict conditions to

verify. This fact motivated to modify the projection
method or to develop other methods. The
extragradient-type methods [5] overcome this difficulty
by performing an additional forward step and a projection
at each iteration according to the double projection. Their
convergence requires only that a solution exists and the
monotone operator is Lipschitz continuous. To overcomes
these difficulties, several modified projection and
extragradient-type methods have been suggested and
developed for solving variational inequalities. We would
to point out that the projection technique can’t be
extended and generalized for solving some classes of
variational inequalities involving the nonlinear
(non)differentiable functions. These facts motivated us to
use the auxiliary principle technique, which is mainly due
to Glowinski et al. [4]. Noor [9,10] used this technique to
suggest some iterative methods for solving various classes
of variational inequalities. This technique deals with
finding the auxiliary variational inequality and proving
that the solution of the auxiliary problem is the solution
of the original problem by using the fixed-point approach.
It is well known that a substantial number of numerical
methods can be obtained as special cases from this
technique, see [9,10].

In this paper, we use the auxiliary principle technique
to suggest an implicit iterative method for solving the
general variational inequalities, see Algorithm 3.3. Using
the predictor-corrector technique, it is shown that this
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implicit method is equivalent to the extragradient method,
see Algorithm 3.4 and Algorithm 3.5. In particular, for
g = I, the identity operator, we obtain the extragradient
method of Korpelevich [5] for solving the variational
inequalities. We have proved that the convergence of the
implicit iterative method only requires the
g-pseudomonotonicity, which is a weaker condition than
g-monotonicity. Consequently, we have improved the
convergence criteria of the extragradient method of
Korpelevich [5]. Some special cases are also considered.
The ideas and techniques of this paper may be starting
point for a wide range of novel and innovative
applications of the general variational inequalities in
various fields.

2 Preliminaries

Let H be a real Hilbert space whose inner product and
norm are denoted by〈·, ·〉 and‖.‖ respectively. LetK be a
nonempty closed convex set inH.

For given nonlinear operatorsT,g : H → H, we
consider the problem of findingu ∈ H : g(u) ∈ K such
that

〈Tu,g(v)− u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K. (1)

The inequality of the type (1) is called the general
variational inequality involving two operators, which was
introduced and studied by Noor [11]. For the numerical
analysis, applications and other aspects of these
variational inequalities, see [7, 8, 12, 13] and the
references therein. It has been shown [11] that the
minimum of a differentiable nonconvex function on a
nonconvex setK in H can be characterized by the general
variational inequality (1).

For g = I, the identity operator, the general variational
inequality (1) is equivalent to findingu ∈ K such that

〈Tu,v− u〉 ≥ 0, ∀v ∈ K, (2)

which is known as the classical variational inequality and
was introduced by Stampacchia [14]. For the recent
applications, numerical methods, sensitivity analysis,
dynamical systems and formulation of variational
inequalities, see [1–12,12,14] and the references therein.

Lemma 2.1 [3, 4]. Let K be a closed convex set inH.

Then, for a givenz ∈ H, u ∈ K satisfies the inequality

〈u− z,v− u〉 ≥ 0, ∀v ∈ K,

if and only if, u = PKz, wherePK is the projection of
H onto the closed convex setK in H. It is well known that
the projection operatorPK is a nonexpansive operator.

We now define a new concept of
g-pseudomonotonicity.

Definition 2.3. An operator T : H → H said to be
g-pseudomonotone with respect to an arbitrary operatorg,
if and only if,

〈Tu,g(v)− u〉 ≥ 0, implies 〈T v,v− g(u)〉 ≥ 0,

∀u,v ∈ H.

If g = I, the identity operator, then Definition 2.3 reduces
to the usual definition of pseudmonotonicity.

3 Main Results

In this Section, we use the auxiliary principle technique
of Glowinski et al [4], as developed by Noor [9, 10] to
suggest and investigate some implicit type methods for
solving the general variational inequality (1).

