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Abstract: Random graphs are extensive, in addition, it is used in several functional areas of research, particularly in the field of
complex networks. The study of complex networks is a useful and active research areas in science, such as electrical power grids
and telecommunication networks, collaboration and citation networks of scientists,protein interaction networks, World-Wide Web and
Internet Social networks, etc. A social network is a graph inwhich n vertices and m edges are selected at random, the vertices represent
people and the edges represent relationships between them.In network analysis, the number of properties is defined and studied in
the literature to identify the important vertex in a network. Recent studies have focused on statistical and structuralproperties such
as diameter, small world effect, clustering coefficient, centrality measure, modularity, community structure in social networks like
Facebook, YouTube, Twitter, etc. In this paper, we first provide a brief introduction to the complex network properties.We then discuss
the complex network properties with values expected for random graphs.

Keywords: Random graph, Complex Network properties, Clustering Coefficient, Centrality measure, Modularity, Community
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1 Introduction

In network theory, a complex network is a graph (Figure
1). The graph theory was initiated by the mathematician
Leonard Euler, who solved the Knigsberg Bridge problem
in 1736. Formally, a network is a collection of nodes and
links that connect the pairs of nodes. In complex
networks, the interacting elements and their interactions
are mapped to network nodes and links. The examples of
complex networks include social networks, power grids,
World Wide Web, biological networks, protein
interactions networks, food webs, and neural networks.

The different complex networks that evolve at
different speeds, the World Wide Web is far quicker than
other complex networks. Almost one-tenth of the world’s
population spends more time on Facebook and Twitter
than any other social network. The analysis and
understand the properties of complex network in the real
world such as the Internet [1], World Wide Web [2,3],
Social networks of connections among individuals [4]
attracted much attention in the research area. One of the

most significant implication property for complex
network is the small-world effect. A node can be reached
to any other node in the network through the small
number of hops. In the social network, if the chain of
acquaintances about six steps from any node (person) to
any other node in the network, then the information will
reach the node (people) much faster. D. J. Watts and S. H.
Strogatz et al published the first mathematical graph
theoretic model based on the small-world property [5].
Albert et al provided evidence for the small-world effect
of the network of hyperlinks between documents on the
World Wide Web [6]. A fundamental measure in complex
networksis the clustering coefficient. Clustering
coefficient shows that how well the nodes are embedded
in their neighborhood. In [7,8,9] the authors examine
structural measures such as degree distribution and
clustering coefficient in online social networks. The
centrality measure defines how important a node is within
a network. Cohn and Marriott et al analyze the centrality
measure concept in their attempt to understand political
integration in the context of the diversity of Indian social
life [10]. In late 1940,the first research application of
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Fig. 1: Les Miserables Novel Complex Network. (M. E. J.
Newman1 and M.Girvan, 2003). Nodes represent characters in
Les Miserables; Links indicate two characters appeared in the
same scene.

centrality measure was made under the guidance of
Bavelas at the Group Networks Laboratory, M.I.T.
Community structures [11] are an important property of
complex networks. In social networks, communities
correspond to people with same interest, groups of friends
based on similarities in their personal data such as school,
location, gender, interest, age etc. In food webs, they may
classify compartments. In a citation network communities
correspond to related papers on a single topic. In
community-aware recommender systems community
represents what the users in that community interest or
not interested and so on. Many algorithms like
Givan-Newman algorithm, modularity maximization,
leading eigenvector, walk trap, etc. are used to detect the
communities in the networks.

The random graph is one of the most studied models
of a network initiated by Hungarian mathematicians Paul
Erdos and Alfred Renvi (ER) (Paul Erdos and Alfred
1959; Paul Erdos and Alfred 1960). The ER model is the
first model which has attempted to provide an explanation
for the behavior of a large real network.The random
graphs are usually used as models for real-world
networks. A general way to study complex networks is to
compare their characteristics with random networks. The
Erdos and Renvi model used to generate the random
graphs.The Erdos and Renvi published a series of papers
about random graph theory in 1959. They introduced two
models such as G (n, p) and G (n, m) place the foundation
for the theory of random graph generation [12,13]. The
first random graph model G (n, p) with n vertices where
an edge exists with independent random probability p,
values lie between 0¡p¡1(Refer Figure 2). The second
random graph model G (n, m) is obtained by sampling
uniformly from all graphs with n vertices and m edges
(Refer Figure 3). This paper is structured as follows:
Section II explains the properties of complex networks.
Conclusion and Future work are illustrated in section III.

