Applied Mathematics & Information Sciences

Regular Double MS-Algebras

Abd El-Mohsen Badawy*

Department of Mathematics, Faculty of Science, Tanta University, Egypt

Received: 1 Aug. 2015, Revised: 15 Oct. 2015, Accepted: 24 Oct. 2015 Published online: 1 Jan. 2017

Abstract: The propose of this paper is to extend the construction due to T. Katriňák of regular double Stone algebras [1] to a certain subclass of the class of regular double *MS*-algebras. According to this construction we investigate many properties of these algebras deal with subalgebras, homomorphisms, congruences and permutable congruences.

Keywords: De Morgan algebras; MS-algebras; Double MS-algebras; Homomorphisms; Congruences; Permutable congruences.

1 Introduction

An Ockham algebra is a bounded distributive lattice with a dual endomorphism. The class of Ockham algebras contains the well-known classes as de Morgan algebras and Stone algebras [2]. T. S. Blyth and J. C. Varlet [3] defined a subclass of Ockham algebras so called MS-algebras denoted by MS which generalizes both de Morgan algebras and Stone algebras. These algebras belong to the class of Ockham algebras introduced by J. Berman [4]. The class MS of all MS-algebras is equational. T. S. Blyth and J. C. Varlet [5] characterized the subvarieties of MS. Also, T. S. Blyth and J. C. Varlet [6] introduced the class of double *MS*-algebras and they showed that every de Morgan algebra M can be represented non-trivially as the skeleton of the double *MS*-algebra $M^{[2]} = \{(a, b) \in M \times M : a \leq b\}$. The class of double MS-algebras satisfying the complement property have been introduced by Luo Congwen [7].

In 2012, A. Badawy, D. Guffova and M. Haviar [8] introduced and characterized the class of principal MS-algebras and the class of decomposable MS-algebras by means of triples. In 2015, A. Badawy [9] studied the notion of d_L -filters of principal MS-algebras. A. Badawy [10] presented the notion of de Morgan filters of decomposable MS-algebras. Also he established the relationship between congruences and de Morgan filters of a decomposable MS-algebra in [11]. In 2014 [12] A. Badawy and M. Sambasiva Rao considered the notion of closure ideals of MS-algebras. Recently, A Badawy [13] gave the first quadruple construction of modular

generalized *MS*-algebras. Also, A. Badawy [14] presented a certain triple construction of principal generalized *MS*-algebras.

Regular double Stone algebras have been characterized by T. Katriňák [1] in terms of pairs (B, F), where *B* is a Boolean algebra and *F* is a filter of *B*. Also, he derived that every regular double Stone algebra *L* is uniquely determined by the pair $(B(L), D(L)^{++})$, where B(L) and D(L) are the center and the dense set of *L*, respectively.

In this paper we introduce the class of double MS-algebras satisfying the generalized complement property (briefly *DMS^{gc}*-algebras). Many related properties and examples are given. The main result of this article is to extend the construction of regular double Stone algebras due to Katriňák [1] to the class of DMS^{gc}-algebras; instead of Boolean algebras and the filters D(L) used in the representation of [1], de Morgan algebras and the filters $[L^{\vee})$, respectively, are used in our representation (Theorem 3.7). We give an example (Example 3.9) to illustrate the construction of DMS^{gc}-algebras. Also, we prove that every DMS^{gc} -algebra L is uniquely determined by the pair $(L^{\circ\circ}, [L^{\vee})^{++}).$

Many applications of the construction Theorem (Theorem 3.7) are presented in section 4. We introduce and characterize subalgebras of DMS^{gc} -algebras by means of pairs (M, F). We investigate a special family of subalgebras of a DMS^{gc} -algebra $M^{[2]}$, where M is a de

^{*} Corresponding author e-mail: abdel-mohsen.mohamed@science.tanta.edu.eg

Morgan algebra. Homomorphisms of DMS^{gc} -algebras are characterized in terms of pairs (M, F). Finally, we discuss the concepts of congruences and permutability of congruences of DMS^{gc} -algebras using the construction Theorem. It is observed that the congruence lattices of a DMS^{gc} -algebra L = (M, F) and the de Morgan algebra M are isomorphic. Also, we prove that a DMS^{gc} -algebra L = (M, F) has permutable congruences if and only if the de Morgan algebra M has permutable congruences.

2 Preliminaries

A Stone algebra is a universal algebra $(L, \lor, \land, ^*, 0, 1)$ of type (2,2,1,0,0), where $(L,\lor,\land,0,1)$ is a bounded distributive lattice and the unary operation * has the properties that $x \land a = 0 \Leftrightarrow x \le a^*$ and $x^{**} \lor x^* = 1$.

A dual Stone algebra is a universal algebra $(L, \lor, \land, ^+, 0, 1)$ of type (2, 2, 1, 0, 0), where $(L, \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation $^+$ has the properties that $x \lor a = 1 \Leftrightarrow x \ge a^+$ and $x^{++} \lor x^+ = 1$.

A double Stone algebra is an algebra $(L,^*,^+)$ such that $(L,^*)$ is a Stone algebra, $(L,^+)$ is a dual Stone algebra and for every $x \in L, x^{*+} = x^{**}, x^{+*} = x^{++}$.

A double Stone algebra (L, *, +) is called regular if

$$x^* = y^*$$
 and $x^+ = y^+$ imply $x = y$.

A de Morgan algebra is an algebra $(L, \lor, \land, \bar{,} 0, 1)$ of type (2,2,1,0,0) where $(L, \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation of involution satisfies:

 $\overline{\overline{x}} = x, \overline{(x \lor y)} = \overline{x} \land \overline{y}, \overline{(x \land y)} = \overline{x} \lor \overline{y}.$

An *MS*-algebra is an algebra $(L, \lor, \land, \circ, 0, 1)$ of type (2,2,1,0,0) where $(L, \lor, \land, 0, 1)$ is a bounded distributive lattice and a unary operation \circ satisfies:

$$x \le x^{\circ\circ}, (x \land y)^{\circ} = x^{\circ} \lor y^{\circ}, 1^{\circ} = 0.$$

