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Abstract: The propose of this paper is to extend the construction dile Katrinak of regular double Stone algebras [1] to a ¢erta
subclass of the class of regular doubM&-algebras. According to this construction we investigassmynproperties of these algebras
deal with subalgebras, homomorphisms, congruences antupasle congruences.
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1 Introduction generalizedS-algebras. Also, A. BadawyiLl] presented
a certain triple construction of principal generalized

An Ockham algebra is a bounded distributive lattice MS-algebras.
with a dual endomorphism. The class of Ockham algebras
contains the well-known classes as de Morgan algebras Regular double Stone algebras have been
and Stone algebra®][ T. S. Blyth and J. C. Varletd  characterized by T. KatrinaK] in terms of pairs(B,F),
defined a subclass of Ockham algebras so calledvhereBis a Boolean algebra arfdis a filter of B. Also,
MS-algebras denoted byS which generalizes both de he derived that every regular double Stone algdbiia
Morgan algebras and Stone algebras. These algebra#liquely determined by the paiB(L),D(L)""), where
belong to the class of Ockham algebras introduced by JB(L) and D(L) are the center and the dense setLof
Berman B]. The class MS of all MSalgebras is respectively.
equational. T. S. Blyth and J. C. Varldi][characterized
the subvarieties df1S. Also, T. S. Blyth and J. C. Varlet In this paper we introduce the class of double
[6] introduced the class of doubMS-algebras and they MS-algebras satisfying the generalized complement
showed that every de Morgan algebd can be property (briefly DMS*-algebras). Many related
represented non-trivially as the skeleton of the doubleproperties and examples are given. The main result of this
MS-algebraM@ = {(a,b) e M x M : a< b}. The class of article is to extend the construction of regular double
double MS-algebras satisfying the complement property Stone algebras due to Katrinakl][to the class of
have been introduced by Luo Congwéf [ DMS*¢-algebras; instead of Boolean algebras and the

filters D(L) used in the representation df]] de Morgan

In 2012, A. Badawy, D. Guffova and M. Haviag]]  algebras and the filtef&"), respectively, are used in our
introduced and characterized the class of principalléPresentation (Theorem 3.7). We give an example
MS-algebras and the class of decomposab®algebras (Example 3.9) to illustrate the construction of
by means of triples. In 2015, A. Badaw][studied the ~DMS*-algebras.  Also, we prove that every
notion of d, -filters of principalMS-algebras. A. Badawy DMS*-algebral is uniquely determined by the pair
[10] presented the notion of de Morgan filters of (L*°,[LY)™™).
decomposableMS-algebras. Also he established the
relationship between congruences and de Morgan filters Many applications of the construction Theorem
of a decomposabl#S-algebra in [L1]. In 2014 [12] A. (Theorem 3.7) are presented in section 4. We introduce
Badawy and M. Sambasiva Rao considered the notion ofind characterize subalgebras 8MS*-algebras by
closure ideals oMS-algebras. Recently, A Badawi 3| means of pairgsM, F). We investigate a special family of
gave the first quadruple construction of modular subalgebras of ®MS-algebraM!?, whereM is a de
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Morgan algebra. HomomorphismsBMS“-algebras are
characterized in terms of paifM, F). Finally, we discuss

The classS of Stone algebras is a subvariety MfS
and is characterized by the identityA x° = 0. The

the concepts of congruences and permutability ofsubvariety B of MS characterized by the identity

congruences oDMS?¢-algebras using the construction

XV x° = 1is the class of Boolean algebras.

Theorem. It is observed that the congruence lattices of a

DMS¥¢-algebral = (M, F) and the de Morgan algebka
are isomorphic. Also, we prove that BMS’®-algebra

A doubleMS-algebra is an algebrd_,°,*) such that
(L,°) is anMS-algebra,(L," ) is a dualMS-algebra and

L = (M,F) has permutable congruences if and only if the for everyx € L, x>" = x°°, xt° = x*.

de Morgan algebri has permutable congruences.

2 Preliminaries

A Stone algebra is a universal algelitav,A,*,0,1)
of type (2,2,1,0,0), where (L,Vv,A,0,1) is a bounded
distributive lattice and the unary operationhas the
properties thaxAa= 0« x < a* andx™ v x* = 1.