Fig. 2: Schematic illustration of the Erdos-Renyi (ER),G (n,
p) model. A random network described by the ER model with
probability value 0,0.2 and 1

Fig. 3: Schematic illustration of the Erdos-Renyi (ER),G (n, m)
model with 28 edges.

2 Properties of Complex Networks

2.1 Small-World Effect property

A network possesses the small-world property in which
most nodes are not adjacent to one another, but all nodes
can be reached to the other nodes through a small number
of hops. In social networks, the average distance from one
node to another is small compared to the network size,
known as the small-world effect. The size of a network is
usually measured by counting the number of nodes in the
network. A Small world effect was found in many
real-world networks such as biological, technological,
and social networks [14], economic networks [15], food
web [16], earth sciences [[17] and so on. This property
has its roots in experiments carried out by the social
psychologist Stanley Milgram in 1960. Milgram decided
that the participants to forward a letter to a target person
living near Boston, Massachusetts, and distributed them
to a randomly selected people in Nebraska with the
restriction that each participant could proceed
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(communicate) the letter only by forwarding it to a single
social contact. Over many trials, Milgram found that
everyone can be connected by a chain of connections
roughly six links long called six degrees of separation
[18]. If a person P has n neighbor, and each of Ps
neighbor also has n neighbor, then P has about n2 second
neighbors. Expand this case P also has n3 third neighbors,
n4fourth neighbors and so on. Most people have a
hundred and a thousand friends. It is easy to prove that a
complex network shows the small-world effect and we
can analyze and compare this effect with random graphs.

A network consists ofa set nodes connected by a set of
edges. A path (or walk) in a network is a sequence of
alternating nodes and edges that start with a node and end
with a node, and which does not visit any point more than
once such that adjacent nodes and edges in the sequence
are incidents to each other. The length of a walk is
represented as the number of edges it contains. The
shortest path between two nodes is called a geodesic.
Note that there may be and often is more than one
geodesic path between two vertices in the network. The
distance between two vertices is defined as the length of a
geodesic that connects them. If there is no path between
two nodes, then the distance between them is infinite. The
diameter of a network is the largest distance between any
two nodes in the network.The two measures such as
diameterand mean distance are related to each
other.When two measures are related so that if one
measure changes (increase/decrease) the other measure
also changes (increase/decrease) in such way that the
ratio between the two measures remains constant, then the
two measures are said to be in a direct variation. The
diameter and mean distance measure direct variations
because the diameter of the network increases, then the
mean distance also increases. Both complex network and
the random network exhibit the same behavior (Refer
Table 1, 2 and Figure 4, 5).

Definition 1: For a given graph G= (V, E) Where V=
(v1, v2, v3vn) is the set of nodes (users), E is the set of
edges (connections).

Definition 2: The diameter of a graph denoted by D
(G),is defined by

D(G) = maxu∈V(G)d(uv),

Where d(u,v) is the largest distance between the nodes u
and v.

2.2 Clustering Coefficient

In the year 1998, Watts and Strogatz et al published a
paper in Nature based on the clustering coefficient
measure [17]. The cluster is a measure of the likelihood
that two associates of a node are associating themselves.
A higher clustering coefficient indicates a greater
’cliquishness’. In most real-world networks, if node A is

Table 1: :Diameter and Mean distancefor a number of different
networks
S.N Complex network dataset Nodes Edges Diameter Mean Distance

1 Dolphin social,network 62 159 8 3.35
2 Zachary’s karate,club 34 78 5 2.41
3 American College,football 115 613 4 2.51
4 Neural network 297 2359 14 3.90
5 Political blogs 1490 19091 9 3.39
6 Word adjacencies 112 425 5 2.53
7 Co-authorships in,network science 1589 2742 17 5.82
8 High-energy theory,collaborations 8361 15751 19 7.02
9 Books about US,politics 105 441 7 3.07
10 Les,Miserable 77 588 5 2.64

