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Abstract: In this paper, we introduce a new type of subgroup and normiagr®up of a group, called intersection-soft subgroup
(int-soft subgroup) and intersection-normal subgroup-£oft normal subgroup), by using Molodtsov’s definitiontbé soft sets. We
investigate their related properties with respect to setffoperations and group homomorphisms. Moreover, we int@éhtersection-
soft subsemiring (int-soft subsemiring) and intersecsoft ideal (int-soft ideal) of a semiring and some relatedpprties are
investigated and illustrated by many examples. Finallygive some applications of these new concepts to group treaiysemiring
theory.
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1 Introduction applications of these new concepts to group theory and
semiring theory.

Soft set theory was introduced by Molodtsol/7] for

modeling vagueness and uncertainty and it has received R

much attention since Maiji et allf] and Ali et al. [3] 2 Preliminaries

introduced and studied several operations of soft sets.

Soft set theory started to progress rapidly in the mean ofA semiring Sis a structure consisting of a nonempty set
algebraic structures, since Aktas and Cagn#mgfined  Stogether with two binary operation dcalledaddition
and studied soft groups. Since theh,5,6,7,8,11,12,13, andmultiplication(denoted in the usual manner) such that
14,16,18,19 have studied the soft algebraic structures ) . ) o
and soft sets as well. Applying the definition of soft set, |)$tog¢therW|th addition is a commutative monoid with
Atagin and Sezgin4| introduced the algebraic soft _identity element0, o
substructures of rings, fields and modules. i) Stogether with multiplication is a monoid with identity
In this paper, applying to soft set theory, we deal with the __ €lement 1,

algebraic intersection-soft substructures of groups andill) (&+ b)c = ac+bc and a(b +¢) = ab+ ac for all
semirings. We define the notions of intersection soft ~&P,c€S

subgroup, —abbreviated by int-soft subgroup, anda ;erg element of a semiringis an element 0 such that
intersection soft normal subgroup of group, abbreviatedy, _ v 0 — 0 and 0-x = x+ 0 = x for all x€ S, A

by int-soft normal subgroup, give several illustrating ponempty subset of a semiringS is called aleft (resp.
examples and investigate their related properties W'thright) ideal of Sif | is closed under addition ar@l C |

respect to soft set operations. Moreover we introduce th?resp.ls C 1). We say that is an ideal ofS, denoted by

notion of intersection soft subsemiring, abbreviated by 45 if it is both a left and right ideal o6, Let RandSbe
int-soft subsemiring and intersection soft ideal of 8 semirings. A mappingf : R — S is called a

semiring, abbreviated by int-soft ideal and study the"homomorphism of semirings if it satisfies
related properties with several examples. Furthermore, we '
investigate these new concepts with respect to soft set i)f(a+b)= f(a)+ f(b)

operations and group homomorphisms and give some ii) f(ab) = f(a)f(b)
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for all a,b € R. A semiring homomorphisnfi : R — Sis
called arepimorphisnif it is a surjectivemapping.
Molodtsov [17] defined the soft set in the following
manner: LetU be an initial universe set be a set of
parameters?(U) be the power set df andA C E.

Definition 1.([17]) A pair (F,A) is called a soft set over
U, where F is a mapping given by

F:A—PU).

In other words, a soft set overis a parameterized family
of subsets of the univerdd. For € € A, F(g) may be

considered as the set efelements of the soft s¢F,A), It is easily seen that if we takel = {eg}, whereeg is
or as the set of-approximate elements of the soft set. To ¢ identity element of the grou, then it is obvious that

illustrate this idea, Molodtsov considered several (F,H) is an int-soft subgroup o6 no matter howr is
examples in 17]. In fact, there exists a mutual défined.

correspondence between soft sets and binary relations as B
shown in B,10]. That is, letA and B be nonempty sets Proposition 1If Fy <G, then Keg) 2 F(x) for all x € H.

Example et G = (Za,+), Hs = {0,2} < G and the soft
set(M, Hs) overG, whereM : Hz3 — P(G) is a set-valued
function defined byM(0) = Z4 andM(2) = {0,2}. Then,

one can easily show thip, <G.

Let H4 = G < G and the soft setJ,H,) over G, where

J:Hs — P(G) is a set-valued function defined by

J(x) ={y € G| xRy< x+y=0}

for all x € Hy. ThenJ(0) = {0}, J(1) = {3}, J(2) = {2}
and J(3) = {1}. SinceJ(3—3) = J(0) 2 J(3)NJ(3),
(J,Ha) is not an int-soft subgroup @.

and assume that refers to an arbitrary binary relation
between an element oA and an element oB. A
set-valued functionF : A — P(B) can be defined as
F(x) ={yeB| (xy) € a} forall xe A Then, the pair
(F,A) is a soft set oveB, which is derived from the
relationa.

Definition 2.([3]) Let (F,A) and (G,B) be two soft sets
over a common universe U such that /B # 0. The
restricted intersection ofF,A) and (G,B) is denoted by
(F,A)m(G,B), and is defined ag~,A)m (G,B) = (H,C),
where C = AnNB and for all ce C, H(c) = F(c) N G(c).

