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Abstract: The propose of this paper is to extend the construction due toT. Katrin̆ák of regular double Stone algebras [1] to a certain
subclass of the class of regular doubleMS-algebras. According to this construction we investigate many properties of these algebras
deal with subalgebras, homomorphisms, congruences and permutable congruences.
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1 Introduction

An Ockham algebra is a bounded distributive lattice
with a dual endomorphism. The class of Ockham algebras
contains the well-known classes as de Morgan algebras
and Stone algebras [2]. T. S. Blyth and J. C. Varlet [3]
defined a subclass of Ockham algebras so called
MS-algebras denoted byMS which generalizes both de
Morgan algebras and Stone algebras. These algebras
belong to the class of Ockham algebras introduced by J.
Berman [4]. The class MS of all MS-algebras is
equational. T. S. Blyth and J. C. Varlet [5] characterized
the subvarieties ofMS. Also, T. S. Blyth and J. C. Varlet
[6] introduced the class of doubleMS-algebras and they
showed that every de Morgan algebraM can be
represented non-trivially as the skeleton of the double
MS-algebraM[2] = {(a,b) ∈ M×M : a≤ b}. The class of
doubleMS-algebras satisfying the complement property
have been introduced by Luo Congwen [7].

In 2012, A. Badawy, D. Guffova and M. Haviar [8]
introduced and characterized the class of principal
MS-algebras and the class of decomposableMS-algebras
by means of triples. In 2015, A. Badawy [9] studied the
notion of dL-filters of principalMS-algebras. A. Badawy
[10] presented the notion of de Morgan filters of
decomposableMS-algebras. Also he established the
relationship between congruences and de Morgan filters
of a decomposableMS-algebra in [11]. In 2014 [12] A.
Badawy and M. Sambasiva Rao considered the notion of
closure ideals ofMS-algebras. Recently, A Badawy [13]
gave the first quadruple construction of modular

generalizedMS-algebras. Also, A. Badawy [14] presented
a certain triple construction of principal generalized
MS-algebras.

Regular double Stone algebras have been
characterized by T. Katrin̆ák [1] in terms of pairs(B,F),
whereB is a Boolean algebra andF is a filter ofB. Also,
he derived that every regular double Stone algebraL is
uniquely determined by the pair(B(L),D(L)++), where
B(L) and D(L) are the center and the dense set ofL,
respectively.

In this paper we introduce the class of double
MS-algebras satisfying the generalized complement
property (briefly DMSgc-algebras). Many related
properties and examples are given. The main result of this
article is to extend the construction of regular double
Stone algebras due to Katrin̆ák [1] to the class of
DMSgc-algebras; instead of Boolean algebras and the
filters D(L) used in the representation of [1], de Morgan
algebras and the filters[L∨), respectively, are used in our
representation (Theorem 3.7). We give an example
(Example 3.9) to illustrate the construction of
DMSgc-algebras. Also, we prove that every
DMSgc-algebra L is uniquely determined by the pair
(L◦◦

, [L∨)++).

Many applications of the construction Theorem
(Theorem 3.7) are presented in section 4. We introduce
and characterize subalgebras ofDMSgc-algebras by
means of pairs(M,F). We investigate a special family of
subalgebras of aDMSgc-algebraM[2], whereM is a de

∗ Corresponding author e-mail:abdel-mohsen.mohamed@science.tanta.edu.eg

c© 2017 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/110114
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Morgan algebra. Homomorphisms ofDMSgc-algebras are
characterized in terms of pairs(M,F). Finally, we discuss
the concepts of congruences and permutability of
congruences ofDMSgc-algebras using the construction
Theorem. It is observed that the congruence lattices of a
DMSgc-algebraL = (M,F) and the de Morgan algebraM
are isomorphic. Also, we prove that aDMSgc-algebra
L = (M,F) has permutable congruences if and only if the
de Morgan algebraM has permutable congruences.

2 Preliminaries

A Stone algebra is a universal algebra(L,∨,∧,∗ ,0,1)
of type (2,2,1,0,0), where (L,∨,∧,0,1) is a bounded
distributive lattice and the unary operation∗ has the
properties thatx∧a= 0⇔ x≤ a∗ andx∗∗∨x∗ = 1.

A dual Stone algebra is a universal algebra
(L,∨,∧,+ ,0,1) of type (2,2,1,0,0), where(L,∨,∧,0,1)
is a bounded distributive lattice and the unary operation+

has the properties thatx ∨ a = 1 ⇔ x ≥ a+ and
x++∨x+ = 1.

A double Stone algebra is an algebra(L,∗ ,+ ) such
that (L,∗ ) is a Stone algebra,(L,+ ) is a dual Stone
algebra and for everyx∈ L,x∗+ = x∗∗,x+∗ = x++.

A double Stone algebra(L,∗ ,+ ) is called regular if

x∗ = y∗ andx+ = y+ imply x= y.