Table 2: Diameter and Mean distancefor a number of random
networks

S.N Nodes Edges Diameter Mean Distance

1 62 159 5 2.68
2 34 78 5 2.39
3 115 613 4 2.24
4 297 2359 4 2.35
5 1490 19091 4 2.61
6 112 425 5 2.55
7 1589 2742 13 6.08
8 8361 15751 15 6.91
9 105 441 4 2.39
10 77 588 3 1.83

Fig. 4: Comparison of diameter and Mean distancefor a number
of different networks

connected to node B and node B is connected to node C,
then node A is also connected to node C as well. In a
socialnetwork, the friendship between individuals shows
that there is a higher probability that a friend of your
friend is also your friend. The clustering coefficient value
lies in the range 0≤ C ≤ 1. This measure can be defined
in two different ways, such as local clustering coefficient
and global clustering coefficient. The clustering
coefficient value is zero for star network and one for the
fully connected network.Strogatz, and Watts et al
proposed the global clustering coefficient for the complex
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Fig. 5: :Comparison of diameter and mean distancefor a number
of random networks

network [5,18].The clustering coefficient values for a
number of real-world networks and random graph with
the same number of vertices and edges shown in Table 3.
The clustering coefficients in the real graphs are
significantly larger than in the random graphs (Refer
Table-3 and the Figure 7).

Definition 3: A triangle of a graph G is the three node
subgraphGt in which V

(Gt) = {v,v2,v3} ⊂V

and

E(Gt) = {{v1,v2},{v2,v3},{v3,v1}}⊂ E.

A triplet graph G is the three node subgraph Gtr in which
in which

V(Gtr = {v1,v2,v3} ⊂V

and

E(Gtr) = {{v1,v2},{v2,v3},{v3,v1}}⊂ E.)

, where v2 is the center of the triple and dv is the degree
of the node v(Refer Figure 6) .

Definition 4:: The local clustering coefficient for a node
v denoted byCv , is defined as the ratio of the number of
triangles to the number of connected triplets.Formally,

Cv =
2∗Gt

dv(dv−1).

Definition 5: The average clustering denoted byCl is
defined by

Cl =
1
n

n

∑
v=1

Cv

Definition 6: The global clustering coefficient for a graph
G denoted byCg, is defined by

Cg =
2∑n

v=1Gt

∑n
v=1dv(dv−1)

Fig. 6: : A triplet graph and A triangle graph

Table 3: Clustering coefficient for a number of different
networks and random networks
S.N Complex network dataset Nodes Edges Crandomnetwork Ccomplexnetwork

1
Dolphin social
network

62 159 0.068 0.31

2
Zachary’s karate
club

34 78 0.152 0.26

3
American College
football

115 613 0.093 0.41

4 Neural network 297 2359 0.055 0.18
5 Political blogs 1490 19091 0.016 0.23
6 Word adjacencies 112 425 0.072 0.15

7
Co-authorships in
network science

1589 2742 0.003 0.69

8
High-energy theory
collaborations

8361 15751 0.0003 0.33

9
Books about US
politics

105 441 0.089 0.35

10
Les
Miserable

77 588 0.190 0.49

Fig. 7: : Comparison of clustering coefficient for a number of
different networks and random networks

2.3 Centrality Measures

Centrality measures are used to analyze the social
network and to measure the importance of a node in the
network. Many centrality measures proposed to estimate
the importance of a vertex or an edge in a network. There
are three measures of centrality that are widely used in
network analysis: Degree centrality, Closeness, and
Betweenness.
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2.3.1 Degree centrality

The importance of degree centrality is that the larger
degree node is more important in the network. The degree
centrality of a node(Vi) is the number of links directly
attached to the node in the network and is defined in
terms of the adjacency matrix. A graph G = (V, E)
represented by means of its adjacency matrix A, in which
a given entryAi j = 1 if and only if i and j are connected
by an edge, andAi j = 0 otherwise. The normalized degree
centrality values used to compare the values across
networks (e.g., Facebook and Twitter).In order to find the
normalized degree centrality, divide the degree of a node
by N-1, Where N is the number of nodes in the network.
The degree centrality of a nodevi denoted byCD(Vi) is
defined by

CD(Vi) = d(Vi) =
N

∑
j

Ai j

. The normalized degree centrality denoted byCDN((Vi)