A dual *MS*-algebra is an algebra $(L, \lor, \land, ^+, 0, 1)$ of type (2,2,1,0,0) where $(L, \lor, \land, 0, 1)$ is a bounded distributive lattice and a unary operation ⁺ satisfies:

$$x \ge x^{++}, (x \land y)^+ = x^+ \lor y^+, 0^+ = 1.$$

The class **M** of de Morgan algebra is a subvariety of **MS** and is defined by the identity $x^{\circ\circ} = x$. The member of the subvariety **K** of **M** defined by the inequality $x \wedge x^{\circ} \leq y \vee y^{\circ}$ are called Kleene algebras. The subvariety **K**₂ of **MS** defined by the additional two identities:

$$x \wedge x^{\circ} = x^{\circ \circ} \wedge x^{\circ}, (x \wedge x^{\circ}) \lor y \lor y^{\circ} = y \lor y^{\circ}.$$

The subvariety $K_2 \lor K_3$ of MS defined by the following two identities:

$$(x \wedge x^{\circ}) \lor y^{\circ} \lor y^{\circ\circ} = y^{\circ} \lor y^{\circ\circ}, (x \lor x^{+}) \land y^{+} \land y^{++} = y^{+} \land y^{++}.$$

The class **S** of Stone algebras is a subvariety of **MS** and is characterized by the identity $x \wedge x^\circ = 0$. The subvariety **B** of **MS** characterized by the identity $x \vee x^\circ = 1$ is the class of Boolean algebras.

A double *MS*-algebra is an algebra $(L,^{\circ},^{+})$ such that $(L,^{\circ})$ is an *MS*-algebra, $(L,^{+})$ is a dual *MS*-algebra and for every $x \in L, x^{\circ +} = x^{\circ \circ}, x^{+ \circ} = x^{++}$.

The class **DS** of all double Stone algebras is a subclass of the class **DMS** of all double *MS*-algebras.

Theorem 2.1.

Let L be a double MS-algebra. Then

(1) the skeleton L[∞] = {x ∈ L : x[∞] = x} = {x ∈ L : x⁺⁺ = x} = L⁺⁺ is a de Morgan subalgebra of L,
(2) L[∨] = {x ∨ x[∞] : x ∈ L} is an order filter (increasing

(2) $L^* = \{x \lor x^* : x \in L\}$ is an order filter (increasing subset) of L,

(3) $L^{\wedge} = \{x \wedge x^{\circ} : x \in L\}$ is an order ideal (decreasing subset) of *L*,

(4) the dense set $D(L) = \{x \in L : x^\circ = 0\}$ is a filter of *L*,

(5) the dual dense set $\overline{D(L)} = \{x \in L : x^+ = 1\}$ is an ideal of *L*.

The elements of $L^{\circ\circ}$ are called the closed elements of *L* and the elements of D(L) are called the dense elements of *L*.

Now we recall the following result from [7].

Theorem 2.2. [*Theorem* 2.1, 7]

A double *MS*-algebra *L* satisfies the complement property if and only if

- (1) Given $a, b \in L$ such that $a^{\circ\circ} = b^{\circ\circ}, a^{++} = b^{++}$, then a = b,
- (2) Given $a, b \in L$ such that $a = a^{\circ\circ}, b = b^{\circ\circ}, a \leq b$ there exists an element $x \in L$ such that $x^{++} = a, x^{\circ\circ} = b$.

A (0,1)-homomorphism from a bounded lattice into another one is a lattice homomorphism taking 0 into 0 and 1 into 1. A mapping $f: M \to C$ of a de Morgan algebra M into a de Morgan algebra C is called a de Morgan algebra homomorphism if f is a lattice homomorphism satisfying $\overline{f(x)} = f(\overline{x})$ for every $x \in M$. A mapping $f: L \to L_1$ of a double MS-algebra L into a double MS-algebra L_1 is called a double MS-algebra homomorphism if f is a lattice homomorphism satisfying $(f(x))^\circ = f(x^\circ)$ and $(f(x))^+ = f(x^+)$ for every $x \in L$.

Let *L* be a double *MS*-algebra. A lattice congruence θ on *L* is a congruence if $x \equiv y(\theta)$, then $x^{\circ} \equiv y^{\circ}$ and $x^{+} \equiv y^{+}$. We denote by Con(L) the congruence lattice of *L*.

Let *A* be an algebra. We say that $\theta, \psi \in Con(A)$ permute if $x \equiv y(\theta)$ and $y \equiv z(\psi)$ imply $x \equiv r(\psi)$ and $r \equiv z(\theta)$, for some $y, r \in A$. The algebra *A* is congruence

permutable if every pair of congruences in Con(A) permutes.

For the basic properties of distributive lattices we refer to [15] and for *MS*-algebras and double *MS*-algebras, we refer to [2,3,5,6] and [8].

3 The Construction

In this section the concept of regularity on the class of double *MS*-algebras is considered. Many related properties and examples are given. A construction of a double *MS*-algebra *L* satisfying the generalized complement property from a suitable de Morgan algebra *M* and a filter *F* of *M* containing M^{\vee} is investigated. Every double *MS*-algebra *L* satisfying the generalized complement property can be uniquely determined by the pair $(L^{\circ\circ}, [L^{\vee})^{++})$.

Let $(L, \circ, +)$ be a double *MS*-algebra. Then for $H \subseteq L$, consider H^+ and H^{++} as follows:

$$H^+ = \{x^+ : x \in H\}$$
 and $H^{++} = \{x^{++} : x \in H\}$

Lemma 3.1.

Let *F* be a filter of a double *MS*-algebra *L*. Then F^{++} is a filter of $L^{\circ\circ}$.

Proof

Clearly, $1 \in F^{++}$. Let $x, y \in F^{++}$. Then $x = a^{++}, y = b^{++}$ for some $a, b \in F$. Hence $x \wedge y = a^{++} \wedge b^{++} = (a \wedge b)^{++} \in F^{++}$, as $a \wedge b \in F$. Again, let $x \in F^{++}$ and $z \in L^{\circ\circ}$ be such that $z \ge x$. Then $x = a^{++}$ for some $a \in F$. Thus $z = z \lor x = z^{++} \lor a^{++} = (z \lor a)^{++} \in F^{++}$ as $z \lor a \in F$. Then F^{++} is a filter of $L^{\circ\circ}$.

Corollary 3.2.

- (1) If *L* is a double *MS*-algebra from \mathbf{K}_2 , then $L^{\vee ++} = \{d^{++} : d \in L^{\vee}\}$ is a filter of $L^{\circ\circ}$,
- (2) If *L* is a double Stone algebra, then $D(L)^{++} = \{d^{++}: d \in D(L)\}$ is a filter of $L^{\circ \circ}$.