A de Morgan algebra is an algebra(L,∨,∧,̄ ,0,1) of
type (2,2,1,0,0) where(L,∨,∧,0,1) is a bounded
distributive lattice and ¯ the unary operation of involution
satisfies:

x= x,(x∨y) = x∧y,(x∧y) = x∨y.

An MS-algebra is an algebra(L,∨,∧,◦ ,0,1) of type
(2,2,1,0,0) where(L,∨,∧,0,1) is a bounded distributive
lattice and a unary operation◦ satisfies:

x≤ x◦◦,(x∧y)◦ = x◦∨y◦,1◦ = 0.

A dualMS-algebra is an algebra(L,∨,∧,+ ,0,1) of type
(2,2,1,0,0) where(L,∨,∧,0,1) is a bounded distributive
lattice and a unary operation+ satisfies:

x≥ x++,(x∧y)+ = x+∨y+,0+ = 1.

The classM of de Morgan algebra is a subvariety of
MS and is defined by the identityx◦◦ = x. The member of
the subvarietyK of M defined by the inequalityx∧ x◦ ≤
y∨y◦ are called Kleene algebras. The subvarietyK2 of MS
defined by the additional two identities:

x∧x◦ = x◦◦∧x◦,(x∧x◦)∨y∨y◦ = y∨y◦.

The subvarietyK2∨K3 of MS defined by the following
two identities:

(x∧x◦)∨y◦∨y◦◦ = y◦∨y◦◦,

(x∨x+)∧y+∧y++ = y+∧y++
.

The classS of Stone algebras is a subvariety ofMS
and is characterized by the identityx ∧ x◦ = 0. The
subvariety B of MS characterized by the identity
x∨x◦ = 1 is the class of Boolean algebras.

A doubleMS-algebra is an algebra(L,◦ ,+ ) such that
(L,◦ ) is anMS-algebra,(L,+ ) is a dualMS-algebra and
for everyx∈ L,x◦+ = x◦◦,x+◦ = x++.

The classDS of all double Stone algebras is a
subclass of the classDMS of all doubleMS-algebras.

Theorem 2.1.
Let L be a doubleMS-algebra. Then

(1) the skeletonL◦◦ = {x∈ L : x◦◦ = x}= {x∈ L : x++ =
x}= L++ is a de Morgan subalgebra ofL,

(2) L∨ = {x∨ x◦ : x ∈ L} is an order filter (increasing
subset) ofL,

(3) L∧ = {x∧ x◦ : x ∈ L} is an order ideal (decreasing
subset) ofL,

(4) the dense setD(L) = {x∈ L : x◦ = 0} is a filter ofL,
(5) the dual dense setD(L) = {x∈ L : x+ = 1} is an ideal

of L.

The elements ofL◦◦ are called the closed elements ofL
and the elements ofD(L) are called the dense elements of
L.

Now we recall the following result from [7].

Theorem 2.2.[Theorem2.1, 7]
A double MS-algebra L satisfies the complement

property if and only if

(1) Givena,b ∈ L such thata◦◦ = b◦◦,a++ = b++, then
a= b,

(2) Givena,b∈ L such thata= a◦◦,b= b◦◦,a≤ b there
exists an elementx∈ L such thatx++ = a,x◦◦ = b.

A (0,1)-homomorphism from a bounded lattice into
another one is a lattice homomorphism taking 0 into 0
and 1 into 1. A mappingf : M → C of a de Morgan
algebraM into a de Morgan algebraC is called a de
Morgan algebra homomorphism iff is a lattice
homomorphism satisfyingf (x) = f (x̄) for everyx∈ M. A
mapping f : L → L1 of a doubleMS-algebraL into a
double MS-algebra L1 is called a doubleMS-algebra
homomorphism iff is a lattice homomorphism satisfying
( f (x))◦ = f (x◦) and( f (x))+ = f (x+) for everyx∈ L.

Let L be a doubleMS-algebra. A lattice congruenceθ
on L is a congruence ifx ≡ y(θ ), then x◦ ≡ y◦ and
x+ ≡ y+. We denote byCon(L) the congruence lattice of
L.

Let A be an algebra. We say thatθ ,ψ ∈ Con(A)
permute ifx ≡ y(θ ) and y ≡ z(ψ) imply x ≡ r(ψ) and
r ≡ z(θ ), for somey, r ∈ A. The algebraA is congruence
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permutable if every pair of congruences inCon(A)
permutes.

For the basic properties of distributive lattices we refer
to [15] and forMS-algebras and doubleMS-algebras, we
refer to [2,3,5,6] and [8].

3 The Construction

In this section the concept of regularity on the class of
double MS-algebras is considered. Many related
properties and examples are given. A construction of a
double MS-algebra L satisfying the generalized
complement property from a suitable de Morgan algebra
M and a filter F of M containingM∨ is investigated.
Every doubleMS-algebraL satisfying the generalized
complement property can be uniquely determined by the
pair (L◦◦, [L∨)++).