CDN((Vi) =
d(vi)

N−1

2.3.2 Closeness centrality

The closeness can be regarded as a measured efficiency as
nodes with high values can reach more nodes, spreading
information and have relatively easy and fast access to
network resources and information. It can be measured by
the sum of the shortest paths between a node and to all the
other nodes in a network. The normalized closeness
centrality values used to compare the values across
networks. In order to find the normalized closeness
centrality, divide the closeness centrality of a node by
N-1, Where N is the number of nodes in the network andg
(i,j) is the shortest distance between these two nodes. The
closeness centrality of a nodevi denoted byCC(Vi) is

CC(Vi) =

[

N

∑
j 6=i

g(i j )

]−1

The normalized closeness centrality denoted byCCN(Vi)
denoted by

CCN(Vi) =

[

N−1

∑N
j 6=i g(i j )

]−1

2.3.3 Betweenness centrality

The betweenness centrality used to measure the
prominence of nodes in the network. The betweenness
centrality of a vertex is that counts the number of shortest
paths that run through that vertex. If a node lies on a lot of
shortest paths between any two nodes, then it has a high

betweenness centrality. The node with high betweenness
usually has greater control over communication. The
betweenness centrality needs to be normalized to be
comparable across networks. In order to find the
normalized betweenness centrality, divide the
betweennesscentrality of a node by(N − 1)(N − 2)/2 ,
Whereσ st is the number of shortest paths between s and
t, σ st (i) is the number of shortest paths between s and t,
that pass through i. The betweenness centrality of a node
vi is denoted byCB(Vi) , isdefined by

CB(Vi) = ∑
s6=i 6=t∈V,s<t

σst(i)
σst

normalized betweenness centrality denoted byCBN(Vi) ,is
defined by

CBN(Vi) =
2∗CB(Vi)

(N−1)(N−2)

The centrality measures values(Refer 7)for complex
network and random graph are listed in Table 4 and Table
5.

Fig. 8: Centrality Measures for Zacharys network
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Table 4: Centrality Measures for a number of different networks

S.N Network dataset Nodes Edges HighCD High CC High CB
High CD
Node

High CC
Node

High CB
Node

1 Dolphin social network 62 159 12 0.00684 454.27 15 37 37
2 Zachary’s karate club 34 78 17 0.01724 231.07 34 1 1
3 American College football 115 613 12 0.00383 215.99 1 59 83
4 Neural network 297 2359 139 0.00010 9189.27 45 260 178
5 Political blogs 1490 19091 468 1.26*10-6 218480.7 855 293 855
6 Word adjacencies 112 425 49 0.00555 1493.80 18 18 18

7
Co-authorships in network
science

1589 2742 34 5.19*10-7 28300.56 34 79 79

8
High-energy theory
collaborations

8361 15751 504 4.728*10-8 703646.2 9 31 31

9 Books about US politics 105 441 25 0.00398 747.04 9 31 31
10 Les Miserable 77 254 36 0.00847 1624.46 12 12 12

S.N Network dataset Nodes Edges Low CD Low CC Low CB
Low CD
Node

Low CC
Node

Low CB
Node

1 Dolphin social network 62 159 1 0.00292 0 1 61 5
2 Zachary’s karate club 34 78 1 0.00862 0 12 17 8
3 American College football 115 613 7 0.00311 19.34 43 109 109
4 Neural network 297 2359 1 1.13*10 -5 0 243 40 40
5 Political blogs 1490 19091 0 4.50*10 -7 0 3 3 3
6 Word adjacencies 112 425 1 0.00240 0 9 96 9

7
Co-authorships in network
science

1589 2742 0 3.96*10 -7 0 20 20 1

8
High-energy theory
collaborations

8361 15751 2 1.430*10-8 0 11 11 1

9 Books about US politics 105 441 2 0.00231 0 104 35 17
10 Les Miserable 77 254 1 0.00337 0 2 47 2

Table 5: Centrality Measures for a number of Random networks

S.N Nodes Edges HighCD High CC High CB
High CD
Node

High CC
Node

High CB
Node

1 62 159 10 0.0073 166.15 40 40 40
2 34 78 9 0.0153 83.07 7 32 7
3 115 613 17 0.0044 174.20 1 2 44
4 297 2359 28 0.0016 565.40 122 122 122
5 1490 19091 44 0.0003 3338.64 670 670 1356
6 112 425 14 0.0041 262.57 34 26 34
7 1589 2742 12 1.345*10-5 27299.90 1062 1101 1062
8 8361 15751 14 6.115*10-7 283853 5970 5970 5970
9 105 441 16 0.0046 257.38 94 94 94
10 77 254 21 0.0076 63.57 7 7 18