3 Int-soft substructures of groups
In this section, we first definmtersection-soft subgroyp

abbreviated byint-soft subgroupand intersection-soft
normal subgroup abbreviated by int-soft normal

subgroupof a group with illustrative examples. We then
study their basic properties with respect to soft set

operations. From now on, we denote a groupdgnd if
H is a subgroup (resp. normal subgroup)&fthen it is
denoted byH < G (resp.H < G).

Definition 3.Let H be a subgroup of G ar(éF, H) be a soft
setover G. Iffor all xy € H, F(xy™) D F(x)NF(y), then
the soft se{F,H) is called an int-soft subgroup of G and
denoted byF,H)<G or simply F<G.

Example lLet G = {1,-1,i,—i},H; = {1,-1} < G and
the soft setF,H;) overG, whereF : H; — P(G) is a set-
valued function defined by (1) = {1,—i,i} andF (-1) =

{1}. Then, one can easily show ttff, <G.

Let H, = G < G and the soft sefT,H;) over G, where
T :Hz — P(G) is a set-valued function defined by

TX)={yeG|xayeye<x>}

forallxe Ha. ThenT (1) = {1}, T(-1) ={-1,1},T(i) =
T(—i)=G. SinceT((—i).(—=i) Yy =T((-i).i) =T(1) 2
T(=i)NT(=i), (T,Hy) is not an int-soft subgroup @.

ProofSince(F,H) is an int-soft subgroup dB, F(

es) =
F(xx 1) DF(X)NF(x) = F(x) for all x € H.

Theorem 11f Fy, <G and T, <G then F, M Tw,<G.

ProofSinceH; andH, are subgroups dg, thenH; NH; is
a subgroup o6G. By Definition2, letFy, m Ty, = (F,H1) M
(T,H2) = (Q,H1NHy), whereQ(x) = F(x) N T(x) for all
X € HiNHy # 0. Then for allx,y € Hy N Hy,

Quxy ) = Flxy HnT(xy ™)
2 (FOINFY)N(TH)NT(Y)
= (Fe)NT)) N (F(Y)NT(y))
= Q) NQ(Y)

ThereforeFy, M Th, = Qu,nH, <G.

Definition 4.Let G; and &G be groups and lefF,H;) and
(T,H2) be two int-soft subgroups of ;Gand G,
respectively. The product of int-soft subgropsH;) and
(T,Hz) is defined as(F, Hl) X (T,Hz) = (Q, Hy x Hz),
where @x,y) = F(x) x T(y) for all (x,y) € Hy x Ha.

Theorem 2If Fy, <G and T, <Gy, then Fy, x Ty, <Gz x
Go.

ProofSince H; and H, are subgroups of5; and Gy,
respectively, themd; x Hy is a subgroup of5; x Gy. By
Definition 4, let
FHl X TH2 = (F,Hl) X (T,Hz) = (Q,Hl X Hz), where
Q(x,y) = F(x) x T(y) for all (x,y) € Hy x Hy. Then for
all (x1,y1), (X2,¥2) € Hy x Hp,

Q((x1,y1) (X2, Y2) )

QX% . y1y5 )

FxGh) x T(yiyzh)

(F(x1) NF(x2)) x (T(y1) NT(y2))

(F(X1) x T(y2)) N(F(x2) x T(y2))
= Q(X1,Y1) N Q(X2,Y2)

HenceFHl X TH2 = QHleZEGl x Go.

1o
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To illustrate Theoreml and Theorem2, we have the Example4d.et G = (Zg,+), H1 = {0,2,4} < G and the

following example: soft set (F,H;) over G, whereF : Hy — P(G) is a
. ~ : set-valued function defined Wy(0) = Zs, F(2) = {1,5}

Example onsider(M,H3)<G = Z4 in Example2. Let andF(4) = {3}. It can be easily seen thaF,H,) is an

G = (Z4,+), Hs = Z4 < G and the soft setK,Hs) over it soft subgroup o6.

G, whereK : Hs — P(G) is a set-valued function defined Let H, = {0,3} < G and the soft setT,H,) overG,

by K(0) =Z4, K(1) =K(3) = {0,1,3} andK(2) = {1,2}.  \yhereT : H, — P(G) is a set-valued function defined by

Then, itis easy to show th&; <G. T(0) = Zg andT(3) = {4}. Itis obvious that T, H,) is an
By Definition 2, int-soft subgroup o6.

My; M Kys = (M, Hg) m (K,Hs) = (W,Hs ﬂ{Hs),} where By Definition 5,

W(x) = M(x) NK(x) for all x € HgNHs = {0,2}. Then 1~ _ (F,H1) + (T,Hz) = (Q,Hy + Hy), where

W(0) = Zs and W(2) = {2} Since  Q(x)=F(x)+T(x) for all x & Hy + Hp = Ze. It can be

WO - 0) = W0 2> W(O) n W0 = W), easily seen thaQu, ;1,<G. We show the operations for

W(2—2) =W(0) = Zs 2 W(2)NW(2) = W(2) = 2} some elements dfl; + Hy: We consider 2-3 € Hy + Hp

and W2 - 0) = W0 —-2) = W(2) = {2} 2 gpq 4 + 3 € Hi + H. Then

W(0) NW(2) = {2}, it follows thatWhi;H, <G. Q2 + 3 = F@ + T@B) = {35} and
Now we consider the int-soft subgrouf,H;) of Q(4+3)=F(4) +T(3)={1}.