Let (L,◦ ,+ ) be a doubleMS-algebra. Then forH ⊆ L,
considerH+ andH++ as follows:

H+ = {x+ : x∈ H} andH++ = {x++ : x∈ H}

Lemma 3.1.
Let F be a filter of a doubleMS-algebraL. ThenF++

is a filter ofL◦◦.
Proof

Clearly, 1 ∈ F++. Let x,y ∈ F++. Then
x = a++

,y = b++ for some a,b ∈ F. Hence
x∧ y = a++ ∧ b++ = (a∧ b)++ ∈ F++, as a∧ b ∈ F .
Again, letx ∈ F++ andz∈ L◦◦ be such thatz≥ x. Then
x = a++ for some a ∈ F. Thus
z= z∨ x = z++ ∨ a++ = (z∨ a)++ ∈ F++ asz∨ a ∈ F .
ThenF++ is a filter ofL◦◦.

Corollary 3.2.

(1) If L is a doubleMS-algebra fromK2, thenL∨++ =
{d++ : d ∈ L∨} is a filter ofL◦◦,

(2) If L is a double Stone algebra, thenD(L)++ = {d++ :
d ∈ D(L)} is a filter ofL◦◦.

Proof
(1). SinceL ∈ K2, thenL∨ is a filter ofL. ThusL∨++

is a filter ofL◦◦ by lemma 3.1 and

L∨++ = {(x∨x◦)++ : x∈ L}

= {d++ : d = x∨x◦ ∈ L∨}.

(2). SinceL is a Stone algebra, thenL∨ = D(L) is a filter
of L andL◦◦ is a Boolean algebra which is usually denoted
by B(L). ThusD(L)++ is a filter ofB(L) by lemma 3.1 and

D(L)++ = {(x∨x◦)++ : x∈ L}

= {d++ : d = x∨x◦ ∈ D(L)}.

The concept of regular doubleMS-algebras is given as
follows:

Definition 3.3.A doubleMS-algebra is called regular if

x◦ = y◦ andx+ = y+ imply x= y.

Let us denote byRDMS the class of all regular
double MS-algebras andRDS the class of all regular
double Stone algebras. Tt is easy to show that the class
RDS is a subclass of the classRDMS.

Now, we present doubleMS-algebras satisfying the
generalized complement property generalizing double
MS-algebras satisfying the complement property due to
L. Congwen [7].

Definition 3.4. A double MS-algebraL satisfying the
generalized complement property (orDMSgc-algebra) is a
double MS-algebra satisfying the following two
conditions:

(1) L is a regular doubleMS-algebra,
(2) Givena,b∈ L◦◦ and a filterF of L◦◦ containingL◦◦∨

such thata ≤ b and a∨ b◦ ∈ F , then there exists an
elementx∈ L such thatx++ = a andx◦◦ = b.

We shall denote byDMSgc the class of all
DMSgc-algebras and byDMSc the class of all double
MS-algebras satisfying the complement property (briefly
DMSc-algebras).

Example 3.5.

(1) Every regular double Stone algebra
L = (L,∨,∧,∗ ,+ ,0,1) is a DMSgc-algebra. Since for
any filter F of L and for anya,b ∈ B(L) such that
a ≤ b,a∨b∗ ∈ F, there exists an elementx ∈ L such
thatx++ = a andx∗∗ = b (see [Lemma 2, 7]).

(2) Every DMSc-algebra L is a DMSgc-algebra by
consideringF = L◦◦.

Now we illustrate two examples to show that the class of
DMSc is a proper subclass of the class ofDMSgc and the
later is a proper subclass of the class ofRDMS.

Example 3.6.

(1) ConsiderL = {0< c< a< d < 1} anda= a◦ = c◦ =
a+ = d+,d◦ = 1◦ = 0,0+ = c+ = 1. Clearly(L,◦ ,+ )
is doubleMS-algebra andF = {a,1} is a filter ofL◦◦

containingL◦◦∨. It is observed thatL ∈ DMSgc. Now
0< 1 but there is nox∈ L such thatx++ = 0,x◦◦ = 1.
ThereforeL does not satisfy the complement property.
ThenL 6∈ DMSc.

(2) LetL = {0< a< d < 1} be a four element chain and
a◦ = a = a+ = d+,d◦ = 0. Obviously(L,◦ ,+ ) is a
regular doubleMS-algebra.L does not satisfy the
condition (2) of Definition 3.4 because of 0< a and
0∨a◦ = a ∈ L◦◦∨ = L∨++ but there is no an element
x ∈ L such that x++ = 0 and x◦◦ = a. Then
L 6∈ DMSgc.

Now, we introduce a construction of aDMSgc-algebra
L from a suitable de Morgan algebraM and a filterF of
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M containingM∨.

Theorem 3.7.(Construction Theorem)
Let (M,∧,∨,̄ ,0,1) be a de Morgan algebra andF be a

filter of M containingM∨. Then

L = (M,F) = {(a,b) : a≤ b,a∨ b̄∈ F}

is aDMSgc-algebra if we define

(a,b)∧ (c,d) = (a∧c,b∧d),

(a,b)∨ (c,d) = (a∨c,b∨d),

(a,b)◦ = (b̄, b̄),

(a,b)+ = (ā, ā),

1L = (1,1),

0L = (0,0).