S.N Nodes Edges LowCD Low CC Low CB
Low CD
Node

Low CC
Node

Low CB
Node

1 62 159 1 0.0043 0 19 19 14
2 34 78 1 0.0088 0 5 5 5
3 115 613 3 0.0032 4.64 19 19 19
4 297 2359 7 0.0012 32.45 25 25 25
5 1490 19091 11 0.0002 199.25 1069 1069 1069
6 112 425 2 0.0028 2.21 1 1 1
7 1589 2742 0 3.96*10-7 0 20 20 20
8 8361 15751 0 1.43*10-8 0 27 27 27
9 105 441 1 0.0028 0 38 38 38
10 77 254 8 0.0065 8.15 43 43 43

c© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 1, 137-146 (2017) /www.naturalspublishing.com/Journals.asp 143

2.4 Community Structure

The important property that is found in many networks
that is community structure.A community in the real
world is represented in a graph as a set of nodes that has
interacted more with its members. The nodes in the
network are tightly connected within the community and
loosely connected between other communities. The
community structure exists in realworld graphs such as
large social networks, web graphs, network
science,physics, applied mathematics, and biological
networks. The algorithm proposed by Girvan and
Newman [18], called GN algorithm used to find the
community structure in the complex networks. This
algorithm defines the betweenness of an edge is that the
number of geodesic distances between pairs of nodes that
run through that edge of the network. The modularity
function used to evaluate the community division.
Modularity means that the links within a community are
higher than the expected links in that community.
The modularity can be either positive or negative, the
positive values represent the possible presence of
community structure and the negative values represent the
non-existence of community structure. If the modularity
values between 0.3 to 0.7 on the real world network, then
it has the strongest community structure. LetAi j be the
links between node i and j, the value ofAi j is one if there
exists a link between i to j otherwise zero,

KiK j

2M

be the expected number of links between i and j,

∂ (Ci ,Cj)

indicates in which community the node i belongs to,eii is
the actual number of links in the community andai is the
expected number of links for that community. The
modularity function denoted by Q, is defined by

Q=
1

2m∑
i j

[

Ai j −
KiK j

2m

]

∂ (Ci ,Cj )

and
Q= ∑

i
eii − (ai)

2

The number of communities and modularity values for a
number of different networks and random graphs are
listed in Table 6and Table 7. The community detected
Zacharys network shown in Figure 9. The dendrogram for
Zacharys network shown in Figure 10, it consists of five
communities such as community 1(5, 6, 7, 11, 17
members), community 2 (12, 13, 18, 1, 22, 2, 4, 8, 14, 20
members), community 3 (24, 30, 27, 19, 21, 16, 23, 15,
34, 9, 31, 33 members), community 4 (25, 26, 28, 29, 32,
3 members) and community 5 (10 member).

Fig. 9: Community detected inZacharys network

Fig. 10: : Dendrogram(Horizontal (Y-axis) cuts correspond to
partitions of the graph in communities,X-axis correspond to the
number of nodes in the graph) for Zacharys network

Table 7: Number of communities and modularity for random
networks

S.N Complex network dataset Nodes Edges
Number of
communities Modularity value

1 Dolphin social network 62 159 12 0.3
2 Zachary’s karate club 34 78 15 0.24
3 American College football 115 613 60 0.11
4 Neural network 297 2359 163 0.075
5 Word adjacencies 112 425 26 0.26
6 Co-authorships in network science 1589 2742 101 0.59
7 Books about US politics 105 441 36 0.19
8 Les Miserable 77 588 40 0.055

2.5 Dataset

2.5.1 Dolphin social network

This dataset contains the network of frequent associations
between 62 dolphins in a community living off Doubtful
Sound, New Zealand. It contains 159 edges that indicate a
frequent association between them.
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Table 6: Number of communities and modularity for a number of different networks