G={1,—1,i,—i} in Examplel and the int-soft subgroup -

(M,H3) of Z4 in Example 2. By Definition 4, Q((2+3) - (4+3)) = Q((2-4) +(3-3))

Fi, X My, = (F,Hy) x (M,Hz) = (P,H; x Hg), where =Q(4+0)=F(4)+T(0)
P(x,y) = F(x) x M(y) for all =76
(Xay) = {(170)7(172)7(_130)3(_172)} € Hy x Hz. Then D) 24+3)N0(4+-3)=0
it can be easily seen th&, 1, <G x Z4. We show the L 2 Q2+IHNQ4+3) =0
the operation for some elementstf x Hs: Definition 6.Let N be a normal subgroup of G and let
(F,N) be a soft set over G. TheitF,N) is called an
P((1,0)(-1,2)") = P(1.(-1)7",0-2) int-soft normal subgroup of G, denoted biy,N)<G or
= P(-1,-2)=F(-1)xM(2) simply ly<iG, if the following conditions are satisfied:
o i1)F (xy *) 2 F(x)NF(y) and
= )
= ({110} * 2N {(L.0).(12) = {(L0), (1.2)). '2)F(gxg™) 2 F ().
forallx,y € N and ge G.
It is worth noting that ifA andB are two subgroups of Example et G _ (Ss,0)

o
a group(G,+), then the sum of these two subgroups is N — As — '
i . B = Az = {e,(123),(132)} <« G and the soft setF,N)
defined as the followingd+B = {a+b|a€ AAb € B}. over G, whereF : N — P(G) is a set-valued function

Definition 5.Let (F,H;) and (T,Hz) be two int-soft defined by F(e) = {e(12),(123),(132} and
subgroups of G, +). If H NHz = {eg}, then the sum of F(123) = F(132) = {e (123),(132)}. It can be easily
int-soft subgroups(F,H;) and (T,H,) is defined as Shownthafy<G.
(F,H) + (T,H) = (QH: + Ho), where LetG=(S,0), N=Az={e(123),(132} <G and the
Q(X+Yy) = F(x)+T(y) forall x+y € Hy + Hy. soft set(T,N) overG, whereT :N — P(G) is a set-valued
function defined byT (e) = {e, (12),(23),(123),(132)},
Theorem 3If Fy, <G and F,<G, where (G,+) is an  T(123) = {(12),(123)} and T(132) = {(23),(132)}.
abelian group and HiNH, = {eg}, then Fy, + Tn,<G. Since  T((12)(123)(12)~ ) = T(( 2)(123/(12)) =
T(132 = {(23),(132)} 2 T(123 = {(12),(123)}, it
ProofSinceH; andH; are subgroups of an abelian group follows thatTy is not an int- soft normal subgroup Gt

G, thenH; + H; is a subgroup ofs. By Definition 5, let ~ ~ ~
Fra 4+ Tot, = (F, )+ (T, Hz) — (Q. Hy + Ha), whereQ(x+ Theorem 4lf Fn, <G and |, <G, then ky, M Tn, <G.

y) = F(x)+ T (y) for all x+y € Hy +Hy. SinceHy NH, = ProofSinceNz, N> <1 G, thenN; N N2 < G. By Definition
{eg}, then the sum operation is well defined. Thus, for all 2, Fy, M T, = (F,N1) @ (T,N2) = (W,N1 N Ny), where
X1+ Y1, %+ Y2 € Hy +Ho, W(x) = F(x)NT(x) for all x € NN N # 0. Then for all

X,y € N1 NN and for allg € G,

Wxy h) =F(xy H)nT(xy )

Q(x1+y1) — (X2 +Y2)) = Q((x1 —%2) + (y1 —¥2))

Q
(

=F(x1—X%2)+T(y1—Y2)
2 (F(x)NF(x2)) +(T(y1) NT(y2)) E E; EXB Elgi gii
= (F(x1) + T(y2) N (F () + T (y2)) = W(x) NW(y),

Q(x1+y1) N QX2 +Y2)

W(gxg 1) = F(gxg 1) NT(gxg*
ThereforeFy, + Ty, = QH1+H2<G (9xg) (9xg ) (9xg ™)

)
DF(X)NT(x
To illustrate Theoren3, we have the following example: =W(x).
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ThereforeRy, M T, =V\4\11mN221G- Definition 9.Let (F,N) be an int-soft subgroup (int-soft
Definition 7.Let G, and Gy b dF.Ny) and normal subgroup) of G. Then,

efinition 7.Le an e groups andF,N;) an : : . S _
) e oo Sl mgoups oricand G NEN ssadlobe il - e ol c v
respectively. Theproduct of int-soft normal subgroup Y .
(F,Ng) and (T,Np) is defined as Proposition3Let (F,N;) and (T,N;) be int-soft

(FN) x (T,N2) = (QN; x Np), where  subgroups (resp. int-soft normal subgroups) of G. Then,
Q(x,y) =F(x) x T(y) for all (x,y) € N1 x Np. If (F,N1) and (T,Ny) are trivial int-soft subgroups

_ _ _ (resp. int-soft normal subgroups) of G, then
Theorem 5lf Fy, <G, and Ty, <Gy, then fy, x Ty, <Gy x (F,Np) m (T,Ny) is a trivial int-soft subgroup (resp.
Ga. int-soft normal subgroup) of G.

ilf (F,N;) and (T,Nz) are whole int-soft subgroups

ProofSinceN; andN, are normal subgroups @; and (resp. int-soft normal subgroups) of G, then

Gy, respectively, themN; x Ny is a normal subgroup of

G, x G, By Definition 7 (F,N1) m (T,Np) is a whole int-soft subgroup (resp.