Furthermore,L◦◦ ∼=M as de Morgan algebras,D(L)∼=F ∼=
D(L)++ as lattices andL◦◦∨ ⊆ D(L)++.

Proof
Let (a,b),(c,d) ∈ (M,F). Thena ≤ b,c ≤ d anda∨

b̄,c∨ d̄ ∈ F . Hence

(a,b)∧ (c,d) = (a∧c,b∧d)∈ L and(a,b)∨ (c,d) =
(a∨c,b∨d) ∈ L

because of

(a∧c)∨ (b∧d) = (a∧c)∨ (b̄∨ d̄)

= (a∨ b̄∨ d̄)∧ (c∨ b̄∨ d̄) ∈ F by distributivity ofM,

(a∨c)∨ (b∨d) = (a∨c)∨ (b̄∧ d̄)

= (a∨c∨ b̄)∧ (a∨c∨ d̄) ∈ F.

Clearly (0,0),(1,1) ∈ L. ThenL is a (0,1) sublattice of
M×M. ThereforeL is a bounded distributive lattice. Now
we have

(a,b)◦◦ = (b,b)≥ (a,b) asb≥ a,

((a,b)∧ (c,d))◦ = (a∧c,b∧d)◦

= (b∨d,b∨d)

= (b,b)∨ (d,d)

= (a,b)◦∨ (c,d)◦,

(1,1)◦ = (0,0)

Then(L,◦ ) is anMS-algebra. Also, we have

(a,b)++ = (a,a)≤ (a,b) asa≤ b,

((a,b)∧ (c,d))+ = (a∧c,b∧d)+

= (a∨c,a∨c)

= (a,a)∨ (c,c)

= (a,b)+∨ (c,d)+,

(0,0)+ = (1,1).

Thus (L,+ ) is a dual MS-algebra. We observe that
(a,b)◦+ = (b,b) = (a,b)◦◦ and
(a,b)+◦ = (a,a) = (a,b)++. Therefore (L,◦ ,+ ) is a
double MS-algebra. For regularity of L, let
(a,b)◦ = (c,d)◦ and (a,b)+ = (c,d)+. Then

(b̄, b̄) = (d̄, d̄) and(ā, ā) = (c̄, c̄) impliesb= d anda= c,
respectively. Thus(a,b) = (c,d).
Moreover

L◦◦ = {(a,b) ∈ L : (a,b)◦◦ = (a,b)}

= {(a,b) ∈ L : a= b}

= {(a,a) : a∈ M},

D(L) = {(a,b) ∈ L : (a,b)◦ = (0,0)}

= {(a,1) : a∈ F},

D(L) = {(a,b) ∈ L : (a,b)+ = (1,1)}

= {(0,b) ∈ L : b̄∈ F},

D(L)++ = {(a,1)++ : (a,1) ∈ D(L)}

= {(a,a) : a∈ F},F is a filter ofM,

L◦◦∨ = {(a,a) : a∈ M∨ ⊆ F} ⊆ D(L)++

It is obviously that the mappingsf : M → L◦◦,
g : F −→ D(L) and h : F → D(L)++ such that
f (a) = (a,a), g(x) = (x,1) and h(x) = (x,x) are
isomorphisms. Now we have to prove thatL satisfies
condition (2) of Definition 3.4. Let(a,a) ≤ (b,b) be such
that (a,a) ∨ (b,b)◦ ∈ D(L)++. Then
(a∨ b̄,a∨ b̄) ∈ D(L)++ implies a∨ b̄ ∈ F. So (a,b) ∈ L
such that(a,b)++ = (a,a) and(a,b)◦◦ = (b,b). ThenL is
a DMS-algebra satisfying the generalized complement
property.

We shall say that the regular doubleMSgc-algebraL
from Theorem 3.7 is associated with the pair(M,F).

Two special cases are considered in the following
corollary.

Corollary 3.8.

(1) If M is a Kleene algebra, thenL described by Theorem
3.7 is aDMSgc-algebra fromK2∨K3,

(2) If M is a Boolean, thenL described by Theorem 3.7 is
a regular double Stone algebra.

Proof
(1). Letx= (a,b),y= (c,d) ∈ L. We have to show that

if M ∈ K , then(x∧x◦)∨y◦∨y◦◦ = y◦∨y◦◦ and(x∨x+)∧
y+∧y++ = y+∧y++. Now

[(a,b)∧ (a,b)◦]∨ (c,d)◦∨ (c,d)◦◦

= [(a,b)∧ (b̄, b̄)]∨ (d̄, d̄)∨ (d,d)

= (a∧ b̄,b∧ b̄)∨ (d̄∨d, d̄∨d)

= ((a∧ b̄)∨ (d∨ d̄),(b∧ b̄)∨ (d∨ d̄))

= (d∨ d̄,d∨ d̄) asa∧ b̄≤ b∧ b̄≤ d∨ d̄,

and

(c,d)◦∨ (c,d)◦◦ = (d̄, d̄)∨ (d,d)

= (d̄∨d, d̄∨d).
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Also,

[(a,b)∨ (a,b)+]∧ (c,d)+∧ (c,d)++

= [(a,b)∨ (ā, ā)]∧ (c̄, c̄)∨ (c,c)

= (a∨ ā,b∨ ā)∧ (c̄∧c, c̄∧c)

= ((a∨ ā)∧ (c̄∧c),(b∨ ā)∧ (c̄∧c))

= (c̄∧c, c̄∧c) asc̄∧c≤ ā∨a≤ ā∨b,

(c,d)+∧ (c,d)++ = (c̄, c̄)∨ (c,c)

= (c̄∧c, c̄∧c).