S.N Complex network dataset Nodes Edges
Number of
communities Modularity value

1 Dolphin social network 62 159 5 0.52
2 Zachary’s karate club 34 78 5 0.4
3 American College football 115 613 10 0.6
4 Neural network 297 2359 194 0.081
5 Word adjacencies 112 425 69 0.081
6 Co-authorships in network science 1589 2742 405 0.96
7 Books about US politics 105 441 5 0.52
8 Les Miserable 77 588 11 0.54

2.5.2 Zachary’s karate club

This dataset contains 34 members of a karate club at a US
university, as described by Wayne Zachary in 1977. This
network contains 78 pairwise links between members.

2.5.3 American College football

This dataset consists of 115 teams considered as a
nodesand 613edges correspond to games played by the
teams against each other during the regular season of fall
2000.

2.5.4 Neural network

The original neural network experimental data taken from
J. G. White, E. Southgate, J. N. Thompson, and S.
Brenner, Phil. Trains. R. Soc. London 314, 1-340
(1986).It consists of 297 neurons considered as nodes,
and 2359synaptic connections between them are
represented by directed edges.

2.5.5 Political blogs

This data set consists of hyperlinks between weblogs on
US politics, recorded in 2005 by Adamic and Glance. It
consists of 1490 weblogs considered as nodes and
19091hyperlinks between them.

2.5.6 Word adjacencies

The adjacency network of common adjectives and nouns
in the novel David Copperfield by Charles Dickens. It
consists of 112 nodes that represent the most commonly
occurring adjectives and nouns in the book and 425 edges
connect any pair of words that occur in adjacent positions
in the text of the book.

2.5.7 Co-authorships in network science

The co-authorship network of scientists working on
network theory and experiment, as compiled by M.
Newman onMay 2006. It contains 1589 scientists and
2742 communication links between them.

2.5.8 High-energy theory collaborations

This data set covers scientific collaborationsbetween
scientists posting preprints on the High-Energy Theory
E-Print Archive in 1999. It consists of 8361 scientists and
15751collaborations between them.

2.5.9 Books about US politics

A set of books about US politics published around the
time of the 2004 presidential election. It consists of 105
books that represent the nodes and 441 edges between
books represent frequent co-purchasing of books by the
customer from the same merchant.

2.5.10 Les Miserables

The co-occurrences of characters in Victor Hugo’s novel
’Les Miserables’. It contains 77charactersthat represent
the nodes and the two characters appeared in the same
chapter of the book representsan edge between two nodes.

3 Conclusion and Future Work

In this paper, we evaluated several classes of properties of
complex networks, namely diameter, small world effect,
clustering coefficient, centrality measure, modularity, and
community structure. All these properties of complex
network are compared with values expected for random
graphs. The diameter of the network increases, then the
mean distance also increases. The clustering coefficients
in the real network are significantly larger than in the
random graphs. The low average distance (or diameter)
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and high clustering have been observed in complex
network and random network.Thus, the networks with the
largest possible average clustering coefficient are found to
have a modular structure.The networks with the largest
possible average clustering coefficient have the smallest
possible average distance among the different nodes.

A node with a number of neighbors is the most
popular node in the network. The degree centrality is the
appropriate measure to find the popular node in the
network. The most popular person should have the
highest number of friends. To obtain information, one
should be near from everyone. In this sense, the node at
the nearest position on average can most efficiently obtain
information. The closeness centrality is anappropriate
measure to find the node that is near to all nodes in the
network. To control the information flow, a node should
be between other nodes because the node can interrupt
information flow between them. Thus, the betweenness
centrality measure is used to control the information flow
in the network. The nodes which have high betweenness
centrality are not necessarily the ones that have the most
connections (high degree). The highest betweenness node
has more influence the node in the network. The low
degree and low closeness node almost same in the
random graph.

To find the communities within the network is a
powerful tool for understanding the function of the
network.Only less information available about each user
in recommender systems, which results in an inability to
describe to recommend items to users.Then the
recommender system runs into the cold start problem.
The cold start is one of the challenging problems in
recommender systems. In future, the present work may be
extended to solve the cold-start problem based on the
community structure- property.
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