Py, X Th, = (F.Np) x (T,Nz) = (Q.Ng x Ny), where Intsoftnormal subgroup) of G. _

Q(x,y) = F(x) x T(y) for all (x,y) € Ny x N. Then for all iilf (F,Np) is a trivial int-soft subgroup (resp. int-soft

(X1, Y1), (X2,¥2) € N1 x Np and(gy,g2) € Gy x Gy, normal subgroup) of G andT,N;) is a whole int-soft
subgroup (resp. int-soft normal subgroup) of G, then

X% L y1y, h) (F,Np) @ (T,Np) is a trivial int-soft subgroup (resp. int-
soft normal subgroup) of G.

Q((x1,y1)(X2,¥2) 1) = Q(
(

= Fhwe D) x Ty, ) iv)If (F,N1) and (T,Np) are trivial int-soft subgroups
s INL 5 IN2 =
2 (F(xa)NF0e)) x (T(y2) N T (v2)) (resp. int-soft normal subgroups) of G, where G is
= (F(x1) x T(y1)) N(F(x2) x T(y2)) abelian and NNN, = {eg}, then(F,Ny) + (T,Ny) is
= Q(x1,Y1) NQ(X2,¥2), a trivial int-soft subgroup (resp. int-soft normal
Q((91,02)(x1.y1)(01.62) 1) = Q(owxagy ™, Goy103 ™ subgroup) of G.
(81, 22)00,y0){01.2)™) _ F( o fl 2T1 2 1 v)If (F,N;) and (T,N,) are whole int-soft subgroups
= F(O1ag; ™) x T(G2y19, ) (resp. int-soft normal subgroups) of G, where G is
2 F(x1) xT(y1) abelian and NN N, = {eg}, then(F,Ny) + (T,Np) is
= Q(x1,Y1)- a whole int-soft subgroup (resp. int-soft normal
subgroup) of G.

ThereforeRy, > Ty, = Qnyxn, <IG1 X Go. vi)If (F,Ny) is a trivial int-soft subgroup (resp. int-soft

normal subgroup) of G andT,N,) is a whole int-soft
subgroup (resp. int-soft normal subgroup) of G, where
G is abelian and NN N, = {es}, then
(F,N1) + (T,Np) is a whole int-soft subgroup (resp.
int-soft normal subgroup) of G.

ProofStraightforward, hence omitted.

It is well-known that every subgroup of an abelian group
G is also a normal subgroup @&. A similar relationship
exists for int-soft subgroups and int-soft normal subgsoup
as following:

Proposition 2Let H be a subgroup of G, where G is an
abelian group and letF,H) be a soft set over G. (F,H) N )
is an int-soft subgroup of G, then it is also an int-soft Proposition4Let (F,Ni) and (T,N;) be two int-soft

normal subgroup of G. subgroups (resp. int-soft normal subgroups) of &d
Gy, respectively. Then,

ProofSinceH is a subgroup of an abelian group®fthen DIf (F,Ny) and (T,Np) are trivial int-soft subgroups

H <1G. MoreoverF (gxg ) = F(gg 'x) = F(x) 2 F(x) (resp. int-soft normal subgroups) ofGand G,

forall xe H andg € G. Thus,F <G. respectively, theriF,Ny) x (T,Ny) is a trivial int-soft

subgroup (resp. int-soft normal subgroup) of &G..
ilf (F,N;) and (T,Nz) are whole int-soft subgroups
(resp. int-soft normal subgroups) of 1Gand G,
respectively, theriF,N;) x (T,Ny) is a whole int-soft
Definition 8.Let (F,N;) and (T,N;) be two Sl-normal subgroup (resp. int-soft normal subgroup) of €Gs.

subgroups of G, +). If Ny NN, = {eg}, then the the sum  ProofThe proof is obvious, hence omitted.

of int-soft normal subgroupF,N;) and (T,N,) is defined

as (F,N1) + (T,N2) = (Q,N; + Np), where L )

Q(x+y) =F(x)+ T(y) forall x +y & Ny + Ny. 4 Some applications of int-soft substructures
of groups

Corollary 1.Every int-soft normal subgroup of a group G
is an int-soft subgroup of G; however the converse is true
when G is an abelian group.

Theorem 61f Fy, <G and |, <G, where G is an abelian
group and NNN, = {eg}, then E\|1+TN221G. In this section, we give some applications of int-soft

subgroups and int-soft normal subgroups of a group to
Proof.The proof follows from Theorer and Corollaryl. group theory.
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Proposition 5f Fu<G, then

He = {xe H | F(x) = F(eg)} is a subgroup of H.