ThenL is aDMSgc-algebra from the subclassK2∨K3.
(2). SinceM is a Boolean algebra, thena∧ ā = 0 and
a∨ ā= 1 for everya ∈ M. For every(a,b) ∈ L, we have
(a,b) ∧ (a,b)◦ = (a ∧ b̄,b ∧ b̄) = (0,0) as
a ∧ b̄ ≤ b ∧ b̄ = 0 and
(a,b)∨ (a,b)+ = (a,b)∨ (ā, ā) = (a∨ ā,b∨ ā) = (1,1) as
b∨ ā ≥ a∨ ā = 1. ThenL = (M,F) is a regular double
Stone algebra.

We illustrate the construction ofDMSgc-algebras on
the following example.

Example 3.9.
ConsiderM = {0< a= a◦ < 1} be the three element

kleene algebra andF = {a,1} = M∨ be a filter of M.
Using the construction Theorem, we can construct a
DMSgc-algebraL = (M,F) as follows:

L = (M,F) = {(0,0)< (0,a)< (a,a)< (a,1)< (1,1)}

(0,a)◦ = (a,a)◦ = (a,a) = (a,a)+ = (a,1)+,(0,a)+ =
(1,1),(a,1)◦ = (0,0)

Notice that

L◦◦ = {(0,0),(a,a),(1,1)} ∼= M,D(L) =
{(a,1),(1,1)} ∼= F

and

D(L)++ = {a,a),(1,1)}= L◦◦∨ ∼= F.

The following Theorem shows that each elementx of
a DMSgc-algebraL is uniquely described by the greatest
closed element belowx and the smallest closed element
abovex.

Theorem 3.10.
Let L be aDMSgc-algebra,M = L◦◦ andF = [L∨)++.

Then the mapping ψ : L → (M,F) defined by
ψ(x) = (x++,x◦◦) is an isomorphism.

Proof
For every x ∈ L, we have x++ ≤ x◦◦ and

x++ ∨ x◦◦◦ = x++ ∨ x◦ = (x ∨ x◦)++ ∈ [L∨)++ as
x∨ x◦ ∈ L∨. Then (x++,x◦◦) ∈ (M,F) and ψ is a well
defined map. Now, we prove thatψ is a (0,1) lattice

homomorphism. It is clear thatψ(0) = (0,0) and
ψ(1) = (1,1). For everyx,y∈ L, we get

ψ(x∧y) = ((x∧y)++
,(x∧y)◦◦)

= (x++∧y++
,x◦◦∧y◦◦)

= (x++
,x◦◦)∧ (y++

,y◦◦)

= ψ(x)∧ψ(y),

ψ(x∨y) = ((x∨y)++
,(x∨y)◦◦)

= (x++∨y++
,x◦◦∨y◦◦)

= (x++
,x◦◦)∨ (y++

,y◦◦)

= ψ(x)∨ψ(y)

Obviouslyψ(x◦) = (ψ(x))◦ andψ(x+) = (ψ(x))+. Thus
ψ is a doubleMS-algebra homomorphism. To show that
ψ is an injective mapping, letψ(x) = ψ(y). Then
(x++,x◦◦) = (y++,y◦◦) implies x◦ = y◦ andx+ = y+. By
regularity ofL we getx= y. It remains to prove thatψ is
surjective. Let(a,b) ∈ (M,F). According to condition (2)
of Definition 3.4, there existsx ∈ L such that
x++ = a ≤ b = x◦◦ and
x++ ∨ x◦◦◦ = x++ ∨ x◦ = a ∨ b◦ ∈ F. Thus
(x++,x◦◦) ∈ (M,F) and ψ(x) = (x++,x◦◦) = (a,b).
Thereforeψ is a doubleMS-algebra isomorphism.

4 Applications

Many applications of the construction Theorem (Theorem
3.7) are given in the following two subsections.

4.1Subalgebras and homomorphisms

Using the construction of aDMSgc-algebra from the
pair (M,F), whereM is a de Morgan algebra andF is a
filter of M containingM∨, we characterize subalgebras of
a DMSgc-algebraL associated with(M,F). A description
of special subalgebras of aDMSgc-algebraM[2] is given.
Also we characterize homomorphisms ofDMSgc-algebras
in terms of pairs(M,F).
Theorem 4.1.