For a givenu ∈ H : g(u) ∈ K satisfying (1), consider
the problem of findingw ∈ H : g(w) ∈ K such that

〈ρTu+w− g(u),g(v)−w〉≥ 0,

∀v ∈ H : g(v) ∈ K, (3)

which is called the auxiliary general variational
inequality. Clearly, ifw = g(u), thenw ∈ H;g(w) ∈ K is
the solution of (1). This observation enables us to suggest
the following iterative method for solving the general
variational inequality (1).

Algorithm 3.1. For a givenu0 ∈ H, find the approximate
solutionun+1 by the iterative schemes

〈ρTun + un+1− g(un),g(v)− un+1〉 ≥ 0,

∀v ∈ H;g(v) ∈ K,

which is equivalent to the following iterative method,
using Lemma 2.1.

Algorithm 3.2. For a givenu0 ∈ H, find the approximate
solutionun+1 by the iterative schemes

un+1 = PK [g(un)−ρTun], n = 0,1,2...

Algorithm 3.2 was suggested and investigated by
Noor [11] for solving (1). For the convergence analysis of
Algorithm 3.1, see Noor [10, 11], where its has been that
the convergence analysis of Algorithm 3.1 requires that
the operatorT must be strongly monotone and Lipschitz
continuous. These are very strict conditions and rule out
its applications in many problems. To overcome these
drawbacks, we again use the fixed point formulation (3)
to suggest an other iterative method using the auxiliary
principle technique.

For a givenu ∈ H : g(u) ∈ K satisfying (1), consider
the problem of findingw ∈ H : g(w) ∈ K such that

〈ρTw+w− g(u),g(v)−w〉≥ 0,

∀v ∈ H : g(v) ∈ K, (4)
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which is called the auxiliary general variational
inequality.
We point out that problem (3) and (4) are quite different.
If g(w) = u, then clearlyw ∈ H;g(w) ∈ K is a solution of
(1). This enables to suggest the following iterative method
for solving (1).

Algorithm 3.3. For a givenu0 ∈ H, find the approximate
solutionun+1 by the iterative schemes

〈ρTun+1+ un+1− g(un),v− un+1〉 ≥ 0,

∀v ∈ H;g(v) ∈ K. (5)

Using Lemma 2.1, Algorithm 3.3 is equivalent to the
following iterative method.

Algorithm 3.4. For a givenu0 ∈ H, find the approximate
solutionun+1 by the iterative schemes

un+1 = PK [g(un)−ρTun+1], n = 0,1, . . .

Algorithm 3.3 is an implicit method. To implement
Algorithm 3.1, one usually uses the predictor-corrector
technique. We use Algorithm 3.1 as predictor and
Algorithm 3.3 as corrector. Consequently, Algorithm 3.3
is equivalent to the following iterative method.

Algorithm 3.5. For a givenu0 ∈ H, find the approximate
solutionun+1 by the iterative schemes

〈ρTun + yn − g(un),g(v)− yn〉 ≥ 0,

∀v ∈ H : g(v) ∈ K

〈ρTyn + un+1− g(un),g(v)− un+1〉 ≥ 0,

∀v ∈ H;g(v) ∈ K.

Using Lemma 2.1, Algorithm 3.5 is equivalent to the
following predictor-corrector method for solving (1).

Algorithm 3.6. For a givenu0 ∈ H, find the approximate
solutionun+1 by the iterative schemes

yn = PK [g(un)−ρTun]

un+1 = PK [g(un)−ρTyn],

n = 0,1, . . . .

Algorithm 3.3 is the the extragradient method for solving
general variational inequality (1) in the sense of
Korpelevich [5].

We remark that ifg = I, the identity operator, then
Algorithm 3.6 reduces to:

Algorithm 3.7. For a givenu0 ∈ H, find the approximate
solutionun+1 by the iterative schemes

yn = PK [un −ρTun]

un+1 = PK [un −ρTyn], n = 0,1, . . . .

Algorithm 3.7 is known as an extragradient method for
solving variational inequalities (2)and is mainly due to

Korpelevich [5].

We now again use the auxiliary problem (4) to suggest
the following predictor-corrector method for solving the
problem (1).