Proof

(1). Since $L \in \mathbf{K}_2$, then L^{\vee} is a filter of L. Thus $L^{\vee ++}$ is a filter of $L^{\circ\circ}$ by lemma 3.1 and

$$L^{\vee ++} = \{ (x \lor x^{\circ})^{++} : x \in L \} \\ = \{ d^{++} : d = x \lor x^{\circ} \in L^{\vee} \}.$$

(2). Since *L* is a Stone algebra, then $L^{\vee} = D(L)$ is a filter of *L* and $L^{\circ\circ}$ is a Boolean algebra which is usually denoted by B(L). Thus $D(L)^{++}$ is a filter of B(L) by lemma 3.1 and $D(L)^{++} = f(x)(x^{\circ})^{++}$; $x \in L$

$$D(L)^{++} = \{(x \lor x^{\circ})^{++} : x \in L\} \\ = \{d^{++} : d = x \lor x^{\circ} \in D(L)\}$$

The concept of regular double *MS*-algebras is given as follows:

Definition 3.3. A double *MS*-algebra is called regular if

 $x^{\circ} = y^{\circ}$ and $x^{+} = y^{+}$ imply x = y.

Let us denote by **RDMS** the class of all regular double *MS*-algebras and **RDS** the class of all regular double Stone algebras. Tt is easy to show that the class **RDS** is a subclass of the class **RDMS**.

Now, we present double *MS*-algebras satisfying the generalized complement property generalizing double *MS*-algebras satisfying the complement property due to L. Congwen [7].

Definition 3.4. A double MS-algebra L satisfying the generalized complement property (or DMS^{gc} -algebra) is a double MS-algebra satisfying the following two conditions:

- (1) *L* is a regular double *MS*-algebra,
- (2) Given a, b ∈ L^{oo} and a filter F of L^{oo} containing L^{oo∨} such that a ≤ b and a ∨ b^o ∈ F, then there exists an element x ∈ L such that x⁺⁺ = a and x^{oo} = b.

We shall denote by **DMS**^{gc} the class of all DMS^{gc} -algebras and by **DMS**^c the class of all double MS-algebras satisfying the complement property (briefly DMS^{c} -algebras).

Example 3.5.

- (1) Every regular double Stone algebra $L = (L, \lor, \land, *, +, 0, 1)$ is a DMS^{gc} -algebra. Since for any filter F of L and for any $a, b \in B(L)$ such that $a \le b, a \lor b^* \in F$, there exists an element $x \in L$ such that $x^{++} = a$ and $x^{**} = b$ (see [Lemma 2, 7]).
- (2) Every DMS^c -algebra L is a DMS^{gc} -algebra by considering $F = L^{\circ\circ}$.

Now we illustrate two examples to show that the class of **DMS^c** is a proper subclass of the class of **DMS^{gc}** and the later is a proper subclass of the class of **RDMS**.

Example 3.6.

- (1) Consider $L = \{0 < c < a < d < 1\}$ and $a = a^{\circ} = c^{\circ} = a^{+} = d^{+}, d^{\circ} = 1^{\circ} = 0, 0^{+} = c^{+} = 1$. Clearly $(L,^{\circ},^{+})$ is double *MS*-algebra and $F = \{a, 1\}$ is a filter of $L^{\circ\circ}$ containing $L^{\circ\circ\vee}$. It is observed that $L \in \mathbf{DMS^{gc}}$. Now 0 < 1 but there is no $x \in L$ such that $x^{++} = 0, x^{\circ\circ} = 1$. Therefore *L* does not satisfy the complement property. Then $L \notin \mathbf{DMS^{c}}$.
- (2) Let $L = \{0 < a < d < 1\}$ be a four element chain and $a^{\circ} = a = a^{+} = d^{+}, d^{\circ} = 0$. Obviously $(L,^{\circ},^{+})$ is a regular double *MS*-algebra. *L* does not satisfy the condition (2) of Definition 3.4 because of 0 < a and $0 \lor a^{\circ} = a \in L^{\circ \circ \lor} = L^{\lor ++}$ but there is no an element $x \in L$ such that $x^{++} = 0$ and $x^{\circ \circ} = a$. Then $L \notin \mathbf{DMS^{gc}}$.

Now, we introduce a construction of a DMS^{gc} -algebra L from a suitable de Morgan algebra M and a filter F of

M containing M^{\vee} .

Theorem 3.7. (Construction Theorem)

Let $(M, \land, \lor, \bar{,} 0, 1)$ be a de Morgan algebra and F be a filter of M containing M^{\lor} . Then

$$L = (M, F) = \{(a, b) : a \le b, a \lor \bar{b} \in F\}$$

is a *DMS^{gc}*-algebra if we define

 $\begin{aligned} (a,b) \wedge (c,d) &= (a \wedge c, b \wedge d), \\ (a,b) \vee (c,d) &= (a \vee c, b \vee d), \\ (a,b)^{\circ} &= (\bar{b}, \bar{b}), \\ (a,b)^{+} &= (\bar{a}, \bar{a}), \\ 1_{L} &= (1,1), \\ 0_{L} &= (0,0). \end{aligned}$

Furthermore, $L^{\circ\circ} \cong M$ as de Morgan algebras, $D(L) \cong F \cong D(L)^{++}$ as lattices and $L^{\circ\circ\vee} \subseteq D(L)^{++}$.

Proof

Let $(a,b), (c,d) \in (M,F)$. Then $a \leq b, c \leq d$ and $a \vee \overline{b}, c \vee \overline{d} \in F$. Hence

$$(a,b) \land (c,d) = (a \land c, b \land d) \in L \text{ and } (a,b) \lor (c,d) = (a \lor c, b \lor d) \in L$$

because of

$$(a \wedge c) \vee \overline{(b \wedge d)} = (a \wedge c) \vee (\bar{b} \vee \bar{d})$$

= $(a \vee \bar{b} \vee \bar{d}) \wedge (c \vee \bar{b} \vee \bar{d}) \in F$ by distributivity of M ,
 $(a \vee c) \vee \overline{(b \vee d)} = (a \vee c) \vee (\bar{b} \wedge \bar{d})$
= $(a \vee c \vee \bar{b}) \wedge (a \vee c \vee \bar{d}) \in F$.