A dual Stone algebra is a universal
(L,V,A,1,0,1) of type (2,2,1,0,0), where(L,V,A,0,1)
is a bounded distributive lattice and the unary operation
has the properties thakva =1 < x > a" and
xttvxt =1,

A double Stone algebra is an algehila*,™) such
that (L,*) is a Stone algebra(lL,") is a dual Stone
algebra and for everyc L, x* = x™* x™ = xT+,

A double Stone algebrd_,*,*) is called regular if
Xt =y*andx™ =y" imply x=y.
A de Morgan algebra is an algebth,V,A,,0,1) of
type (2,2,1,0,0) where(L,V,A,0,1) is a bounded

distributive lattice and ™ the unary operation of involatio
satisfies:

X=X, (XVY) =XAY,(XAY) =XVY.

An MS-algebra is an algebrgd.,V,A,°,0,1) of type
(2,2,1,0,0) wherdL,Vv,A,0,1) is a bounded distributive
lattice and a unary operatidrsatisfies:

X <X (XAY)° =X Vy°,1°

AdualMS-algebrais an algebf&, v, A, ", 0,1) of type
(2,2,1,0,0) wherdL,Vv,A,0,1) is a bounded distributive
lattice and a unary operationsatisfies:

X> X (xAy)t =xt vyt 0t =1,

The classM of de Morgan algebra is a subvariety of
MS and is defined by the identity° = x. The member of
the subvarietyK of M defined by the inequality A x° <
yVy° are called Kleene algebras. The subvariesyof MS
defined by the additional two identities:

XAX® =XCAX, (XAX)VYVY =yVy°.

The subvarietyk, v K3 of MS defined by the following
two identities:

(XAX) VY VY = Y VY,

algebra

The classDS of all double Stone algebras is a
subclass of the claf3MS of all doubleMS-algebras.

Theorem 2.1.
LetL be a doubléMS-algebra. Then

(1) the skeletoh>® = {x e L:x° =x} = {xeL:x"" =
x} =L*T is a de Morgan subalgebra bf

(2) LY = {xVvx° :x e L} is an order filter (increasing
subset) oL,

(3) L = {xAXx° :x € L} is an order ideal (decreasing
subset) oL,

(4) the dense s@(L) = {x e L : x° = 0} is afilter ofL,

(5) the dual dense s&X(L) = {xe L : xt = 1} is an ideal
of L.

The elements oL°° are called the closed elementslof
and the elements @(L) are called the dense elements of
L.

Now we recall the following result froni].

Theorem 2.2.[T heoren®.1, 7
A double MSalgebra L satisfies the complement
property if and only if

(1) Givena,b € L such thata®® = b°°,a™* = b**, then
a=>hb,

(2) Givena,b € L such thata = a°°,b = b°°,a < b there
exists an elemente L such thak™ = a,x°° = b.

A (0,1)-homomorphism from a bounded lattice into
another one is a lattice homomorphism taking 0 into 0
and 1 into 1. A mappingf : M — C of a de Morgan
algebraM into a de Morgan algebr€ is called a de
Morgan algebra homomorphism iff is a lattice
homomorphism satisfying(x) = f(X) for everyx e M. A
mappingf : L — L; of a doubleMS-algebralL into a
double MS-algebral, is called a doubleMS-algebra
homomorphism iff is a lattice homomorphism satisfying
(f(x))° = f(x°) and(f(x))" = f(x") for everyx € L.

LetL be a doubleviS-algebra. A lattice congruende
on L is a congruence ik = y(6), thenx* = y° and
x™ =y*. We denote byCon(L) the congruence lattice of

r

Let A be an algebra. We say th& ¢ € Con(A)
permute ifx = y(6) andy = z(¢) imply x = r(¢) and
r =2z(0), for somey,r € A. The algebra\ is congruence
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permutable if every pair of congruences {@on(A)
permutes.

For the basic properties of distributive lattices we refer

to [15] and for MS-algebras and doublS-algebras, we
refer to 2,3,5,6] and [g].

3 The Construction

X° =y’ andxt =y imply x=y.

Let us denote byRDMS the class of all regular
double MS-algebras andRDS the class of all regular
double Stone algebras. Tt is easy to show that the class
RDS s a subclass of the claB&DMS.