If L = (M,F),H = (C,G) beDMSgc-algebras. ThenL
is a subalgebra ofH if and only if M is a subalgebra ofC
andF is a sublattice ofG with 1.
Proof

SupposeL is a subalgebra ofH. Then by Theorem
3.7, L◦◦ = {(a,a) : a ∈ M}, H◦◦ = {(a,a) : a ∈ C},
D(L) = {(x,1) : x ∈ F} and D(H) = {(y,1) : y ∈ G}.
Clearly L◦◦ is a subalgebra ofH◦◦ and D(L) is a
sublattice ofD(H) containing(1,1). Let a ∈ M. Thus
(a,a) ∈ L◦◦ ⊆ H◦◦. Then(a,a) ∈ H◦◦ implies a ∈ C. So
M ⊆ C. Since (0,0),(1,1) ∈ L◦◦. Then 0,1 ∈ M. Let
x,y∈ M. Then we get

x,y∈ M ⇒ (x,x),(y,y) ∈ L◦◦

⇒ (x∧y,x∧y),(x∨y,x∨y) ∈ L◦◦

⇒ x∧y,x∨y∈ M.
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ThereforeM is a bounded sublattice of de Morgan algebra
C. For everyx∈M, (x,x) ∈ L◦◦. Then(x̄, x̄) = (x,x)◦ ∈ L◦◦

impliesx̄∈M. ThereforeM is a subalgebra ofC. Letx∈F .
Then(x,1) ∈ D(L) ⊆ D(H) implies x ∈ G. ThusF ⊆ G.
Clearly 1∈ F . Let x,y ∈ F, so (x,1),(y,1) ∈ D(L). Then
(x∧y,1),(x∨y,1) ∈ D(L) imply x∧y,x∨y∈ F . Therefore
F is a sublattice ofG with 1.

Conversely, supposeM is a subalgebra ofC andF is a
sublattice ofG with 1. Again by Theorem 3.7, for every
(a,b) ∈ L, we havea ≤ b anda∨ b̄∈ F ⊆ G. This gives
(a,b) ∈ H. Therefore L ⊆ H. Since L and H are
DMSgc-algebras, thenL is a subalgebra ofH.

Let M be a de Morgan algebra,F(M) be the lattice of
all filters of M andFM∨ = {F : F ∈ F(M),M∨ ⊆ F} be
the family of filters ofM containingM∨. We will write
RF instead of a DMSgc-algebra (M,F). Let
RFM∨ = {RF : F ∈ FM∨} be the family of all
DMSgc-algebras constructing from(M,F) for all
F ∈ FM∨ . Many properties ofRFM∨ are investigated in the
following two Theorems.

Theorem 4.2.
Let M = (M,∧,̄ ,0,1) be a de Morgan algebra. Then for

anyF,G∈ FM∨ we have

(1) RF ⊆ RG if and only if (RF)
◦◦ = (Rg)

◦◦ andD(RF)⊆
D(RG),

(2) F ⊆ G if and only if RF ⊆ RG,
(3) RF is a subalgebra ofM[2].

Proof

(1) Let RF ⊆ RG. Clearly (RF)
◦◦ ⊆ (RG)

◦◦. Since
(RF)

◦◦ ∼= M ∼= (RG)
◦◦, then (RF)

◦◦ = (RG)
◦◦. Now,

let (x,1) ∈ D(RF). Then (x,1) ∈ RG. Thus
(x,1) ∈ D(RG) as (x,1)◦ = (0,0). Conversely, Let
(a,b) ∈ RF . Then a ≤ b and a ∨ b̄ ∈ F. Hence
(a∨ b̄,1) ∈ D(RF) ⊆ D(RG) anda∨ b̄∈ G. Therefore
(a,b) ∈ RF .

–(2) Let F ⊆ G and(a,b) ∈ RF . Thusa∨ b̄∈ F . Then
a ∨ b̄ ∈ G implies (a,b) ∈ RG. Then RF ⊆ RG.
Conversely, let RF ⊆ RG and x ∈ F . Then
x = (x,1) ∈ RF and (x,1) ∈ D(RF) ⊆ D(RG).
Thereforex∈ G.

–(3) One can easily verify thatRF is a subalgebra of
M[2] for everyF ∈ FM∨ .

Theorem 4.3.
Let M be a de Morgan algebra. Then for anyF,G ∈

FM∨ we have

(1) FM∨ is a bounded distributive lattice on its own,
(2) the familyRFM∨ is a bounded distributive lattice on its

own,
(3) FM∨ ∼= RFM∨ .

Proof
(1) Let F,G ∈ FM∨ . Clearly F ∩ G ∈ FM∨ and

F ∨G = {x = f ∧g, f ∈ F,g ∈ G} ∈ FM∨ . ThenFM∨ is a
sublattice ofF(M). Obviously M, [M∨) are the greatest
and the smallest elements ofFM∨ respectively. Therefore
(FM∨ ,∩,∨,M, [M∨)) is a bounded distributive lattice.

