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Abstract: In this paper, some implicit type methods for solving geheaaiational inequalities are suggested and investigataag
the auxiliary principle technique. It is shown that the cengence of the implicit method requires only thpseudomonotonicity, which
is a weaker condition thagrmonotonicity. Our results can be viewed as important refiere and improvement of the known results.
The technique and ideas of this paper may be extended far cidsses of variational inequalities and related optitiozeproblems.
Some special cases are also discussed.

Keywords: Variational inequalities, nonconvex functions, fixedfgiroblem, Projection operator, convergence.
2010 AMS Subject Classification:49J40, 90C33

i verify. is fact motivated to modi e projection

1 Introduction This fact motivated t dify th t
method or to develop other methods. The

Variational inequalities, which were introduced by €xtragradient-type method$][overcome this difficulty
Stampacchia 14 can be considered as a natural and by perfo.rmlng an adqunal forward step and'aprOJectmr.\
important extension of the variational principles. Selera &t €ach iteration according to the double projection. Their
unrelated problems, which arise in various fields of pureCONVergence requires only that a solution exists and the
and applied sciences can be studied in the general anffonotone operator is Lipschitz continuous. To overcomes
unified framework of variational inequalities, seb-14]  these difficulties, several modified projection and
and the references therein. It is well known that thextragradient-type methods have been suggested and
optimality conditions of the differentiable and developed for solving variational inequalities. We would
nondifferentiable convex functions can be characterized® Point out that the projection technique can't be
by Variational inequalities. In the recent years, the extended and generalized for solving some classes of

concept of convexity has been generalized in severay@rational —inequalities involving ~the  nonlinear
directions, see, for example2][ and the references (non)differentiable functions. These facts motivatedais t

therein. A significant generalization of the convex set isYS€ the auxiliary principle technique, which is mainly due
the introduction of theg-convex set 2] and g-convex to Glowinski et'al. {1]_. Noor [9, 10] used tr_us technlque to
function [11]. We would like to emphasize thatconvex suggest some |fterat|ve.r_nethods. for solw_ng various classes
sets andg-convex functions may not be convex sets and®f variational inequalities. This technique deals with
convex functions. It has been showrdl] that the finding the agxmary varlatlppal mequallty and proving
minimum of a differentiableg-convex function on the that the _sqlu'uon of the auxﬂllary problem |s.the solution
g-convex set can be characterized by a class of variationd]! the original problem by using the fixed-point approach.
inequalities. This fact has been used to introduce andt IS Well known that a substantial number of numerical
consider a new class of variational inequalities, which ismethods can be obtained as special cases from this
called the general nonlinear variational. Some iterativet€chnique, see9[10.

methods have been suggested for general variational

inequalities uisng the fixed point approach. It is well In this paper, we use the auxiliary principle technique
known that the convergence of the projection methodsto suggest an implicit iterative method for solving the
requires that the operator must be strongly monotone andeneral variational inequalities, see Algorithm 3.3. ldsin
Lipschitz continuous. These are very strict conditions tothe predictor-corrector technique, it is shown that this
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implicit method is equivalent to the extragradient method,Definition 2.3. An operatorT : H — H said to be
see Algorithm 3.4 and Algorithm 3.5. In particular, for g-pseudomonotonewith respect to an arbitrary operamr
g = I, the identity operator, we obtain the extragradientif and only if,

method of Korpelevich §] for solving the variational o

inequalities. We have proved that the convergence of thd T49(v) —u) 20, implies  (Tv,v—g(u)) >0,
implicit  iterative  method only requires the vu,veH.
g-pseudomonotonicity, which is a weaker condition than
g-monotonicity. Consequently, we have improved the
convergence criteria of the extragradient method of
Korpelevich p]. Some special cases are also considered.

The ideas and techniques of this paper may be startin% )

point for a wide range of novel and innovative 3 Main Results

applications of the general variational inequalities in

various fields. In this Section, we use the auxiliary principle technique
of Glowinski et al f], as developed by Noor9[1(Q] to
suggest and investigate some implicit type methods for
solving the general variational inequality (1).

If g =1, the identity operator, then Definition 2.3 reduces
to the usual definition of pseudmonotonicity.