Clearly $(0,0), (1,1) \in L$. Then *L* is a (0,1) sublattice of $M \times M$. Therefore *L* is a bounded distributive lattice. Now we have

$$(a,b)^{\circ\circ} = (b,b) \ge (a,b) \text{ as } b \ge a,$$

$$((a,b) \land (c,d))^{\circ} = (a \land c, b \land d)^{\circ}$$

$$= (\overline{b} \lor \overline{d}, \overline{b} \lor \overline{d})$$

$$= (\overline{b}, \overline{b}) \lor (\overline{d}, \overline{d})$$

$$= (a,b)^{\circ} \lor (c,d)^{\circ},$$

$$(1,1)^{\circ} = (0,0)$$

Then $(L,^{\circ})$ is an *MS*-algebra. Also, we have

$$(a,b)^{++} = (a,a) \le (a,b) \text{ as } a \le b,$$

$$((a,b) \land (c,d))^{+} = (a \land c, b \land d)^{+}$$

$$= (\overline{a} \lor \overline{c}, \overline{a} \lor \overline{c})$$

$$= (\overline{a}, \overline{a}) \lor (\overline{c}, \overline{c})$$

$$= (a,b)^{+} \lor (c,d)^{+},$$

$$(0,0)^{+} = (1,1).$$

Thus $(L,^+)$ is a dual MS-algebra. We observe that $(a,b)^{\circ+} = (b,b) = (a,b)^{\circ\circ}$ and $(a,b)^{+\circ} = (a,a) = (a,b)^{++}$. Therefore $(L,^{\circ},^+)$ is a double MS-algebra. For regularity of L, let $(a,b)^{\circ} = (c,d)^{\circ}$ and $(a,b)^+ = (c,d)^+$. Then

 $(\bar{b},\bar{b}) = (\bar{d},\bar{d})$ and $(\bar{a},\bar{a}) = (\bar{c},\bar{c})$ implies b = d and a = c, respectively. Thus (a,b) = (c,d). Moreover

$$L^{\circ\circ} = \{(a,b) \in L : (a,b)^{\circ\circ} = (a,b)\}$$

= $\{(a,b) \in L : a = b\}$
= $\{(a,a) : a \in M\},$
$$D(L) = \{(a,b) \in L : (a,b)^{\circ} = (0,0)\}$$

= $\{(a,1) : a \in F\},$
$$\overline{D(L)} = \{(a,b) \in L : (a,b)^{+} = (1,1)\}$$

= $\{(0,b) \in L : \overline{b} \in F\},$
$$D(L)^{++} = \{(a,1)^{++} : (a,1) \in D(L)\}$$

= $\{(a,a) : a \in F\}, F$ is a filter of M ,
$$L^{\circ\circ\vee} = \{(a,a) : a \in M^{\vee} \subseteq F\} \subseteq D(L)^{++}$$

It is obviously that the mappings $f: M \to L^{\circ\circ}$, $g: F \longrightarrow D(L)$ and $h: F \to D(L)^{++}$ such that f(a) = (a,a), g(x) = (x,1) and h(x) = (x,x) are isomorphisms. Now we have to prove that L satisfies condition (2) of Definition 3.4. Let $(a,a) \leq (b,b)$ be such that $(a,a) \lor (b,b)^{\circ} \in D(L)^{++}$. Then $(a \lor \bar{b}, a \lor \bar{b}) \in D(L)^{++}$ implies $a \lor \bar{b} \in F$. So $(a,b) \in L$ such that $(a,b)^{++} = (a,a)$ and $(a,b)^{\circ\circ} = (b,b)$. Then L is a *DMS*-algebra satisfying the generalized complement property.

We shall say that the regular double MS^{gc} -algebra L from Theorem 3.7 is associated with the pair (M, F).

Two special cases are considered in the following corollary.

Corollary 3.8.

- (1) If *M* is a Kleene algebra, then *L* described by Theorem 3.7 is a *DMS^{gc}*-algebra from $\mathbf{K}_2 \vee \mathbf{K}_3$,
- (2) If *M* is a Boolean, then *L* described by Theorem 3.7 is a regular double Stone algebra.

Proof

(1). Let
$$x = (a,b), y = (c,d) \in L$$
. We have to show that
if $M \in \mathbf{K}$, then $(x \wedge x^{\circ}) \lor y^{\circ} \lor y^{\circ \circ} = y^{\circ} \lor y^{\circ \circ}$ and $(x \lor x^{+}) \land y^{+} \land y^{++} = y^{+} \land y^{++}$. Now

$$\begin{split} & [(a,b) \wedge (a,b)^{\circ}] \vee (c,d)^{\circ} \vee (c,d)^{\circ \circ} \\ &= [(a,b) \wedge (\bar{b},\bar{b})] \vee (\bar{d},\bar{d}) \vee (d,d) \\ &= (a \wedge \bar{b}, b \wedge \bar{b}) \vee (\bar{d} \vee d, \bar{d} \vee d) \\ &= ((a \wedge \bar{b}) \vee (d \vee \bar{d}), (b \wedge \bar{b}) \vee (d \vee \bar{d})) \end{split}$$

$$= (d \lor d, d \lor d) \text{ as } a \land b \le b \land b \le d \lor d,$$

and

$$(c,d)^{\circ} \lor (c,d)^{\circ \circ} = (\bar{d},\bar{d}) \lor (d,d)$$
$$= (\bar{d} \lor d, \bar{d} \lor d).$$

Also,

$$\begin{split} [(a,b) \lor (a,b)^+] \land (c,d)^+ \land (c,d)^{++} \\ &= [(a,b) \lor (\bar{a},\bar{a})] \land (\bar{c},\bar{c}) \lor (c,c) \\ &= (a \lor \bar{a}, b \lor \bar{a}) \land (\bar{c} \land c, \bar{c} \land c) \\ &= ((a \lor \bar{a}) \land (\bar{c} \land c), (b \lor \bar{a}) \land (\bar{c} \land c)) \\ &= (\bar{c} \land c, \bar{c} \land c) \text{ as } \bar{c} \land c \leq \bar{a} \lor a \leq \bar{a} \lor b, \\ (c,d)^+ \land (c,d)^{++} &= (\bar{c},\bar{c}) \lor (c,c) \\ &= (\bar{c} \land c, \bar{c} \land c). \end{split}$$

Then *L* is a *DMS*^{*gc*}-algebra from the subclass **K**₂ \vee **K**₃. (2). Since *M* is a Boolean algebra, then $a \wedge \bar{a} = 0$ and $a \vee \bar{a} = 1$ for every $a \in M$. For every $(a,b) \in L$, we have $(a,b) \wedge (a,b)^{\circ} = (a \wedge \bar{b}, b \wedge \bar{b}) = (0,0)$ as $a \wedge \bar{b} \leq b \wedge \bar{b} = 0$ and $(a,b) \vee (a,b)^+ = (a,b) \vee (\bar{a},\bar{a}) = (a \vee \bar{a}, b \vee \bar{a}) = (1,1)$ as $b \vee \bar{a} \geq a \vee \bar{a} = 1$. Then L = (M,F) is a regular double Stone algebra.