Now, we present doubl®S-algebras satisfying the
generalized complement property generalizing double
MS-algebras satisfying the complement property due to

In this section the concept of regularity on the class ofL- Congwen 7].

double MSalgebras is considered. Many related

properties and examples are given. A construction of aDefinition 3.4. A double MS-algebral satisfying the

double MS-algebra L satisfying the generalized

complement property from a suitable de Morgan algebradouble MS-algebra satisfying

M and a filterF of M containingM" is investigated.
Every doubleMSalgebral satisfying the generalized

generalized complement property (@M S¥°-algebra) is a
the following two
conditions:

complement property can be uniquely determined by the (1) L is @ regular doubl#S-algebra,

pair (L, [LV) ™).

Let(L,°,") be a doubléviS-algebra. Then foH C L,
consideH™ andH "™ as follows:

HT={x":xeH}andH™" = {x"*:xe H}

Lemma 3.1.
Let F be a filter of a doublé1S-algebraL. ThenF*+
is a filter ofL°°.

Proof

Clearly, 1 e F'". Let xy € Then
x = att,y = b™" for some ab ¢ F. Hence
xAy=a"tAbt =(aAb)tt € F*, asaAb e F.
Again, letx € F™" andz € L°° be such thaz > x. Then
X att for some a € F. Thus
z=zvx=z"va't =(zva)tt e F*t aszvacF.
ThenF*+ is afilter ofL°°.

FHe,

Corollary 3.2.

(1) If L is a doubleMS-algebra fromK,, thenL"*" =
{d**:d e L} is afilter ofL*,

(2) If Lis a double Stone algebra, thBfL) ™ = {d**:
d € D(L)} is afilter ofL°°.

Proof
(1). SinceL € K, thenL" is a filter of L. ThusLV"™
is a filter ofL°° by lemma 3.1 and

LYt = {(xvx) T :xeL}
={dtT:d=xvx eL"}.
(2). SinceL is a Stone algebra, thdr! = D(L) is a filter

of L andL°® is a Boolean algebra which is usually denoted
byB(L). ThusD(L)** is afilter ofB(L) by lemma 3.1 and

DIL)™ = {(xvx)tT:xeL}
={d"*:d=xvx° eD(L)}.
The concept of regular doubMS-algebras is given as
follows:

Definition 3.3. A doubleMS-algebra is called regular if

(2) Givena,b € L°° and a filterF of L°° containingL°°V
such thata < b andaV b® € F, then there exists an
elementx € L such thaixtt = aandx*® = b.

We shall denote byDMS9¢ the class of all
DMS¢-algebras and bypMS® the class of all double
MS-algebras satisfying the complement property (briefly
DMS -algebras).

Example 3.5.
)

Every regular double Stone algebra
L =(L,V,A,*,7,0,1) is a DMS®-algebra. Since for
any filter F of L and for anya,b € B(L) such that
a<b,avb* € F, there exists an elemertc L such
thatx™ = aandx** = b (see [Lemma 2, 7]).
(2) Every DMS-algebra L is a DMSY®-algebra by

considering= = L°°.

Now we illustrate two examples to show that the class of
DMSE€ is a proper subclass of the classii¥1S9 and the
later is a proper subclass of the clasfRaiMS.

Example 3.6.

(1) Considel. ={0<c<a<d<1l}anda=a’=c° =
at=d*,d>=1°=0,0f =c" = 1. Clearly(L,”,")
is doubleMS-algebra andc = {a,1} is a filter of L°°
containingL®°V. It is observed that ¢ DMS9. Now
0 < 1 but there is n&x € L such tha™ ™ = 0,x°° = 1.
Thereforel does not satisfy the complement property.
ThenL ¢ DMSC.

(2) LetL = {0 < a<d < 1} be a four element chain and
a°>=a=a' =d*",d> =0. Obviously(L,°,") is a
regular doubleMS-algebra.L does not satisfy the
condition (2) of Definition 3.4 because off¥a and
Ova® =ac L°® = LY** but there is no an element
x € L such thatx™ = 0 and x°* = a. Then
L ¢ DMSS¢,

Now, we introduce a construction oM S?¢-algebra
L from a suitable de Morgan algebk& and a filterF of
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M containingM" .