Prooflt is clear thateg € HE and 0+# He C H. We need
to show thaky e Hr for all x,y € Hg, which means that
F(xy 1) = F(es) has to be satisfied. Singey € Hg, then
F(x) = F(y) = F(eg). By Propositiort, F (eg) D F (xy})
for all x,y € He. Since(F,H) is an int-soft subgroup of
G, thenF (xy 1) D F(x) NF(y) = F(eg) for all x,y € He.
ThereforeHr is a subgroup of.

Proposition 6f Fn<G, then
Ne = {xe N|F(x) = F(eg)} is a normal subgroup of G.

Prooflt is obvious thateg € Nk and 0+# N C G. We
need to show that (ixy~* € Nr and (i) gxg™* € Ng for
al xy € Nb and g € G. If xy € Ng, then
F(x) = F(y) = F(eg). By Proposition 1,
F(es) 2 F(xy 1) andF(es) 2 F(gxg™?t) for all ge G
andx,y € Ne. Since(F,N) is an int-soft normal subgroup
of G, then for all xy € Nb and g € G, (i)
Fxy'?) 2 F(x) N F(y) = F(eg) and (i)
F(gxg ) D F(x) = F(eg). HenceF (xy ') = F(eg) and
F(gxg!) = F(eg) for all g € G andx,y € Nr. Thus,Ng
is a normal subgroup df.

Theorem7let G and & be two groups and
(F1,H1)<Gy, (F2,H2)<Gy. If f :Hy — Hy is a group
homomorphism, then

a)lf f is an epimorphism, thefF,, f~1(H,))<Gy,
b)(F2, f(H1))<Ga,
C)(F1,Kerf)<Gy.

Proofa) SinceH; < G1, Hp < Gy andf : Hy - Hy is a
group epimorphism, then it is clear that!(Hy) < Gj.

Since  (F1,H1)<G1  and  f(Hy) C Hy,
Fi(xy ) 2 Fi(x) NFy(y) for all x,y € f~1(Hy). Hence
(Fla fﬁl(HZ))<Gl-

b) SinceH; < G, Hp < Gy and f : Hy — Hy is a
group homomorphism, thenf(H;) < Gp. Since
f(H1) € Hy, the result is obvious by DefinitioB

¢) SinceKerf < G; andKerf C Hy, the rest of the
proof is clear by Definitior8.

Corollary 2.Let(F,H1)<Gy, (F,Hz2)<Gzand f:H; — H;
is a group homomorphism, théR,, {eg,) } <G.
ProofBy Theorem 7 (c), (Fi,Kerf)<G;. Then
(F2, f(Kerf)) =

(F2,{eg,})<G2 by Theorent (b).

semiring with illustrative examples. We then study their
basic properties with respect to soft set operations. From
now on,S denotes a semiring with zero element 0 and if
M is a subsemiring (resp. ideal) 8fthen it is denoted by

M < S(respM < S).

Definition 10.Let M be a subsemiring of S an[B,M) be
a soft set over S. If for ally € M,

s1)F(x+y) 2 F(x)NF(y) and
s2)F(xy) 2 F(x)NF(y)

then, the soft s¢F, M) is called an int-soft subsemiring of
S and denoted b{F,M)<S or simply g <S.

Example@et S = {1,23}. If we define
X+y=maxXx,y} andx.y = min{x,y} for all x,y € S, then
(S,+,.) is a semiring and its zero element is 1. Moreover,
Sis notaring. LeM = {1, 2}, thenM is a subsemiring of
S. Let the soft sefF, M) overS whereF : M — P(S) is a
set valued function defined By(1) = M andF(2) = {2}.
Then it can be easily seen th@ M)<S. LetH = {1,3},
thenH is a semiring ofS. Let the soft setG,H) overS,
whereG: H — P(S) is a set valued function defined by
G(1) = SandG(3) = H, then(G,H)<S, too.

Proposition 7Let (S,+,.) be a semiring and let M be a
subsemiring of S such th@M,+) is a group. If [4<S,
then KO) D F(x) for all x € M.

ProofSince(F,M) is an int-soft subsemiring @&, then for
all x,y € M, F(x+Yy) 2 F(x)NF(y). Since(M,+) is a
group, if we takey = —x thenF (x—x) = F(0) 2 F(x)N
F(x) = F(x) forall x € M.

Theorem 8If Fy, <S and Gu,<S such that MN M, # 0,
then fy, M Gum,<S.

ProofSince M1 and My are subsemirings o8, where
M1 N Mz # 0, thenM; N M, is a subsemiring oS, By
Definition 2, let
Fv, @ Gwm, = (F,M1) m (G,M2) = (T,M1 N My), where
T(x) = F(x) NG(x) for all x e M1 "My # 0. Then for all
X,y € M1 N My,

sIT(x +y) = Fx + vy n G(
(Fx) n Fy) n (GKx N
(F)NGX)N(Fy)NG(y)) =T(x) NT(y),
s2JT (xy) = F(xy) N G(xy) 2 (F(x)