We illustrate the construction of *DMS^{gc}*-algebras on the following example.

Example 3.9.

Consider $M = \{0 < a = a^{\circ} < 1\}$ be the three element kleene algebra and $F = \{a, 1\} = M^{\vee}$ be a filter of M. Using the construction Theorem, we can construct a DMS^{gc} -algebra L = (M, F) as follows:

$$L = (M,F) = \{(0,0) < (0,a) < (a,a) < (a,1) < (1,1)\}$$
$$(0,a)^{\circ} = (a,a)^{\circ} = (a,a) = (a,a)^{+} = (a,1)^{+}, (0,a)^{+} = (1,1), (a,1)^{\circ} = (0,0)$$

Notice that

$$L^{\circ\circ} = \{(0,0), (a,a), (1,1)\} \cong M, D(L) = \{(a,1), (1,1)\} \cong F$$

and

$$D(L)^{++} = \{a, a\}, (1, 1)\} = L^{\circ \circ \vee} \cong F.$$

The following Theorem shows that each element x of a DMS^{gc} -algebra L is uniquely described by the greatest closed element below x and the smallest closed element above x.

Theorem 3.10.

Let *L* be a *DMS*^{gc}-algebra, $M = L^{\circ\circ}$ and $F = [L^{\vee})^{++}$. Then the mapping $\psi : L \to (M, F)$ defined by $\psi(x) = (x^{++}, x^{\circ\circ})$ is an isomorphism.

Proof

For every $x \in L$, we have $x^{++} \leq x^{\circ\circ}$ and $x^{++} \vee x^{\circ\circ\circ} = x^{++} \vee x^{\circ} = (x \vee x^{\circ})^{++} \in [L^{\vee})^{++}$ as $x \vee x^{\circ} \in L^{\vee}$. Then $(x^{++}, x^{\circ\circ}) \in (M, F)$ and ψ is a well defined map. Now, we prove that ψ is a (0,1) lattice

homomorphism. It is clear that $\psi(0) = (0,0)$ and $\psi(1) = (1,1)$. For every $x, y \in L$, we get

$$\begin{split} \psi(x \wedge y) &= ((x \wedge y)^{++}, (x \wedge y)^{\circ \circ}) \\ &= (x^{++} \wedge y^{++}, x^{\circ \circ} \wedge y^{\circ \circ}) \\ &= (x^{++}, x^{\circ \circ}) \wedge (y^{++}, y^{\circ \circ}) \\ &= \psi(x) \wedge \psi(y), \\ \psi(x \vee y) &= ((x \vee y)^{++}, (x \vee y)^{\circ \circ}) \\ &= (x^{++} \vee y^{++}, x^{\circ \circ} \vee y^{\circ \circ}) \\ &= (x^{++}, x^{\circ \circ}) \vee (y^{++}, y^{\circ \circ}) \\ &= \psi(x) \vee \psi(y) \end{split}$$

Obviously $\psi(x^{\circ}) = (\psi(x))^{\circ}$ and $\psi(x^{+}) = (\psi(x))^{+}$. Thus ψ is a double *MS*-algebra homomorphism. To show that ψ is an injective mapping, let $\psi(x) = \psi(y)$. Then $(x^{++}, x^{\circ\circ}) = (y^{++}, y^{\circ\circ})$ implies $x^{\circ} = y^{\circ}$ and $x^{+} = y^{+}$. By regularity of *L* we get x = y. It remains to prove that ψ is surjective. Let $(a,b) \in (M,F)$. According to condition (2) of Definition 3.4, there exists $x \in L$ such that $x^{++} = a \leq b = x^{\circ\circ}$ and $x^{++} \vee x^{\circ\circ\circ} = x^{++} \vee x^{\circ} = a \vee b^{\circ} \in F$. Thus $(x^{++}, x^{\circ\circ}) \in (M,F)$ and $\psi(x) = (x^{++}, x^{\circ\circ}) = (a,b)$. Therefore ψ is a double *MS*-algebra isomorphism.

4 Applications

Many applications of the construction Theorem (Theorem 3.7) are given in the following two subsections.

4.1 Subalgebras and homomorphisms

Using the construction of a DMS^{gc} -algebra from the pair (M, F), where M is a de Morgan algebra and F is a filter of M containing M^{\vee} , we characterize subalgebras of a DMS^{gc} -algebra L associated with (M, F). A description of special subalgebras of a DMS^{gc} -algebra $M^{[2]}$ is given. Also we characterize homomorphisms of DMS^{gc} -algebras in terms of pairs (M, F).

Theorem 4.1.

If L = (M, F), H = (C, G) be DMS^{gc} -algebras. Then L is a subalgebra of H if and only if M is a subalgebra of C and F is a sublattice of G with 1.

Proof

Suppose *L* is a subalgebra of *H*. Then by Theorem 3.7, $L^{\circ\circ} = \{(a,a) : a \in M\}$, $H^{\circ\circ} = \{(a,a) : a \in C\}$, $D(L) = \{(x,1) : x \in F\}$ and $D(H) = \{(y,1) : y \in G\}$. Clearly $L^{\circ\circ}$ is a subalgebra of $H^{\circ\circ}$ and D(L) is a sublattice of D(H) containing (1,1). Let $a \in M$. Thus $(a,a) \in L^{\circ\circ} \subseteq H^{\circ\circ}$. Then $(a,a) \in H^{\circ\circ}$ implies $a \in C$. So $M \subseteq C$. Since $(0,0), (1,1) \in L^{\circ\circ}$. Then $0,1 \in M$. Let $x, y \in M$. Then we get

$$\begin{aligned} x, y \in M \Rightarrow (x, x), (y, y) \in L^{\circ \circ} \\ \Rightarrow (x \land y, x \land y), (x \lor y, x \lor y) \in L^{\circ \circ} \\ \Rightarrow x \land y, x \lor y \in M. \end{aligned}$$

Therefore *M* is a bounded sublattice of de Morgan algebra *C*. For every $x \in M$, $(x,x) \in L^{\circ\circ}$. Then $(\bar{x},\bar{x}) = (x,x)^{\circ} \in L^{\circ\circ}$ implies $\bar{x} \in M$. Therefore *M* is a subalgebra of *C*. Let $x \in F$. Then $(x,1) \in D(L) \subseteq D(H)$ implies $x \in G$. Thus $F \subseteq G$. Clearly $1 \in F$. Let $x, y \in F$, so $(x,1), (y,1) \in D(L)$. Then $(x \land y, 1), (x \lor y, 1) \in D(L)$ imply $x \land y, x \lor y \in F$. Therefore *F* is a sublattice of *G* with 1.