(2) ClearlyRFM∨ is a partially ordered set with respect
to the set inclusion. Now for any twoDMSgc-algebrasRF
andRG in RFM∨ , define the operations∩ and⊔ onRFM∨ as
follows:

RF ∩RG = RF∩G andRF ⊔RG = RF∨G

Clearly RF∩G is the infimum of bothRF ,RG in RFM∨ .
Obviously RF∨G is an upper bound ofRF and RG.
SupposeRF ⊆ RH ,RG ⊆ RH for someH ∈ FM∨ . ThenH
is an upper bound of bothF and G in FM∨ . Hence
F ∨ G ⊆ H. Then RF∨G ⊆ RH . ThereforeRF∨G is the
supermum of bothRF and RG in RFM∨ . Consequently

(RFM∨ ,∩,⊔) is a lattice. We observe thatM[2] = RM is the
greatest member inRFM∨ and R[M∨) is the smallest
member inRFM∨ . This deduce thatRFM∨ is a bounded
lattice. It can be easily obtained that
(RFM∨ ,∩,⊔,R[M∨),M

[2]) is a distributive lattice.
(3) Define the mapπ : FM∨ → RFM∨ by π(F) = RF .

It is clear thatπ([M∨)) = R[M∨) and π((M) = M[2]. Let
F,G∈ FM∨ . Then we get

π(F ∩G) = RF∩G

= RF ∩RG

= π(F)∩π(G),

π(F ∨G) = RF∨G

= RF ⊔RG

= π(F)⊔π(G).

Thenπ is a (0,1) lattice homomorphism. To show thatπ is
an injective map, letπ(F) = π(G). ThenRF = RG implies
F = G. It is clear thatπ is a surjective map. Thereforeπ is
a lattice isomorphism.

Now, we characterize homomorphisms of
DMSgc-algebras in terms of pairs(M,F).

Theorem 4.4.
Let L = (M,F) andL1 = (M1,F1) beDMSgc-algebras

and let h : L → L1 be a double MS-algebra
homomorphism. ThenS(h) : L◦◦ → L◦◦

1 defined by
S(h)(a) = h(a) for eacha ∈ L◦◦ is a de Morgan algebra
homomorphism and h(F) ⊆ F1. Conversely, if
h : M → M1 is a de Morgan homomorphism and
h(F) ⊆ F1, thenh can be uniquely extended to a double
MS-algebra homomorphism fromL = (M,F) into
L1 = (M1,F1).

Proof
For every a ∈ L◦◦, S(h)(a) ∈ L◦◦

1 as
(h(a))◦◦ = h(a◦◦) = h(a). It is easy to check thatS(h) is a
de Morgan algebra homomorphism. Lety ∈ h(F). Then
y = h(x) for some x ∈ F. So (x,1) ∈ D(L) and
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(y,1) = (h(x),1) ∈ h(D(L1)) as (y,1)◦ = (0,0). Thus
y ∈ F1 andh(F) ⊆ F1. Conversely, defineR(h) : L → L1
by R(h)(a,b) = (h(a),h(b)),(a,b) ∈ L. Thena ≤ b and
a ∨ b̄ ∈ F imply h(a) ≤ h(b) and
h(a) ∨ h(b̄) = h(a ∨ b̄) ∈ h(F) ⊆ F1. Hence
R(h)(a,b) ∈ L1 andR(h) is well defined mapping. Now,
for every(a,b),(c,d) ∈ L we get

R(h)((a,b)∧ (c,d)) = R(h)(a∧c,b∧d)

= (h(a∧c),h(b∧d)

= (h(a)∧h(c),h(c)∧h(d))

= (h(a),h(b))∧ (h(b),h(c))

= R(h)(a,b)∧R(h)(c,d)),

R(h)((a,b)∨ (c,d)) = R(h)(a∨c,b∨d)

= (h(a∨c),h(b∨d)

= (h(a)∨h(c),h(c)∨h(d))

= (h(a),h(b))∨ (h(b),h(c))

= R(h)(a,b)∨R(h)(c,d)),

and

(R(h)(a,b))◦ = (h(a),h(b))◦

= (h(b̄),h(b̄))

= R(h)(b̄, b̄)

= R(h)(a,b)◦,

(R(h)(a,b))+ = (h(a),h(b))+

= (h(ā),h(ā))

= R(h)(ā, ā)

= R(h)(a,b)+,

R(h)(1,1) = (1,1) and R(h)(0,0) = (0,0).

Consequently R(h) is a double MS-algebra
homomorphism.

4.2Congruence relations

A DMSgc-algebraL = (M,F) regards as an extension
of the de Morgan algebraM. The construction of regular
doubleMSgc-algebras from de Morgan algebras leads us
to show that the congruence lattices ofL = (M,F) andM
are isomorphic. Also, we prove that a regular double
MSgc-algebraL = (M,F) has permutable congruences if
and only ifM has permutable congruences.

Theorem 5.1.
Let (M,∨,∧,̄ ,0,1) be a de Morgan algebra. LetL be

aDMSgc-algebra associated with the pair(M,F) for some
filter F of M containingM∨. Then there exists a one-to-one
correspondence betweenCon(L) andCon(M).