G(y)) = (FX)NG(X)N(F(y)NG(y)) =TX)NT(y).
ThereforeFMl m GM2 = TMlmMzzs-
Definition 11.Let § and $ be semirings and letF, M)

and (G,Mz) be two int-soft subsemirings ofi &nd S,
respectively. The product of int-soft subsemirifigM)

x

+
=
Iy

and (G,My) is defined as
5 Int-soft substructures of semirings (F,M1) x (GMz) = (QM1 x Mz),  where
Q(x,y) = F(x) x G(y) for all (x,y) € My x Ma.
In this section, we first defineintersection-soft ~ ~
subsemiring abbreviated byint-soft subsemiringand ~ 1neoremolf  Fy, <S and = Gu,<S,  then
intersection-soft idealabbreviated bynt-soft idealof a  Fvy X GmM<S1 X S
(© 2017 NSP
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ProofSince M1 and M, are subsemirings 08, and S,
respectively, therM; x My is a subsemiring of5; x S,.
By Definition 11, let
FMl X GM2 = (F, Ml) X (G, Mz) = (Q,Ml X Mz), where
Q(x,y) = F(x) x G(y) for all (x,y) € M1 x Ma. Then for
all (x1,y1), (X2,¥2) € M1 x Mp,

Sl)Q((Xl,)h) (x2,¥2)) = Q(x1 + Xo,y1 + Yo) =
F(x1+X2) X G(y1+Y2) 2 (F(x1) NF(X2)) x (G(y1) N
G(y2)) = (F(x1) x G(y1) N (F(x2) x G(y2)) =
Q(x1,¥1) NQ(X2,Y2),

SZX?((X17Y1)(X27Y2)) = Q(XiX2,y1y2) = F(xaX2) x
G(yy2) 2 (F(x1) NF(x2)) x (G(y1) N G(y2)) =

(F(x1) x G(y1) N (Fx) x Gy2) =

Q(X1,Y1) NQ(X2,Y2)-
HenceFMl X GM2 Q|v|1><|v|2<81 X .

To illustrate TheorenB and Theorem9, we have the
following example:

Example 7Let (F,M)<Sand(G,H)<Sin Example6. By
Definition2, (F,M)m (G,H) = (T,MNH), whereT(x) =
F(x)NG(x) forall xe MNH = {1} # 0. ThenT(1) =
F(1)NG(1) =MNS=M. SinceT(1+1)=T(1) =M D
T()NT(1)=MandT(1.1)=T(1)=M2T(1)NT(1) =

M, it follows that(T,M NH)<S.
By Definition 11, (F,M) x (G,H) = (Q,M x H),
where  Q(x,y) = F(X) G(y) for all
,3)}. Then it can

X

(xy) e MxH={(1,1),(1,3),(2,1),(2
be easily seen thatQ,M x H)<Sx S. We show the
operations for some elementshdfx H:

Q((1,1)+(2,3)) =Q(1+2,1+3) = Q(2,3)

= F<2) G(3) = {2} x{1,3}

= {21,223}

Q(L1)NQ(2,3) = (F(1) xG(1))N(F(2) xG(3))
= ({1 2} x{1,2,3h)Nn({2} x{1,3})
={21,23}
Q(1L1)(23)=Q(12,13) = Q(11)

=F(1)xG(1)=MxS
Therefore Q((1,1) + (2,3)) 2 Q(1,1) N Q(2,3) and
Q((L,1).(2,3) 2 QL1 NQ(23).

Definition 12.Let | be an ideal of S and I€F,1) be a soft
setover S. Ifforallxy €1 andse S,

iF(x+y) 2 F(x)NF(y),

i2)F(sx) 2 F(x) and
i3)F(xs) 2 F(X),

then(F,1) is called an int-soft ideal of S and denoted by i3)Q

(F,1)<S or simply F<S. If 1< S, (F,1) is a soft set over
S and if the conditiong iand i, are satisfied, theitF,I)
is called a int-soft left ideal of S and denoted (y1)<|'S
or simply k< S. If 1<, S, (F, 1) is a soft set over S and if
the conditionss and i are satisfied, the(F, 1) is called a
int-soft right ideal of S and denoted b¥, 1) <;'S or simply
F| Qrs

Example 8Consider the semirin§and the soft seF, M)
over S in Example6. Then it is seen thaEy<S. Let
K = S<1Sin Example6 and the soft sefT,K) overSis

defined asT : K — P(S), where T(1) = {1,3},
T(Z) = {1,2} T(3) = {23}.  Since
T(2 2)2T(3 ) is not an int-soft ideal o8.

Theorem 10If (F,1)<S (resp. (F,1)<S,
(G,J)<S (resp.

(G,9)S, (G,J)<rS) and INJ # 0, then kM Gy<S
(resp. kMG < S, FMG; <, 9).

(F,1)<irS),

ProofWe give the proof for int-soft ideals, the same proof
can be seen for int- soft left ideals and int- soft right
ideals, too. Sincé,J<Sandl NJ # 0, thenlNJ < S. By
Definition 2, F mG; = (F,1)m (G,J) = (H,1 nJ), where

H(x) = F(x) N G(x) for all x e 1NJ # 0. Then for all

x,yelnJandforallse S

iDHXx +y) = Fx +y n Gx + vy 2
(F () N Fy) n (GxX n Gly) =

- (F(x ()) (F(y)NG(y)) =H((X)NH(y),

|2)H(s) F(sX)NG(sx) 2 (F(X)NG(x)) = H(x),

iz)H(xs) = F(xs)NG(xs) D (F(X) NG(x)) = H(x).