Conversely, suppose *M* is a subalgebra of *C* and *F* is a sublattice of *G* with 1. Again by Theorem 3.7, for every $(a,b) \in L$, we have $a \leq b$ and $a \lor \overline{b} \in F \subseteq G$. This gives $(a,b) \in H$. Therefore $L \subseteq H$. Since *L* and *H* are DMS^{gc} -algebras, then *L* is a subalgebra of *H*.

Let *M* be a de Morgan algebra, F(M) be the lattice of all filters of *M* and $F_{M^{\vee}} = \{F : F \in F(M), M^{\vee} \subseteq F\}$ be the family of filters of *M* containing M^{\vee} . We will write R_F instead of a DMS^{gc} -algebra (M,F). Let $R_{F_{M^{\vee}}} = \{R_F : F \in F_{M^{\vee}}\}$ be the family of all DMS^{gc} -algebras constructing from (M,F) for all $F \in F_{M^{\vee}}$. Many properties of $R_{F_{M^{\vee}}}$ are investigated in the following two Theorems.

Theorem 4.2.

Let $M = (M, \land, \bar{,} 0, 1)$ be a de Morgan algebra. Then for any $F, G \in F_{M^{\vee}}$ we have

(1) $R_F \subseteq R_G$ if and only if $(R_F)^{\circ\circ} = (R_g)^{\circ\circ}$ and $D(R_F) \subseteq D(R_G)$,

(2) $F \subseteq G$ if and only if $R_F \subseteq R_G$,

(3) R_F is a subalgebra of $M^{[2]}$.

Proof

- (1) Let $R_F \subseteq R_G$. Clearly $(R_F)^{\circ\circ} \subseteq (R_G)^{\circ\circ}$. Since $(R_F)^{\circ\circ} \cong M \cong (R_G)^{\circ\circ}$, then $(R_F)^{\circ\circ} = (R_G)^{\circ\circ}$. Now, let $(x,1) \in D(R_F)$. Then $(x,1) \in R_G$. Thus $(x,1) \in D(R_G)$ as $(x,1)^{\circ} = (0,0)$. Conversely, Let $(a,b) \in R_F$. Then $a \leq b$ and $a \lor \bar{b} \in F$. Hence $(a \lor \bar{b}, 1) \in D(R_F) \subseteq D(R_G)$ and $a \lor \bar{b} \in G$. Therefore $(a,b) \in R_F$.
 - -(2) Let $F \subseteq G$ and $(a,b) \in R_F$. Thus $a \lor \overline{b} \in F$. Then $a \lor \overline{b} \in G$ implies $(a,b) \in R_G$. Then $R_F \subseteq R_G$. Conversely, let $R_F \subseteq R_G$ and $x \in F$. Then $x = (x,1) \in R_F$ and $(x,1) \in D(R_F) \subseteq D(R_G)$. Therefore $x \in G$.
 - -(3) One can easily verify that R_F is a subalgebra of $M^{[2]}$ for every $F \in F_{M^{\vee}}$.

Theorem 4.3.

Let *M* be a de Morgan algebra. Then for any $F, G \in F_{M^{\vee}}$ we have

- (1) $F_{M^{\vee}}$ is a bounded distributive lattice on its own,
- (2) the family $R_{F_{M^{\vee}}}$ is a bounded distributive lattice on its own,

(3)
$$F_{M^{\vee}} \cong R_{F_{M^{\vee}}}$$

Proof

(1) Let $F, G \in F_{M^{\vee}}$. Clearly $F \cap G \in F_{M^{\vee}}$ and $F \vee G = \{x = f \land g, f \in F, g \in G\} \in F_{M^{\vee}}$. Then $F_{M^{\vee}}$ is a sublattice of F(M). Obviously $M, [M^{\vee})$ are the greatest and the smallest elements of $F_{M^{\vee}}$ respectively. Therefore $(F_{M^{\vee}}, \cap, \vee, M, [M^{\vee}))$ is a bounded distributive lattice.

(2) Clearly $R_{F_{M^{\vee}}}$ is a partially ordered set with respect to the set inclusion. Now for any two DMS^{gc} -algebras R_F and R_G in $R_{F_{M^{\vee}}}$, define the operations \cap and \sqcup on $R_{F_{M^{\vee}}}$ as follows:

$$R_F \cap R_G = R_{F \cap G}$$
 and $R_F \sqcup R_G = R_{F \vee G}$

Clearly $R_{F\cap G}$ is the infimum of both R_F, R_G in $R_{F_M^{\vee}}$. Obviously $R_{F\vee G}$ is an upper bound of R_F and R_G . Suppose $R_F \subseteq R_H, R_G \subseteq R_H$ for some $H \in F_{M^{\vee}}$. Then H is an upper bound of both F and G in $F_{M^{\vee}}$. Hence $F \vee G \subseteq H$. Then $R_{F\vee G} \subseteq R_H$. Therefore $R_{F\vee G}$ is the supermum of both R_F and R_G in $R_{F_{M^{\vee}}}$. Consequently $(R_{F_{M^{\vee}}}, \cap, \sqcup)$ is a lattice. We observe that $M^{[2]} = R_M$ is the greatest member in $R_{F_{M^{\vee}}}$ and $R_{[M^{\vee})}$ is the smallest member in $R_{F_{M^{\vee}}}$. This deduce that $R_{F_{M^{\vee}}}$ is a bounded lattice. It can be easily obtained that $(R_{F_{M^{\vee}}}, \cap, \sqcup, R_{[M^{\vee})}, M^{[2]})$ is a distributive lattice.