2 Preliminaries

For a givenu € H : g(u) € K satisfying (1), consider
Let H be a real Hilbert space whose inner product andthe problem of findingv € H : g(w) € K such that
norm are denoted by, -) and||.|| respectively. LeK be a
nonempty closed convex setlh (PTu+w—g(u),g(v) —w) >0,
YWeH:g(v)eK, (3)

For given nonlinear operator$,g: H — H, we
consider the problem of finding € H : g(u) € K such
that

which is called the auxiliary general variational

inequality. Clearly, ifw = g(u), thenw € H;g(w) € K is

the solution of (1). This observation enables us to suggest

(Tu,g(v)—u) >0, WweH:g(v)eK. (1) the following iterative method for solving the general
variational inequality (1).

The inequality of the type (1) is called the general

variational inequality involving two operators, which was Algorithm 3.1. For a givernug € H, find the approximate

introduced and studied by Noot]]. For the numerical  solutionu, ;1 by the iterative schemes

analysis, applications and other aspects of these

variational inequalities, see7[8, 12, 13 and the (PTUn+Uni1—9g(Un),9(V) —Uni1) =0,

references therein. It has been showil][that the wWeH;g(v) €K,

minimum of a differentiable nonconvex function on a

nonconvex seK in H can be characterized by the genera

variational inequality (1).

. Forg =1, t.he idelntity operator, the general variational Algorithm 3.2. For a giveruo € H, find the approximate
inequality (1) is equivalent to finding € K such that solutionun.1 by the iterative schemes

(Tuv—u)>0, WeK, (2)  Uper=R[g(un) —pTuy, N=0,12..

which is known as the classical variational inequality andAlgorithm 3.2 was suggested and investigated by
was introduced by Stampacchid4]. For the recent Noor [11] for solving (1). For the convergence analysis of
applications, numerical methods, sensitivity analysis,Algorithm 3.1, see Noorl[0, 11], where its has been that
dynamical systems and formulation of variational the convergence analysis of Algorithm 3.1 requires that
inequalities, seell-12,12,14] and the references therein. the operatom must be strongly monotone and Lipschitz

IWhich is equivalent to the following iterative method,
using Lemma 2.1.

Lemma 2.1 3,4]. LetK be a closed convex set . continuous. These are very strict conditions and rule out
Then, for a giverz € H, u € K satisfies the inequality its applications in many problems. To overcome these

drawbacks, we again use the fixed point formulation (3)
(U=zv—-u)>0, WwekK, to suggest an other iterative method using the auxiliary

ifand only if, u=PFz  whereP is the projection of principle technique.

H onto the closed convex sktin H. It is well known that
the projection operatdi is a nonexpansive operator.
We now define a new concept of
g-pseudomonotonicity. (PTw-+w—g(u),g(v) —w) >0,
YWeH:g(v)eK, (4)

For a givenu € H : g(u) € K satisfying (1), consider
the problem of findingv € H : g(w) € K such that
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which is called the auxiliary general variational

inequality.

We point out that problem (3) and (4) are quite different.

If g(w) = u, then clearlyw € H;g(w) € K is a solution of

Korpelevich p].

We now again use the auxiliary problem (4) to suggest
the following predictor-corrector method for solving the

(2). This enables to suggest the following iterative methodproblem (1).

for solving (1).

Algorithm 3.3. For a giverup € H, find the approximate
solutionuy. 1 by the iterative schemes

(PTUny1+Unp1—9(Un),V—Uni1) >0,
Y e H;g(v) e K. (5)

Using Lemma 2.1, Algorithm 3.3 is equivalent to the
following iterative method.

Algorithm 3.4. For a giverup € H, find the approximate
solutionun. 1 by the iterative schemes

Unt1 = Pk[g(un) - PTUn+1]a n= 07 17 s
Algorithm 3.3 is an implicit method. To implement

Algorithm 3.8. For a giverup € H, find the approximate
solutionun1 by the iterative schemes

(PTUn+Yn—9(Un),9(v) —Yn) >0,
YweH:g(v)eK

(OTYn+Unr1—9(Yn),;9(V) — Uns1) >0,
YveH;g(v) eK.

Using Lemma 2.1, Algorithm 3.8 is equivalent to the
following predictor-corrector method for solving (1).
Algorithm 3.9. For a giverup € H, find the approximate
solutionun41 by the iterative schemes

Yn = P[g(un) — pTup|

Algorithm 3.1, one usually uses the predictor-correctorUnt1 = P[d(¥n) =PTyn, N=0,1,....

technique. We use Algorithm 3.1 as predictor and Algorithm 3.9 is the the extragradient method for solving
Algorithm 3.3 as corrector. Consequently, Algorithm 3.3 general variational inequality (1) in the sense of Noor

is equivalent to the following iterative method.