Therefore [ m G3<S.

Definition 13Let § and $ be semirings and letF,I)
and(G,J) be two int-soft ideals of;Sand S, respectively.
The product of int-soft idedF,|) and (G, J) is defined as
(F1) x (G,J) = (Q,1 x J), where Qx,y) = F(x) x G(y)
forall (x,y) €1 xJ.

Theorem 11If F<S; (resp. F<,S1, R <rS) and G<IS
(resp. G<I1S, Gy<ir ), then F x G3<1Sy x S (resp. fr x
Gi<iS xS, R xG3<r S x ).

ProofWe give the proof for int-soft ideals, the same proof
can be seen for int- soft left ideals and int- soft left ideals
too. Sincd andJ are ideals 05, andS,, respectively, then

| x Jis an ideal ofS; x S,. By Definition 13, F x G; =
(F.1) % (G,3) = (Q,1 x J), whereQ(x,y) = F(x) x G(y)

for all (x,y) € 1 x J. Then for all(x1,y1), (X2, ¥2) € 1 xJ
and(s1, ) € S x S,

i)Q((X1,y1) + (X2,Y2)

= QX1 + X2,y1 + Y2)
X1+X2) X G(y1+V2) 2 (F

F( (x1) NF(x2)) x (G(y1) N
G(y2)) = (F(x1) x G(y1)) N (F(x) x G(y2)) =
Q(X1,Y1) NQ(X2,Y2),
i2)Q((s1,%2)(X1,¥1)) = Q(s1X1,S2Y1) =
F(Slxl) x G(spy1) 2 F(x1) x G(y1) = Q(x1,¥1),
(X1, y1)(s1,%2)) = Q(x1S1,Y15) =

F(xis1) x G(y182) 2 F(x1) x G(y1) =
Therefore; x Gy = Q345 X S.

It is worth noting that ifl; and I, are two ideals of a
semiring (S,+,.), then the sum of these two ideals is
defined as the following:
1+l ={i1+i2]i1 €liAiz € l2}.

Q(x1,Y1)-
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Definition 14 Let (F,l1) and (G, 1,) be two int-soft ideals
of S. If kNl = {0}, then sum of int-soft ideals, 1) and

(G, 1) is defined agF,11) + (G,12) = (Q,11+12), where

Q(x+y) =F(x)+G(y) forallx+y e I+ 1.

Theorem 12If F,<S (resp. £<S, F,<S) and G,<S

(resp. G,<S, G,<S), where(ly,+) and (I2,+) are

abelian groups andiIn I, = {0}, then F, + G, <S (resp.
R, + G, <S, k, + G, < S).

ProofWe give the proof for int-soft ideals, the same proof

can be seen for int-soft-left ideal and int-soft-right itdea
too. Sincel; and |, are ideals ofS, where(l1,+) and

(I2,4) are groups, ther; + 1, is an ideal of S. By

Definition 14, let

F, + G, = (Fl1) + (Gl2) = (Ql1 + I2), where

Q(x+Yy) = F(x)+G(y) for all x+y € I1+12. Then, for

all g +y1,%+y€li+landse S

Q(xa+y1)+ (x2+y2)) = QX1 +X2) + (Y1 +V2))
F(x1+X%2) +G(y1+Y2)
(F(x1) NF(X2)) +(Gly1) N
(F(x1) +G(y1)) N(F(x2) +
QX1 +y1) +Q(x2 +V2),
Q(sx +sy)

(sx1) +G(sy)

(x1) +G(y1)
(X1+Y1),
(
(
(
(

G(y2))
G(y2))

v

Q(s(x1 +y1))

v

F
F
Q

Q((x1+Yy1)s) = Q(x1S+y19)

x18) +G(y1S)
x1) +G(y1)
X1 +Y1).
Q|1+|2 <]S-

Definition 15.Let (F,1) be a soft int-soft subsemiring (int-
soft ideal) of S. Then,

||

F
F
Q

ThereforeR, + G, =

i) (F,1) is said to be whole if Ex) = O for all x € S.
ii) (F,1) is said to be whole if Fx) = S for all xe S.
Proposition8Let (F,11) and (G,l2) be int-soft

subsemirings (resp.
1Nl # 0. Then,

DIf (F,11) and (G, l,) are trivial int-soft subsemirings
(resp. int-soft ideals) of S, thefF,I1) m (G,l2) is a
trivial int-soft subsemiring (resp. int-soft ideal) of S.

ilf (F,11) and (G,l2) are whole int-soft subsemirings
(resp. int-soft ideals) of S, thefF,I1) m (G,l2) is a
whole int-soft subsemiring (resp. int-soft ideal) of S.

iilf (F,11) is a trivial int-soft subsemiring (resp. int-soft
ideal) of S and G, I,) is a whole int-soft subsemiring
(resp. int-soft ideal) of S, the(F,l1) m (G,l,) is a
trivial int-soft subsemiring (resp. int-soft ideal) of S.

iv)If (F,11) and (G,ly) are trivial int-soft ideals of S,

where (l1,+) and (l,+) are abelian groups and
1N 1y = {0}, then(F,11) + (G, 1) is a trivial int-soft
ideal of S.

int-soft ideals) of S such thatsubsemiring ofS, thenF(x+Yy) 2 F(x) N F(y)

VIf (F,11) and (G,l,) are whole int-soft ideals of S,
where (I1,+) and (l,+) are abelian groups and
1Nl = {0}, then(F,l1) + (G,I2) is a whole int-soft
ideal of S.

vi)If (F,11) is a trivial int-soft ideal of S andG,I,) is a
whole int-soft ideal of S, whei, +) and (I, +) are
abelian groups andiin I, = {0}, then(F,11) + (G, I2)
is a whole int-soft ideal of S.