(3) Define the map $\pi : F_{M^{\vee}} \to R_{F_{M^{\vee}}}$ by $\pi(F) = R_F$. It is clear that $\pi([M^{\vee})) = R_{[M^{\vee})}$ and $\pi((M) = M^{[2]}$. Let $F, G \in F_{M^{\vee}}$. Then we get

$$\pi(F \cap G) = R_{F \cap G}$$

$$= R_F \cap R_G$$

$$= \pi(F) \cap \pi(G),$$

$$\pi(F \lor G) = R_{F \lor G}$$

$$= R_F \sqcup R_G$$

$$= \pi(F) \sqcup \pi(G).$$

Then π is a (0,1) lattice homomorphism. To show that π is an injective map, let $\pi(F) = \pi(G)$. Then $R_F = R_G$ implies F = G. It is clear that π is a surjective map. Therefore π is a lattice isomorphism.

Now, we characterize homomorphisms of DMS^{gc} -algebras in terms of pairs (M, F).

Theorem 4.4.

Let L = (M, F) and $L_1 = (M_1, F_1)$ be DMS^{gc} -algebras and let $h : L \to L_1$ be a double MS-algebra homomorphism. Then $S(h) : L^{\circ\circ} \to L_1^{\circ\circ}$ defined by S(h)(a) = h(a) for each $a \in L^{\circ\circ}$ is a de Morgan algebra homomorphism and $h(F) \subseteq F_1$. Conversely, if $h : M \to M_1$ is a de Morgan homomorphism and $h(F) \subseteq F_1$, then h can be uniquely extended to a double MS-algebra homomorphism from L = (M, F) into $L_1 = (M_1, F_1)$.

Proof

For every $a \in L^{\circ\circ}$, $S(h)(a) \in L_1^{\circ\circ}$ as $(h(a))^{\circ\circ} = h(a^{\circ\circ}) = h(a)$. It is easy to check that S(h) is a de Morgan algebra homomorphism. Let $y \in h(F)$. Then y = h(x) for some $x \in F$. So $(x,1) \in D(L)$ and

 $(y,1) = (h(x),1) \in h(D(L_1))$ as $(y,1)^\circ = (0,0)$. Thus $y \in F_1$ and $h(F) \subseteq F_1$. Conversely, define $R(h) : L \to L_1$ by $R(h)(a,b) = (h(a),h(b)), (a,b) \in L$. Then $a \leq b$ and $a \lor \overline{b} \in F$ imply $h(a) \leq h(b)$ and $h(a) \lor h(\overline{b}) = h(a \lor \overline{b}) \in h(F) \subseteq F_1$. Hence $R(h)(a,b) \in L_1$ and R(h) is well defined mapping. Now, for every $(a,b), (c,d) \in L$ we get

$$R(h)((a,b) \land (c,d)) = R(h)(a \land c, b \land d)$$

$$= (h(a \land c), h(b \land d)$$

$$= (h(a) \land h(c), h(c) \land h(d))$$

$$= (h(a), h(b)) \land (h(b), h(c))$$

$$= R(h)(a,b) \land R(h)(c,d)),$$

$$R(h)((a,b) \lor (c,d)) = R(h)(a \lor c, b \lor d)$$

$$= (h(a \lor c), h(b \lor d)$$

$$= (h(a) \lor h(c), h(c) \lor h(d))$$

$$= (h(a), h(b)) \lor (h(b), h(c))$$

$$= R(h)(a,b) \lor R(h)(c,d)),$$

and

$$(R(h)(a,b))^{\circ} = (h(a),h(b))^{\circ}$$

= $(h(\bar{b}),h(\bar{b}))$
= $R(h)(\bar{b},\bar{b})$
= $R(h)(a,b)^{\circ},$
 $(R(h)(a,b))^{+} = (h(a),h(b))^{+}$
= $(h(\bar{a}),h(\bar{a}))$
= $R(h)(\bar{a},\bar{a})$
= $R(h)(a,b)^{+},$
 $R(h)(1,1) = (1,1)$ and $R(h)(0,0) = (0,0).$

Consequently R(h) is a double *MS*-algebra homomorphism.

4.2 Congruence relations

A DMS^{gc} -algebra L = (M, F) regards as an extension of the de Morgan algebra M. The construction of regular double MS^{gc} -algebras from de Morgan algebras leads us to show that the congruence lattices of L = (M, F) and Mare isomorphic. Also, we prove that a regular double MS^{gc} -algebra L = (M, F) has permutable congruences if and only if M has permutable congruences.

Theorem 5.1.

Let $(M, \lor, \land, \bar{,}, 0, 1)$ be a de Morgan algebra. Let *L* be a *DMS^{gc}*-algebra associated with the pair (M, F) for some filter *F* of *M* containing M^{\lor} . Then there exists a one-to-one correspondence between Con(L) and Con(M).

Proof

We have $L^{\circ\circ} = \{(a,a) : a \in M\} \cong M$ (see Theorem 3.7). Firstly, let $\theta \in Con(L)$. Define a relation ψ on M as follows:

$$a \equiv b(\psi) \Leftrightarrow (a,a) \equiv (b,b)(\theta)$$

It is clear that ψ is a lattice congruence on M. Let $a \equiv b(\psi)$. Then $(a,a) \equiv (b,b)(\theta)$ implies $(\bar{a},\bar{a}) = (a,a)^{\circ} \equiv (b,b)^{\circ}(\theta) = (\bar{b},\bar{b})$. Thus $\bar{a} \equiv \bar{b}(\psi)$ and $\psi \in Con(M)$. Conversely, let $\psi \in Con(M)$. Define a relation θ on L as follows:

$$(a,b) \equiv (c,d)(\theta) \Leftrightarrow a \equiv c(\psi) \text{ and } b \equiv d(\psi)$$

Clearly θ is a lattice congruence on *L*. It remains to show that θ preserves the operations °,⁺ on *L*. Let $(a,b) \equiv (c,d)(\theta)$. Then $a \equiv c(\psi), b \equiv d(\psi)$ imply $\bar{a} \equiv \bar{c}(\psi), \bar{b} \equiv \bar{d}(\psi)$. This gives $(a,b)^{\circ} = (\bar{b}, \bar{b}) \equiv (\bar{d}, \bar{d})(\theta) = (c,d)^{\circ}$ and $(a,b)^{+} = (\bar{a}, \bar{a}) \equiv (\bar{c}, \bar{c})(\theta) = (c,d)^{+}$. Then $\theta \in Con(L)$.

In closing this paper, we introduce an important result concerning the permutability of congruences of *DMS^{gc}*-algebras.

Theorem 5.2.

Let *L* be a *DMS*^{*gc*}-algebra associated with (M, F) for a filter *F* of *M* containing M^{\vee} . Then *L* is a congruence permutable if and only if *M* is a congruence permutable.