Theorem 3.7.(Construction Theorem)
Let (M,A,V,,0,1) be a de Morgan algebra afdbe a
filter of M containingM". Then

L=(M,F)={(ab):a<havbeF}
is aDMS-algebra if we define
(a,b)A(c,d) = (anc,bAd),

(ab)Vv(cd) = (avcbvd)
(a,b)° = (b,b),
(ab)" = (aa),

1L = (15 1)a
0. = (0,0).

~

Furthermorel.°° =M as de Morgan aIgebraB(L) =
D(L)"™* as lattices antl>°V C D(L)"+

Proof

_ Let(ab),(c,d)e M
b,cvd e F. Hence

,F). Thena<b,c < dandav

(a,b)A(c,d) = (anc,bAd)eLand(ab)V(cd)=
(ave,bvd)el
because of
(anc)v(bAd)=(arc)V(bvd)
= (avbvd)A(cvbvd) e F by distributivity of M,
(ave)v(bvd) = (avec)V(bAd)
= (avcvbA(avevd) e F

Clearly (0,0),(1,1) € L. ThenL is a (0,1) sublattice of
M x M. Thereforel is a bounded distributive lattice. Now
we have

(b,b) = (d,d) and(a,a) = (c,c) impliesb=d anda =,
respectively. Thuga, b) = (c,d).
Moreover
={(a,b)eL:(a,b)”=(ab)}
={(a,b)eL:a=hb}
={(aa):aeM},
D(L) ={(ab)eL:(ab)”=(0,0)}
={(a1):acF},
D(L) = {(ab)eL:(ab)" =(1,1)}
= {(0,b)eL:beF},
D(L)™" ={(a1)"":(a1)eD(L)}
={(a,a):acF},Fisafilter ofM,
LY = {(a,a):ac MY CF}CD(L)""

It is obviously that the mappingsf : M — L°°,
g:F — D(L) and h: F — D(L)™ such that
f(a) = (a,a), 9(x) (x,1) and h(x) = (x,x) are
isomorphisms. Now we have to prove thiatsatisfies
condition (2) of Definition 3.4. Leta,a) < (b,b) be such
that_  (aa) Vv (bb)° € D(L)". Then
(avb,avb) e D(L)™ impliesavbe F. So(a,b) € L
such that(a,b)** = (a,a) and(a,b)°° = (b,b). ThenL is
a DMS-algebra satisfying the generalized complement

property.

We shall say that the regular doubdS?¢-algebral
from Theorem 3.7 is associated with the p@it, F).

Two special cases are considered in the following
corollary.

Corollary 3.8.
b)°° = (b,b) > (a,b) asb >
(@ )O (bb) 2 (a, . asb=4, (1) If M is a Kleene algebra, thendescribed by Theorem

((a,b)A(c,d))” = (f/\kai/\ ‘j) 3.7 is aDMS¥c-algebra fromK , V K 3,

= (bvd,bvd) (2) If M is a Boolean, theh described by Theorem 3.7 is

— (b,b) v (d,d) a regular double Stone algebra.

= (a,b)° Vv (c,d)°, Proof

(1,1)° =(0,0) (D). Letx=(a,b),y= (c,d) € L. We have to show that
Then(L,° ) is anMS-algebra. Also, we have '}'\f\ ;ﬁ’ihjf%yﬁﬁol)&/g;v\/fo =y’ vy and(xvx") A
(a,b)*" = (a,a) < (a,b)asa<b,

((a,b)A(c,d))" = (aAc,bad)* [(a,b) A (a,b)] v (c,d)V (c,d)**

— (a\/c’a\/c) = [( b)/\( )] (d ) ( )

_@aveo) = (aAb,bAb)v(dvd,dvd)