ProofThe proof is obvious, hence omitted.

Proposition9Let (F,I1) and (G,l;) be two int-soft
subsemirings (resp. int-soft ideals) of; Sand S,
respectively. Then,

DIf (F,11) and (G, l,) are trivial int-soft subsemirings
(resp. int-soft ideals) of sSand S, respectively, then
(F,11) x (G, 1) is a trivial int-soft subsemiring (resp.
int-soft ideal) of $ x S,.

ilf (F,11) and (G,l2) are whole int-soft subsemirings
(resp. int-soft ideals) of Sand S, respectively, then
(F,11) x (G, 1) is a whole int-soft subsemiring (resp.
int-soft ideal) of $ x S,.

Proof Straightforward, hence omitted.

6 Some applications of int-soft substructures
of semirings

In this section, we give some applications of int-soft
subsemirings and int-soft ideals of a semiring to semiring
theory.

Proposition 10Let (S, +,.) be a semiring and let M be a
subsemiring of S such th@M,+) is a group. If [¥<S,
then Mt = {xe M | F(x) = F(0)} is a subsemiring of M.

Prooflt is obvious that 0 Mg and 0# Mg C M. We
need to show thak+y € Mg and xy € Mg for all
X,y € Mg, which means thatF(x +y) = F(0) and
F(xy) = F(0) have to be satisfied. Sinogy € Mg, then
F(x) = F(y) = F(0). Since (F,M) is an int-soft
= F(0)
and F(xy) 2 F(x) nF(y) = F(0) for all x,y € M.
Moreover, by Proposition7, F(0) 2 F(x+y) and
F(0) D F(xy). ThereforeMg is a subsemiring of/.

Theorem 13Let (S,+,.) be a semiring and | be an ideal
(resp. leftideal, right ideal) of S such thdt +) is a group.
If F<S (resp. IS, F<irS), then ¢ = {x €| | F(x) =
F(0)} is an ideal (resp. left ideal, right ideal) of S.

Prooflt is obvious that O I and 0+# I C S In view
of Proposition7, F(0) 2> F(x) for all x € |. We need to
show thatF (x+y) = F(0), F(sX) = F(0) andF(xs) =
F(0) forall x,y € Ir ands€ S. Sincex+y € |, sxe | and
xsel, F(0) D F(x+Yy), F(0) D Fsx) andF(0) D F(xs).
Moreover for allx,y € I andse S F(x+y) 2 F(x)N
F(y) = F(0), F(sx) 2 F(x) = F(0) andF(xs) D F(x) =
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F(0) sinceR <S. Thereforex+y € Ig, sx€ Ig andxse Ig
for all x,y € I ands € S. Hence|lg is an ideal ofS. The
proof is seen for int-soft-left and int-soft-right ideatso.

Theorem 14Let § be a semiring with zer@s, S be a
semiring with zerds, and (F1,M1)<S;, (F2,M2)<S. If
f : M1 — My is a semiring homomorphism, then

a)lf f is an epimorphism, thefF;, f~1(M2))<Sy,
b)(F2, f(M1))<S,
c)(F1,Kerf)<S;.

Proofa) SinceM; < S, Mo < S andf: M; — My is a
semiring epimorphism, then it is clear thiat}(M,) < S;.
Since  (F,M;)<S;  and  f3(Mp) C My,
Fi(x+y) 2 Fi(x) NFL(y) andFy(xy) 2 Fi(x) NFi(y) for
all x,y € f=1(M,). Hence(Fy, f~1(M,))<S;.

b) SinceM; < S, Ma < S andf: M; — My is a
semiring homomorphism, thenf(M;) < S. Since
f(M1) C My, the result is obvious by Definitioh0.

c) SinceKerf < S andKerf C My, the rest of the
proof is clear by Definitiorl 0.

Corollary 3.Let (F1,M;)<S;, (F2,M2)<S, and f: M; —
M; is a semiring homomorphism, théfy, {0s,) } <S.

ProofBy Theorem 14 (c), (Fi,Kerf)<S;. Then
(R, f(Kerf)) =
(F2,{0s,})<S by Theorent4 (b).

7 Conclusion

Throughout this paper, we deal with the algebraic
intersection-soft substructures of a group. We first
introduce int-soft subgroups and int-soft normal
subgroups of a group. Then, we have investigated the
relations between int-soft subgroups and int-soft normal
subgroups under certain conditions of the group and
obtain their related properties. Moreover, we introduce
the algebraic intersection-soft substructures of a semiri
that is, int-soft subsemiring and int-soft ideal of a

semiring and some related properties are investigated and

illustrated by many examples. Finally, we give some
applications of these new concepts to group theory and
semiring theory.
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