Proof

Assume that *L* is a congruence permutable. Let $x, y, z \in L$. Then x = (a,b), y = (c,d) and z = (g,h) for some $a,b,c,d,g,h \in M$. Suppose that $\theta, \psi \in Con(L)$ are respectively corresponding to $\hat{\theta}, \hat{\psi} \in Con(M)$. Let $x \equiv y(\theta)$ and $y \equiv z(\psi)$. Then by Theorem 5.1, we have

$$(a,b) \equiv (c,d)(\theta) \text{ and } (c,d) \equiv (g,h)(\psi)$$

$$\Rightarrow a \equiv c(\hat{\theta}), b \equiv d(\hat{\theta}) \text{ and } c \equiv g(\hat{\psi}), d \equiv h(\hat{\psi})$$

$$\Rightarrow a \equiv c(\hat{\theta}), c \equiv g(\hat{\psi}) \text{ and } b \equiv d(\hat{\theta}), d \equiv h(\hat{\psi})$$

Since *M* is a congruence permutable, then there exist $r, n \in M$ such that

$$a \equiv r(\psi), r \equiv g(\theta) \text{ and } b \equiv n(\psi), n \equiv h(\theta)$$

$$\Rightarrow (a,b) \equiv (r,n)(\psi) \text{ and } (r,n) \equiv (g,h)(\theta)$$

for some $(r,n) \in L$

Therefore θ, ψ are permute. Conversely, let *L* be a congruence permutable and let $\overline{\theta}, \overline{\psi} \in Con(M)$. Then $a \equiv b(\overline{\theta})$ and $b \equiv c(\overline{\psi})$ implies $(a,a) \equiv (b,b)(\theta)$ and $(b,b) \equiv (c,c)(\psi)$, respectively. Thus there exists $(r,n) \in L$ such that

$$(a,a) \equiv (r,n)(\psi) \text{ and } (r,n) \equiv (c,c)(\theta)$$

 $\Rightarrow a \equiv r(\bar{\psi}), r \equiv c(\bar{\theta}) \text{ for some } r \in M$

Therefore $\bar{\theta}, \bar{\psi}$ are permute. This deduce that *M* is a congruence permutable.

5 Conclusion

In this paper we introduced a class of so called double *MS*-algebras satisfying the generalized complement

property (briefly DMS^{gc} -algebras) that includes the class of double MS-algebras satisfying the complement property. We illustrated two examples to show that the class of DMS-algebras satisfying the complement property is a proper subclass of the class of DMS^{gc} -algebras and the later is a proper subclass of the class of regular double MS-algebras. We presented an important construction (see Theorem 3.7) of DMS^{gc} -algebras from the pairs (M,F), where M is a de Morgan algebra and F is a filter of M containing M^{\vee} , generalizing the construction of regular double Stone algebras [1] presented by T. Katriňák. Further, we derived that every DMS^{gc} -algebra L is uniquely determined by the pair $(L^{\circ\circ}, [L^{\vee})^{++})$.

Many applications of our construction are given in section 4. A characterization of homomorphisms and subalgebras of DMS^{gc} -algebras using the construction Theorem are obtained. Also, using the construction Theorem we investigated interesting descriptions of the notions of congruences and permutability of congruences of DMS^{gc} -algebras. For every DMS^{gc} -algebra L = (M, F), we derived that Con(L) and Con(M) are isomorphic. Also, we proved that a DMS^{gc} -algebra L = (M, F) has permutable congruences if and only if the de Morgan algebra M has permutable congruences. As a future work on this topic, we hope to study the perfect (also called canonical) extensions of DMS^{gc} -algebras in sense of [16] due to S. D. Comer by using our representation.

Acknowledgement

The author would like to thank the editors and referees for their valuable comments and suggestions to improve this presentation.

References

- T. Katriňák, Construction of regular double p-algebras, Bull. Soc. Roy. Sci. Liège, 43, (1974), 283-290.
- [2] T. S. Blyth and J. C. Varlet, *Ockham Algebras*, London, Oxford University, Press, 1994.
- [3] T. S. Blyth and J. C. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh 94 (1983), 301-308.
- [4] J. Berman, Distributive lattices with an additional unary operation, Aequationes Math., 16(1977), 165-171.
- [5] T. S. Blyth and J. C. Varlet, Subvarieties of the class of MSalgebras, Proc. Roy. Soc. Edinburgh 95A (1983), 157-169.
- [6] T. S. Blyth and J. C. Varlet, *Double MS-algebras*, Proc. Roy. Soc. Edinburgh 94 (1984), 157-169.
- [7] L. Congwen, *The class of double MS-algebras satisfying the complement property*, Bulletin de la Société des Sciences de Liège, Vol. **70**, 1, 2001, pp. 51-59.
- [8] A. Badawy, D. Guffova and M. Haviar, *Triple construction of decomposable MS-algebras*, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, **51**, 2(2012), 53-65.

- [9] A. Badawy, *d_L-filters of principal MS-algebras*, Journal of Egyptian Mathematical Society, 23, (2015), 463-469.
- [10] A. Badawy, De Morgan filters of decomposable MSalgebras, Southeast Asian Bulletin of Mathematics, in press (2015).
- [11] A. Badawy, Congruences and De Morgan filters of Decomposable MS-algebras, Southeast Asian Bulletin of Mathematics, in press (2015).
- [12] A. Badawy M. Sambasiva Rao, *Closure ideals of MS-algebras*, Chamchuri Journal of Mathematics, VI. 6, 2 (2014), 31-46.
- [13] A. Badawy, On a construction of modular GMS-algebras, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 54, 1 (2015), 19-31.
- [14] A. Badawy, On a certain Triple construction GMS-algebras, Appl. Math. Inf. Sci. Lett. 3, No. 3, (2015), 115-121.
- [15] R. Balbes and P. Dwinger, *Distributive lattices*, University of Missouri, Press, Columbia, Missouri, 1974.
- [16] S. D. Comer, *Perfect extensions of regular double Stone algebras*, Algebra Universals, **34**, (1995), 96-109.

Abd El-Mohsen Badawy received the PhD degree in Algebra, Lattice theory at Mathematics department, Faculty of Science, Tanta University, Egypt. His research interests are in the areas of lattices, distributive lattices, p-algebras, MS-algebras and generalized

MS-algebras. He has published research articles in reputed international journals of mathematics. He is referee of mathematical journals and Mathematics review.