_ (a,b>+v(c,d)+, = (@ 9) (dvd),(bAb)v(dvd)
Thus (L ,*) is a dual MS-algebra. We observe that
(a,b)°t = (b,b) = (a,b)>° and and
(a,b)*° = (a,a) = (a,b)**". Therefore (L,°,") is a 5 . —
double MS-algebra. For regularity ofL, let (¢d)"V(c,d)™ = (d,d)v(d,d)
(a,b)° = (c,d)° and (ab)™ = (c,d)*. Then (dvd,dvd)
(@© 2017 NSP
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Also, homomorphism. It is clear thaty(0) = (0,0) and
Y(1) = (1,1). For everyx,y € L, we get
[(a,b) Vv (a,b) ] A(c,d)" A(c,d)" _ Tt 00
WXAY) = (XAY)TT, (XAY)™)
= [(ab)v(aa]r(cc)v(cc) — (X AYTE O AY)
= (avahbva)A(CAC,CAC) e x°°)/\7(y++ )
= ((ava)A(cAc),(bva)A(CAC)) =lll(X)7MII(Y) ’
= (CAc,CAC)ascAc<ava<aVvb, Wxvy) = ((xvy)H (;<\/y)°O)
(C,d)+/\( ) (C (_:)V(C C) — (X++\/y+J’r Xoo \/yOO)
= (ercenc) = (X V(L y)
ThenL is aDMS*-algebra from the subclags, vV K. =YXV Y(y)
(2). SinceM is a Boolean algebra, themA a =0 and Obviouslyw(x°) = (W(x))° andw(xt) = (Y(x))*. Thus

aVva=1 for everya € M. For every(a,b) € L, we have

(a,b) A (a,b)° = (a A bbb A b)) = (00 as
a A b < b A b = 0 and
(ab)v(ab)" = (ab)v(aa) =(avabva)=(11)as

bva>ava=1 ThenL = (M,F) is a regular double
Stone algebra.

We illustrate the construction dMS?C-algebras on
the following example.

Example 3.9.
ConsideM = {0 < a= a° < 1} be the three element
kleene algebra an& = {a,1} = M be a filter of M.

Y is a doubleMS-algebra homomorphism. To show that
Y is an injective mapping, lety(x) = @(y). Then
(XTT,x°°) = (y"T,y°°) impliesx° = y° andx™ = y*. By
regularity ofL we getx =y. It remains to prove thap is
surjective. Let(a,b) € (M,F). According to condition (2)
of Definition 3.4, there existsx € L such that

X = a < b = x°° and
Xt Vv x° = xtTTvx = avhb € F. Thus
(x**x°) € (M,F) and g(x) = (x'*,x°) = (ab).

Thereforey is a doubleM S-algebra isomorphism.

4 Applications

Using the construction Theorem, we can construct a

DMS¥¢-algebral = (M, F) as follows:
{(0,0)<(0,a) < (a,8) <

(07 a)o = (av a)o = ( 7a) = (av a)Jr = (av 1)+

L=(M,F)= (a1) < (1,1}

) (Ov a)Jr =

and
D(L)™ ={a,a),(1,1)} =LV ~F.

The following Theorem shows that each elememwf

Many applications of the construction Theorem (Theorem
3.7) are given in the following two subsections.

4.1 Subalgebras and homomorphisms

Using the construction of ®MS?®-algebra from the
pair (M,F), whereM is a de Morgan algebra arid is a
filter of M containingM", we characterize subalgebras of
aDMS-algebral associated witliM, F). A description
of special subalgebras of BMS¢-algebraM@ is given.
Also we characterize homomorphisms¥ S’¢-algebras
in terms of pair§M,F).

Theorem 4.1.
If L=(M,F),H = (C,G) beDMS®-algebras. Theh
is a subalgebra dfl if and only if M is a subalgebra o

a DMSC-algebral is uniquely described by the greatest andF is a sublattice o6 with 1.
closed element below and the smallest closed element Proof

abovex.

Theorem 3.10.

Let L be aDMS®-algebraM = L°° andF = [LY)*™.
Then the mappingy : L — (M,F) defined by
Y(x) = (x*,x°°) is an isomorphism.

Proof

For every x € L, we have x'* < x°° and
XTEvxeee = xt v = (xVx)Ft e [L)TF as
xVx° € LY. Then (x",x*°) € (M,F) and ¢ is a well
defined map. Now, we prove that is a (0,1) lattice

Supposel is a subalgebra of. Then by Theorem
3.7, L = {(a,a) : a€ M}, H*® = {(a,a) : a € C},
D(L) ={(x,1): xe F} andD(H) = {(y,1) : y € G}.
Clearly L°° is a subalgebra ofH°° and D(L) is a
sublattice of D(H) containing(1,1). Let a € M. Thus
(a,a) € L°° C H*°. Then(a,a) € H*° impliesa € C. So
M C C. Since (0,0),(1,1) € L*°. Then Q1 € M. Let
X,y € M. Then we get

X,y eM = (x,X),(y,y) € L
= (XAY,XAY), (XVy,xVy) € L
= XAY,XVye M.