Algorithm 3.5. For a giverup € H, find the approximate
solutionun41 by the iterative schemes

(PTun+Yn—9(un),9(V) — Yn) >0,
YWeH:g(v)eK

(PTYn+ Uns1—9(Un),9(V) — Uny1) >0,
YveH;g(v) eK.

Using Lemma 2.1, Algorithm 3.5 is equivalent to the
following predictor-corrector method for solving (1).

Algorithm 3.6. For a giverup € H, find the approximate
solutionun1 by the iterative schemes
Yn = Pk[g(Un) — pTUn]
Unt1 = P [g(un) — pTYn],
n=0,1,....

[10].

We remark that ifg = I, the identity operator, then
Algorithm 3.6 reduces to:
Algorithm 3.10. For a givenuy € H, find the
approximate solution, 1 by the iterative schemes

Yn = P [Un— pTup
Unt1 = Pk[yn—pTyn, Nn=0,1,....

Algorithm 3.10 is known as modified extragradient
method for solving variational inequalities (2), which is
mainly due to Noor9, 10].

It is important to note that extragradient method of
Korpelevich ] and modified double projection method
of Noor[9,10] are quite different from each other and their
convergent analysis need different techniques. The
auxiliary principle technique can be used to construct
several iterative methods for solving variational

Algorithm 3.3 is the the extragradient method for solving inequalities.

general variational inequality (1)
Korpelevich B.

We remark that ifg = I, the identity operator, then
Algorithm 3.6 reduces to:

Algorithm 3.7. For a giverug € H, find the approximate
solutionuy. 1 by the iterative schemes

Yn = Pk[un— pTup]

Unt1 = H<[Un—pTyn], n=01,....

Algorithm 3.7 is known as an extragradient method for
solving variational inequalities (2)and is mainly due to (Tv,v—g(u)) >0, WYveH:g(v)eK.

in the sense of

We now consider the convergence analysis of
Algorithm 3.3 under some suitable mild conditions.
Theorem 3.1. Letu € H : g(u) € K be a solution of (1)
and letun 1 be the approximate solution obtained from
Algorithm 3.3. If the operatoil is g-pseudomonotone,
then

19(u) — tn+1/1? < [|9(U) = g(Un) |~ [Un+1— g(un)[1%, (6)

Proof. Letue H : g(u) € K be solution of (1). Then, using
theg-pseudomonotonicity of, we have

(7)
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Takev = un. 1 in (7), we have
(Tunt1,Uns1 —9(u)) > 0. (8)
Takingv = uin (5), we have

(PTUnt1+ Un+1—9(Un),g(U) — Un+1) > 0. 9)

From (8) and (9), we have

(Unt1—9(Un),9(U) — Uny1) >0,

which implies,
2(u,v) = [Ju— V|2 —JJul>— |Iv||?,

using
Yu,v € H, that

19(u) = Una1lf* < J19(W) — g(un) > [|Un 2 — g(un) 12,

the required result (6). O

Theorem 3.2. Letu € H : g(u) € K be a solution of (1)
and letun 1 be the approximate solution obtained from
Algorithm 3.3. If the operatof is g-pseudomonotone and
g-inverse eixts, then lig,. g(uy) = U.

Proof. Letuee H : g(u) € K be a solution of (1). Then,
the sequence|g(un) — U] } is nonincreasing and bounded
and

ZOHUM— g(un)|? < [lg(uo) — gul?,
n=

which implies

lim [19(un11) — g(un) || =0, (10)
that is,

limu,=u

n—oo

sinceg ! exits.

Let U be a cluster point of{u,}; there exists a
subsequence{uy } such that {u,} converges tou.”
Replacingun;1 by un, in (5) and taking the limits and
using (10), we have

(Ta,g(v) —g()) >0, WeK.
This shows thati € H : g(0) € K solves (1) and
[uns1—g(0)]* < [lg(un) —9(@)]?,

which implies that the sequenéan} has a unique cluster
point and lim_.uU, = 0, is the solution of (1), the
required result. .
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