Proof
We haveL◦◦ = {(a,a) : a ∈ M} ∼= M (see Theorem

3.7). Firstly, letθ ∈Con(L). Define a relationψ on M as
follows:

a≡ b(ψ)⇔ (a,a)≡ (b,b)(θ )

It is clear that ψ is a lattice congruence onM. Let
a ≡ b(ψ). Then (a,a) ≡ (b,b)(θ ) implies
(ā, ā) = (a,a)◦ ≡ (b,b)◦(θ ) = (b̄, b̄). Thusā ≡ b̄(ψ) and
ψ ∈ Con(M). Conversely, letψ ∈ Con(M). Define a
relationθ onL as follows:

(a,b)≡ (c,d)(θ )⇔ a≡ c(ψ) andb≡ d(ψ)

Clearlyθ is a lattice congruence onL. It remains to show
that θ preserves the operations◦,+ on L. Let
(a,b) ≡ (c,d)(θ ). Then a ≡ c(ψ),b ≡ d(ψ) imply
ā ≡ c̄(ψ), b̄ ≡ d̄(ψ). This gives
(a,b)◦ = (b̄, b̄) ≡ (d̄, d̄)(θ ) = (c,d)◦ and
(a,b)+ = (ā, ā)≡ (c̄, c̄)(θ ) = (c,d)+. Thenθ ∈Con(L).

In closing this paper, we introduce an important result
concerning the permutability of congruences of
DMSgc-algebras.

Theorem 5.2.
Let L be aDMSgc-algebra associated with(M,F) for

a filter F of M containingM∨. ThenL is a congruence
permutable if and only ifM is a congruence permutable.

Proof
Assume thatL is a congruence permutable. Let

x,y,z ∈ L. Then x = (a,b),y = (c,d) and z = (g,h) for
somea,b,c,d,g,h ∈ M. Suppose thatθ ,ψ ∈ Con(L) are
respectively corresponding toθ́ , ψ́ ∈ Con(M). Let
x≡ y(θ ) andy≡ z(ψ). Then by Theorem 5.1, we have

(a,b) ≡ (c,d)(θ ) and(c,d)≡ (g,h)(ψ)

⇒ a≡ c(θ́ ),b≡ d(θ́ ) andc≡ g(ψ́),d ≡ h(ψ́)

⇒ a≡ c(θ́ ),c≡ g(ψ́) andb≡ d(θ́ ),d ≡ h(ψ́)

SinceM is a congruence permutable, then there existr,n∈
M such that

a ≡ r(ψ́), r ≡ g(θ́ ) andb≡ n(ψ́),n≡ h(θ́ )
⇒ (a,b)≡ (r,n)(ψ) and(r,n)≡ (g,h)(θ )

for some(r,n) ∈ L

Therefore θ ,ψ are permute. Conversely, letL be a
congruence permutable and let̄θ , ψ̄ ∈ Con(M). Then
a ≡ b(θ̄ ) and b ≡ c(ψ̄) implies (a,a) ≡ (b,b)(θ ) and
(b,b) ≡ (c,c)(ψ), respectively. Thus there exists
(r,n) ∈ L such that

(a,a)≡ (r,n)(ψ) and (r,n)≡ (c,c)(θ )
⇒ a≡ r(ψ̄), r ≡ c(θ̄ ) for somer ∈ M

Therefore θ̄ , ψ̄ are permute. This deduce thatM is a
congruence permutable.

5 Conclusion

In this paper we introduced a class of so called double
MS-algebras satisfying the generalized complement
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property (brieflyDMSgc-algebras) that includes the class
of double MS-algebras satisfying the complement
property. We illustrated two examples to show that the
class of DMS-algebras satisfying the complement
property is a proper subclass of the class of
DMSgc-algebras and the later is a proper subclass of the
class of regular doubleMS-algebras. We presented an
important construction (see Theorem 3.7) of
DMSgc-algebras from the pairs(M,F), whereM is a de
Morgan algebra andF is a filter of M containingM∨,
generalizing the construction of regular double Stone
algebras [1] presented by T. Katrin̆ák. Further, we derived
that everyDMSgc-algebraL is uniquely determined by the
pair (L◦◦

, [L∨)++).

Many applications of our construction are given in
section 4. A characterization of homomorphisms and
subalgebras ofDMSgc-algebras using the construction
Theorem are obtained. Also, using the construction
Theorem we investigated interesting descriptions of the
notions of congruences and permutability of congruences
of DMSgc-algebras. For everyDMSgc-algebraL = (M,F),
we derived thatCon(L) and Con(M) are isomorphic.
Also, we proved that aDMSgc-algebraL = (M,F) has
permutable congruences if and only if the de Morgan
algebraM has permutable congruences. As a future work
on this topic, we hope to study the perfect (also called
canonical) extensions ofDMSgc-algebras in sense of [16]
due to S. D. Comer by using our representation.
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