(@© 2017 NSP
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ThereforeM is a bounded sublattice of de Morgan algebra Proof

C. Foreveryxe M, (x,x) € L°°. Then(x,x) = (x,x)° € L°°
impliesx € M. ThereforeM is a subalgebra d. Letx e F.
Then(x,1) € D(L) € D(H) impliesx € G. ThusF C G.
Clearly 1€ F. Letx,y € F, so(x,1),(y,1) € D(L). Then
(xAY, 1), (xVy,1) € D(L) imply xAy,xVy € F. Therefore
F is a sublattice oG with 1.

Conversely, suppodd is a subalgebra ¢ andF is a
sublattice ofG with 1. Again by Theorem 3.7, for every
(a,b) € L, we havea < b andavbe F C G. This gives
(a,b) € H. ThereforeL C H. Since L and H are
DMS3¢-algebras, theh is a subalgebra dfl.

Let M be a de Morgan algebr&,(M) be the lattice of
all filters of M andFRyv = {F : F € F(M),M"Y C F} be
the family of filters ofM containingM". We will write
R instead of a DMS*-algebra (M,F). Let
Re,w = {Re : F € Fyv} be the family of all
DMS¢-algebras constructing from(M,F) for all
F € Ryv. Many properties oRe, , are investigated in the
following two Theorems.

Theorem 4.2.
LetM = (M, A,,0,1) be a de Morgan algebra. Then for
anyF,G € Ry we have

(1) Re C Rg ifand only if (Rg)°
D(Rg),

(2)F CGifand only if Re C Rg,

(3) Re is a subalgebra d¥1Z.

(Rg)* andD(Re ) C

Proof

(1) Let Re C Rg. Clearly (Re)*° C (Rg)°°. Since
(Re)* = M = (Re), then (R)* = (Rg)™. Now,
let (x,1) € D(Re). Then (x,1) € Rg. Thus
(x,1) € D(Rg) as (x,1)° = (0,0). Conversely, Let
(a,b) € Re. Thena < b and aV b € F. Hence
(avb,1) € D(Rr) € D(Rg) andaV b € G. Therefore
(a,b) € Re. _

—2) LetF C Gand(a,b) € Re. ThusavbeF. Then
avb e G implies (a,b) € Rs. Then R C Re.
Conversely, let Re € Rs and x € F. Then
X = (x1) € Re and (x,1) € D(Rr) € D(Rg).
Thereforex € G.

—(3) One can easily verify tha®r is a subalgebra of
M2 for everyF e Fyv.

Theorem 4.3.
Let M be a de Morgan algebra. Then for aRyG €
Fvv we have

(1) Ryv is a bounded distributive lattice on its own,
(2) the familyRg, , is a bounded distributive lattice on its
own,

(3) Fuv =Re, .

(1) Let F,G € Fyv. Clearly FNG € Ry and
FvG={x=fAg,feFgeG}eRy. Thenkyv is a
sublattice ofF(M). ObviouslyM,[M") are the greatest
and the smallest elements Bf;v respectively. Therefore
(Fwv,N,V,M,[M")) is a bounded distributive lattice.

(2) ClearlyRg,,, is a partially ordered set with respect
to the set inclusion. Now for any twbM SP¢-algebraskr
andRg in Re,v s define the operations andL! on Re, as
follows:

Rr NRe = Rrng andRr URG = Reve

Clearly Reqg is the infimum of bothRg,Rg in R,:Mv.
Obviously Rryg is an upper bound oRr and Rg.
SupposeéRr C Ry, Rs € Ry for someH € Fyv. ThenH
is an upper bound of botlF and G in Fy,v. Hence
FVvGCH. ThenRgyg € Ry. ThereforeRg,g is the
supermum of bothRr and Rg in Re,v- Consequently
(Re,,. -, L) is a lattice. We observe thdt? = Ry is the
greatest member iR, and Ryv) is the smallest
member inR,:Mv. This %educe thaR,:Mv is a bounded
lattice. It can be easily obtained that
(Re, -, L, Ry, M) is a distributive lattice.