Algorithm 3.8. For a givenu0 ∈ H, find the approximate
solutionun+1 by the iterative schemes

〈ρTun + yn − g(un),g(v)− yn〉 ≥ 0,

∀v ∈ H : g(v) ∈ K

〈ρTyn + un+1− g(yn),g(v)− un+1〉 ≥ 0,

∀v ∈ H;g(v) ∈ K.

Using Lemma 2.1, Algorithm 3.8 is equivalent to the
following predictor-corrector method for solving (1).

Algorithm 3.9. For a givenu0 ∈ H, find the approximate
solutionun+1 by the iterative schemes

yn = PK [g(un)−ρTun]

un+1 = PK [g(yn)−ρTyn], n = 0,1, . . . .

Algorithm 3.9 is the the extragradient method for solving
general variational inequality (1) in the sense of Noor
[10].

We remark that ifg = I, the identity operator, then
Algorithm 3.6 reduces to:
Algorithm 3.10. For a given u0 ∈ H, find the
approximate solutionun+1 by the iterative schemes

yn = PK [un −ρTun]

un+1 = PK [yn −ρTyn], n = 0,1, . . . .

Algorithm 3.10 is known as modified extragradient
method for solving variational inequalities (2), which is
mainly due to Noor [9,10].

It is important to note that extragradient method of
Korpelevich [4] and modified double projection method
of Noor[9,10] are quite different from each other and their
convergent analysis need different techniques. The
auxiliary principle technique can be used to construct
several iterative methods for solving variational
inequalities.

We now consider the convergence analysis of
Algorithm 3.3 under some suitable mild conditions.
Theorem 3.1. Let u ∈ H : g(u) ∈ K be a solution of (1)
and letun+1 be the approximate solution obtained from
Algorithm 3.3. If the operatorT is g-pseudomonotone,
then

‖g(u)− un+1‖
2 ≤ ‖g(u)− g(un)‖

2−‖un+1− g(un)‖
2
, (6)

Proof. Let u∈H : g(u)∈K be solution of (1). Then, using
theg-pseudomonotonicity ofT, we have

〈T v,v− g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K. (7)

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


168 M. A. Noor, K. I. Noor: Auxiliary principle technique for...

Takev = un+1 in (7), we have

〈Tun+1,un+1− g(u)〉 ≥ 0. (8)

Takingv = u in (5), we have

〈ρTun+1+ un+1− g(un),g(u)− un+1〉 ≥ 0. (9)

From (8) and (9), we have

〈un+1− g(un),g(u)− un+1〉 ≥ 0,

which implies, using
2〈u,v〉= ‖u− v‖2−‖u‖2−‖v‖2

, ∀u,v ∈ H, that

‖g(u)− un+1‖
2 ≤ ‖g(u)− g(un)‖

2−‖un+1− g(un)‖
2
,

the required result (6). �

Theorem 3.2. Let u ∈ H : g(u) ∈ K be a solution of (1)
and letun+1 be the approximate solution obtained from
Algorithm 3.3. If the operatorT is g-pseudomonotone and
g-inverse eixts, then limn→∞ g(un) = u.
Proof. Let ū ∈∈ H : g(ū) ∈ K be a solution of (1). Then,
the sequences{‖g(un)− ū‖} is nonincreasing and bounded
and

∞

∑
n=0

‖un+1− g(un)‖
2 ≤ ‖g(u0)− gu‖2

,

which implies

lim
n→∞

‖g(un+1)− g(un)‖= 0, (10)

that is,
lim
n→∞

un = u

sinceg−1 exits.
Let û be a cluster point of{un}; there exists a

subsequence{uni} such that {uni} converges to ˆu.
Replacingun+1 by uni in (5) and taking the limits and
using (10), we have

〈T û,g(v)− g(û)〉 ≥ 0, ∀v ∈ K.

This shows that ˆu ∈ H : g(û) ∈ K solves (1) and

‖un+1− g(û)‖2 ≤ ‖g(un)− g(û)‖2
,

which implies that the sequence{un} has a unique cluster
point and limn→∞ un = û, is the solution of (1), the
required result. �.
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