(3) Define the mapt: Fyv — Re,, by T(F) = Re.
It is clear thatrr([MY)) = Ryv) and (M) = M2 Let
F,G € Fyv. Then we get
mMFNG) = Rerg

=ReNRe
(F)nm(G),
nMFVG) = Reye
=ReURG

n(F)Umn(G).
Thenrris a (0,1) lattice homomorphism. To show tlais
an injective map, lett(F) = 11(G). ThenRg = Rg implies
F = G. ltis clear thattis a surjective map. Thereforeis
a lattice isomorphism.

Now, we characterize homomorphisms
DMS¥¢-algebras in terms of pai(d1,F).

of

Theorem 4.4.

LetL = (M,F) andL; = (My,F;) be DMS¥©-algebras
and let h: L — L; be a double MSalgebra
homomorphism. ThenS(h) : L°*° — L{° defined by
S(h)(a) = h(a) for eacha € L°° is a de Morgan algebra
homomorphism and h(F) C F;. Conversely, if
h: M — M; is a de Morgan homomorphism and
h(F) C Fy, thenh can be uniquely extended to a double

MS-algebra homomorphism fromL = (M,F) into
L1 = (Mg, F).
Proof

For every a € L*°, Sh)(a) € L® as

(h(a))°° =h(a>°) = h(a). It is easy to check tha&(h) is a
de Morgan algebra homomorphism. bet h(F). Then
y = h(x) for some x € F. So (x,1) € D(L) and
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(¥, I): (g(h() 1)) € h(%(l-l)) I(y,0| )f a((h ),O)L- Thth a=hb(y) < (a.a) = (b,b)(6)
ye Fi an C Fy. Conversely, defin L—Ly . . .

It is clear thaty is a lattice congruence oM. Let
by R(h)(a,b) = (h(a),h(b)),(a,b) € L. Thena < b and L
ayv(%( E) F( ( )lm|(olx)2( hga) < hb) and &= b(y). Then (aa) = (bb)(6) _implies
ha) v h(b) — = (a,a) = (a,a)° = (b,b)°(8) = (b,b). Thusa=b(y) and

h(av b) € h(F) € F. Hence
R(h)(a,b) € L; andR(h) is well defined mapping. Now,
for every(a,b),(c,d) € L we get
R(h)((a,b) A (c,d)) = R(h)(anc,bAd)

= (h(aAc),h(bAd)

= (h(a) Ah(c),h(c) Ah(d))

(() h(b)) A (h(b),h(c))
R(h)(a,b) AR(h)(c, ),
R(h)((a,b) v (c, )) R(h)(avc,bvd)
= (h(avc),h(bvd)
= (h(a) vh(c),h(c) v h(d))
= (h(a),h(b)) v (h(b),h(c))
= R(h)(a,b) VR(h)(c,d)),

and
(R(h)(a,b))® =

—
>

Il
—
>
= =
o| o
EARS)
=
(e}

0
~—

CARC)
>0
=2

Il

Py
ol

O
=

Il
Py}
= =
> O
=

~ —~
o
O
~—
o

(R(h)(a,b))"

|
—
>0
—~
QD
“3
—~
O
~

2
\./\jr\.

]
O =
2
oS

KSIREAR)

[

(0,0).
double MS-algebra

R(h)(1,1) = (1,1) and R(h

Consequently R(h) is
homomorphism.

» O

4.2 Congruence relations

A DMS*C-algebral =

(M,F) regards as an extension
of the de Morgan algebrsl. The construction of regular

¢ € Con(M). Conversely, letyy € Con(M). Define a

relationB onL as follows:
(a,b)=(c,d)(0) & a=c(y)andb=d(y)
Clearly 8 is a lattice congruence dn It remains to show

that 6 preserves the operations," on L. Let
(a,b) = (c,d)(6). Then a_= c(¢),b = d(y) imply
a = c¢uyrLb = duw). This gives
(b = (bb) = (dd)6) = (cd)° and
(a,b)™ = (a,a) = (c,c)(8) = (c,d)™. Thend € Con(L).

In closing this paper, we introduce an important result
concerning the permutability of congruences of
DMS¢-algebras.

Theorem 5.2.

Let L be aDMS“-algebra associated wittM, F) for
a filter F of M containingM". ThenL is a congruence
permutable if and only iM is a congruence permutable.

Proof

Assume thatL is a congruence permutable. Let
x,y,z € L. Thenx = (a,b),y = (c,d) andz = (g,h) for
somea,b,c,d,g,h € M. Suppose thaf, € Con(L) are

respectively corresponding td,{y € Con(M). Let
Xx=Yy(0) andy = z(y). Then by Theorem 5.1, we have

(a,b) = (c,d)() and(c,d) = (g,h) ()
= a=c(6),b=d() andc=g({),d = h({)
= a=c(6),c=g() andb=d(H),d = h({)

SinceM is a congruence permutable, then there exist
M such that

a=r(f),r=g(f) andb=n(f),n=h(H)
= (a,b) = (r,n)(¢) and(r,n) = (g,h)(6)
for some(r,n) e L
Therefore 8, are permute. Conversely, ldt be a

doubleMS¥**-algebras from de Morgan algebras leads uscongruence permutable and 16ty € Con(M). Then

to show that the congruence latticeslof (M, F) andM

a=Db(8) andb = c(¢) implies (a,a) = (b,b)(8) and

are isomorphic. Also, we prove that a regular double(bjb) = (c,c)(), respectively. Thus there exists
MS¢-algebral. = (M,F) has permutable congruences if (r n) e L such that

and only ifM has permutable congruences.

Theorem 5.1.
Let (M,V,A,,0,1) be a de Morgan algebra. Letbe
aDMS%-algebra associated with the pé\, F) for some

filter F of M containingVl¥. Then there exists a one-to-one

correspondence betwe€on(L) andCon(M).
Proof

We havelL*® = {(a,a) :a€ M} 2 M (see Theorem
3.7). Firstly, let6 € Con(L). Define a relationy onM as
follows:

(a,8) = (r,n)(y) and (r,n) = (c,c)(8)
= a=r(¢),r =c(0) for somer € M

Thereforee_,tﬁ are permute. This deduce thit is a
congruence permutable.

5 Conclusion

In this paper we introduced a class of so called double
MS-algebras satisfying the generalized complement
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property (brieflyDMS¢-algebras) that includes the class [9] A. Badawy, d, -filters of principal MS-algebrasJournal of

of double MSalgebras satisfying the complement Egyptian Mathematical Societ®3, (2015), 463-469.

property. We illustrated two examples to show that the[10] A. Badawy, De Morgan filters of decomposable MS-

class of DMS-algebras satisfying the complement algebras Southeast Asian Bulletin of Mathematics, in press

property is a proper subclass of the class of  (2015).

DMS¥-algebras and the later is a proper subclass of thé11] A. Badawy, Congruences and De Morgan filters of

class of regular doublé1S-algebras. We presented an Decomposable MS-algebraSoutheast Asian Bulletin of

important  construction (see Theorem 3.7) of __ Mathematics, in press (2015). _

DMS*-algebras from the pairéM,F), whereM is a de [12] A. Badawy M. Sambaswa RadClosure |de.als of MS-

Morgan algebra and is a filter of M containingMV, azl%ebras Chamchuri Journal of Mathematic¥/l. 6, 2

generalizing the construction of regular double Stone (2014), 31-46. )

algebras]] presented by T. Katrinak. Further, we derived [13] A. Badawy,On a construction of modular GMS-algebras
y . ) ! Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica,

that everyDMSP®-algebral is uniquely determined by the 54, 1 (2015), 19-31.

pair (L°°, [Lv)++)' [14] A. Badawy,On a certain Triple construction GMS-algebras

o , _ _ Appl. Math. Inf. Sci. Lett3, No. 3, (2015), 115-121.

Many applications of our construction are given in [15] R, Balbes and P. DwingeRistributive lattices University
section 4. A characterization of homomorphisms and o Missouri, Press, Columbia, Missouri,1974.
subalgebras oDMS¥-algebras using the construction [16] S. D. Comer,Perfect extensions of regular double Stone
Theorem are obtained. Also, using the construction  algebras Algebra Universals34, (1995), 96-109.

Theorem we investigated interesting descriptions of the
notions of congruences and permutability of congruences
of DMS¥®-algebras. For evel@MS®-algebra. = (M, F),

we derived thatCon(L) and Con(M) are isomorphic.
Also, we proved that &MS¥C-algebral = (M,F) has
permutable congruences if and only if the de Morgan
algebraM has permutable congruences. As a future work
on this topic, we hope to study the perfect (also called
canonical) extensions @M S?¢-algebras in sense o1 §)]

due to S. D. Comer by using our representation.
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